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1   Motivation

2   Batch Trajectory Estimation & Mapping as GP Regression

The problem of simultaneously recovering the location of a robot and a map of its

environment from sensor readings is a fundamental challenge in robotics. We want:

 a continuous-time representation of the robot trajectory, which elegantly handles

asynchronous and sparse measurements, and

 an efficient incremental approach to updating the estimate.

 Representation1

robot trajectory:

mm. model:

robot states at mm.: landmarks (map):

combined states:

 MAP estimate of the combined states: 

 Gauss-Newton method, batch update:  𝜃 ←  𝜃 + 𝛿𝜃∗. At each iteration:

linearized mm.:

linearized ls:

solution embedded:

nonlinear ls: 

2B   Sparse Gaussian Process Regression

𝐾−1 is exactly block-tridiagonal when the GP is generated by linear, time-varying

(LTV) stochastic differential equation (SDE)2:

LTV-SDE:

𝐾 𝜏 𝐾−1 has a specific pattern: only two column blocks are non-zero. 𝑡𝑖−1 < 𝜏 < 𝑡𝑖.

𝐾 𝜏 𝐾−1 = 0…0 Λ 𝜏 Ψ 𝜏 0…0

3   The Bayes Tree for Incremental Updates to Sparse GPR

In order to incrementally update the combined state, we utilize a Bayes tree3. It

leverages a factor graph interpretation of the problem to directly update the

Cholesky factor 𝐿 with just-in-time relinearization while maintaining sparsity.

interpolation :

linearized mm.

sparse pattern:

mm factor:

GP factor:

factorization:

4 Experimental Results

2A   State Interpolation

Any state can be interpolated from other states by computing the posterior mean:

interpolation :

linearized mm.

We can utilize measurement 𝑖 without explicitly estimating the states it relates to.

𝑥 𝑡 ~ 𝒢𝒫 𝜇 𝑡 , 𝐾 𝑡, 𝑡′

𝑦𝑖 = ℎ𝑖 𝜃𝑖 + 𝑛𝑖 𝑛𝑖 ~𝒩 0, 𝑅𝑖

𝑥~𝒩 𝜇,𝐾 𝓁~𝒩(𝑑,𝑊)

𝜃 ~𝒩 𝜂, 𝑃 𝜃 = [ 𝑥𝑇 𝓁𝑇]𝑇 𝜂 = [ 𝜇𝑇 𝑑𝑇]𝑇 𝑃 =
𝐾

𝑊

𝜃∗ = argmax
𝜃

𝑝 𝜃 𝑦 = argmin 𝜃 − 𝜂 𝑃
2 + 𝑦 − ℎ 𝜃 𝑅

2

ℎ𝑖  𝜃𝑖 + 𝛿𝜃𝑖 ≈ ℎ𝑖  𝜃𝑖 + 𝐻𝑖𝛿𝜃𝑖 𝐻𝑖 =
𝜕ℎ𝑖
𝜕𝜃𝑖

| 𝜃𝑖

𝛿𝜃∗ = argmin
𝛿𝜃

 𝜃 + 𝛿𝜃 − 𝜂
𝑃

2
+ 𝑦 − ℎ  𝜃 − 𝐻𝛿𝜃

𝑅

2

(𝑃−1+𝐻𝑇𝑅−1𝐻) 𝛿𝜃∗ = 𝐻𝑇𝑅−1 𝑦 −  ℎ − 𝑃−1  𝜃 − 𝜂

𝐼 𝑏

 𝑥 𝜏 = 𝜇 𝜏 + [Λ 𝜏 Ψ 𝜏 ]
 𝑥 𝑡𝑖−1
 𝑥 𝑡𝑖

−
𝜇 𝑡𝑖−1
𝜇 𝑡𝑖

ℎ𝑘  𝜃𝑘 + 𝛿𝜃𝑘 = ℎ𝑘  𝑥 𝜏 + 𝛿𝑥 𝜏

≈ ℎ𝑘  𝑥 𝜏 + 𝐻𝑘[Λ 𝜏 Ψ 𝜏 ]
𝛿𝑥 𝑡𝑖−1
𝛿𝑥 𝑡𝑖

 𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝑣 𝑡 + 𝐹 𝑡 𝑤 𝑡

 𝑥 𝑡 = 𝜇 𝑡 + 𝐾(𝑡)𝐾−1(  𝑥 − 𝜇)

ℎ𝑖  𝜃𝑖 + 𝛿𝜃𝑖 = ℎ𝑖  𝑥 𝜏 + 𝛿𝑥 𝜏

≈ ℎ𝑖 𝜇 𝜏 + 𝐾 𝜏 𝐾−1  𝑥 − 𝜇 + 𝐻𝑖𝐾 𝜏 𝐾−1𝛿𝑥

𝑓 𝜃 = 

𝑖

𝑓𝑖(𝜃𝑖)

𝑓𝑗 𝜃𝑗 = 𝑓𝑗(𝑥 𝑡𝑖−1, 𝑡𝑖 ) ∝ exp{−
1

2
Φ 𝑡𝑖 , 𝑡𝑖−1 𝑥 𝑡𝑖−1 + 𝑣𝑖 − 𝑥 𝑡𝑖 𝑄𝑖

2 }

𝑓𝑗 𝜃𝑗 ∝ exp{−
1

2
ℎ𝑘(  𝑥 𝜏 + 𝛿𝑥 𝜏 ) − 𝑦𝑘 }

𝑓𝑗 𝜃𝑗 ∝ exp{−
1

2
ℎ𝑘  𝑥 𝜏 + 𝐻𝑘𝐾 𝜏 𝐾−1𝛿𝑥 − 𝑦𝑘 𝑅𝑘

2

𝑓𝑗 𝜃𝑗 ∝ exp{−
1

2
ℎ𝑘  𝑥 𝜏 + 𝐻𝑘 Λ 𝜏 Ψ 𝜏 𝜃𝑗 − 𝑦𝑘 𝑅𝑘

2

𝜃𝑗 ≜ 𝛿𝑥(𝜏)

𝜃𝑗 ≜ 𝛿𝑥

𝜃𝑗 ≜
𝛿𝑥(𝑡𝑖−1)
𝛿𝑥(𝑡𝑖)

5 Conclusion

We have introduced an incremental sparse GPR algorithm that elegantly combines

 the benefits of continuous-time GP-based approaches, and

 the state-of-the-art innovations from incremental discrete-time algorithms for

smoothing and mapping.
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solved by Cholesky decomposition ( 𝐼 = 𝐿𝑇𝐿 ) and back substitution
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Figure 1   A simple factor graph, with 𝑥 𝑡2 being a missing state.  
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We evaluate the utilization of Bayes tree and interpolation for incremental updates

on both synthetic and real datasets.

Figure 2   Synthetic dataset, 1,500 ts

Figure 4   Performance on the synthetic dataset

Figure 5   Performance on the autonomous mower dataset

Figure 3   Autonomous mower dataset, 9,658 ts


