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With the recent advent of risk awareness, decision-making algorithms’ complexity in-
creases, posing a severe difficulty to solve such formulations of the problem online. Our 
approach is centered on the distribution of the return in the challenging continuous do-
main under partial observability. This paper proposes a simplification framework to ease 
the computational burden while providing guarantees on the simplification impact. On top 
of this framework, we present novel stochastic bounds on the return that apply to any re-
ward function. Further, we consider simplification’s impact on decision making with risk 
averse objectives, which, to the best of our knowledge, has not been investigated thus far. 
In particular, we prove that stochastic bounds on the return yield deterministic bounds on 
Value at Risk. The second part of the paper focuses on the joint distribution of a pair of 
returns given a pair of candidate policies, thereby, for the first time, accounting for the cor-
relation between these returns. Here, we propose a novel risk averse objective and apply 
our simplification paradigm. Moreover, we present a novel tool called the probabilistic loss 
(PLoss) to completely characterize the simplification impact for any objective operator in 
this setting. We provably bound the cumulative and tail distribution function of PLoss
using PbLoss to provide such a characterization online using only the simplified problem. 
In addition, we utilize this tool to offer deterministic guarantees to the simplification in 
the context of our novel risk averse objective. We employ our proposed framework on a 
particular simplification technique - reducing the number of samples for reward calculation 
or belief representation within planning. Finally, we verify the advantages of our approach 
through extensive simulations.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous online decision-making is a fundamental aspect of intelligence. In a partially observable setting, which is 
common in real world scenarios, there is no direct access to the state. Instead, the robot has to maintain a belief over the 
state and reason about its evolution while accounting for different sources of uncertainty within the decision-making stage. 
The renowned framework to do so is the Partially Observable Markov Decision Process (POMDP) [18]. Crucial elements 
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defining the robot’s behavior are the random reward and the objective operator applied to the reward distribution. The 
random nature of the reward arises from the uncertainties in the system.

Solving a POMDP, i.e., calculating the “right decision” in terms of an optimal action sequence or policy, involves antici-
pating every imaginable turn of future events and computing the returns based on the corresponding rewards. One typical 
example of the return is the future cumulative reward.

There is a large body of algorithms, formulated on top of POMDP, to approximate decision-making under uncertainty. 
Classical offline methods [21] are trying to find offline a policy that is optimal for all possible beliefs. These methods are 
based on α-vectors and point based value iteration [24,26,34]. Since the α-vector is the vector of the utility function values, 
starting from the state realizations or samples from the belief distribution, under the conditional plan, the set of α-vectors, 
each annotated with an action, can represent the policy for all beliefs. The application of such policy is to find α-vector 
maximizing the inner product with the belief. Unfortunately, these methods are suitable solely for the discrete state, action, 
and observation spaces. Some work on extending the α-vectors to continuous spaces has been done by [28]. More recent 
formulations suitable for continuous spaces are operating on the belief tree.

A necessary factor for planning to be successful is the number of future steps ahead (horizon) that an agent considers in 
the decision-making process. The belief tree grows exponentially with the horizon. However, the exponential growth with 
the horizon is not the only problem of the belief tree based approaches. Additionally, the number of possible states grows 
exponentially with the state space dimension, and consequently, an adequate representation of the belief requires more 
particles in the setting of non-parametric beliefs. Those last two problems are known as the curse of history and the curse of 
dimensionality respectively.

More recently, online methods became successful. Some of them are suitable for continuous state and observation spaces. 
The output of these methods is an action recommended for the current belief. The algorithm itself is a policy which maps 
from beliefs to actions online. Prominent examples are POMCP [33] and its various extensions (e.g., [37]), an algorithm 
designed for large POMDP and based on Monte Carlo tree search. Another popular algorithm, DESPOT [35] [44], focuses on 
the set of randomly sampled scenarios over the belief tree, avoiding drawbacks of the UCT [22] algorithm used in POMCP.

Standard POMDP formulations consider state-dependent rewards and assume that the belief-dependent reward is noth-
ing but expectation over the state reward. POMDP with belief-dependent rewards received much less attention, although these 
rewards are essential in numerous problems, such as information gathering, autonomous navigation, and active sensing. 
Information theoretic rewards are especially significant for belief space planning (BSP) [17], [10]. Araya et al. [1] introduced 
ρ-POMDP and extended the exact α-vectors method and a family of point based approximation algorithms to consider 
convex belief-dependent reward functions. Later Fehr et al. [9] extended their work further to Lipschitz-continuous reward 
functions. Spaan et al. [36] proposed to augment action space with information-reward actions. Dressel and Kochenderfer [7]
proposed an extension of SARSOP [24] to specific forms of belief-dependent rewards. However, these extensions are limited 
either to a discrete setting or to specific forms of belief dependent rewards. In a general setting, belief-dependent rewards 
are computationally demanding and prohibitively expensive.

Further, the most popular and widespread objective operator is the expected value of the return. However, the expected 
value as the objective has inherent flaws. It is oblivious to the distribution of the reward. Meaning it is unable to account 
for the risk that the selected action or policy is suboptimal and to prevent rare undesirable events. One way to introduce 
the notion of risk to decision making is to augment the expected return value with chance constraints. This augmentation, 
however, introduces additional complications which are out of the scope of this paper [31]. With this motivation in mind, 
we focus on an alternative to the expected value objectives in the context of BSP in continuous domains.

Replacing expected value by other objectives in the context of MDP has been discussed in [6]. Importantly, Defourny 
et al. [6] discuss risk measures and applicability of Bellman form. Attractive risk averse objectives include Value at Risk 
(VaR) and Conditional VaR (CVaR) [5]. VaR and CVaR were extensively studied in the context of MDP, whereas in the POMDP 
planning community, they started to emerge only recently [12,13]. So far, we did not find work considering belief-dependent 
rewards in the context of decision making under uncertainty with risk averse objectives.

The computational burden incurred by the complexity of POMDP planning inspired many research works to focus on 
approximations of the problem, e.g., [14]. Typically, approximation based planners show asymptotical guarantees, e.g., the 
convergence of the algorithms. We take a different path, which is to simplify the original decision-making problem. In other 
words, instead of approximating the problem, we substitute it with a simpler one. If the order of policies with respect to 
the original and simplified problems’ objective is preserved, such substitution does not affect the decision-making quality. 
Moreover, suppose we can find online bounds over the original problems’ returns/rewards or objective function, utilizing 
the simplified problem. In that case, it is possible to account for the simplification loss.

Replacement of various parts of the decision making problem to ease the computation burden while preserving the 
precedence of objectives for potential action plans recently appeared in the literature under the names simplification
paradigm [39,41,8,16,19] [32,2], action consistency [8,19] and tree consistency [41]. Yet, these works have limitations. A 
common assumption is a specific objective operator - expectation. Moreover, Elimelech and Indelman [8], Kitanov and In-
delman [19] assume Gaussian distributions and maximum likelihood observations while working in the highly challenging 
setting of a high dimensional state. Sztyglic et al. [41] consider non-parametric beliefs; however, they build upon a specific 
belief dependent reward operator.

The general simplification paradigm is concerned with carefully replacing the nonessential elements of the decision 
making problem and quantifying the impact of this relaxation. Specifically, simplification methods are accompanied by 
2
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stringent guarantees while alleviating the computational burden of the decision making problem. Therefore, previous works 
formulated the simplification paradigm on top of analytical bounds and a conventional expectation operator as the objective. 
Existing works consider a deterministic belief update; however this is problematic for non-parametric beliefs which cannot 
be updated in a deterministic way. In the setting of general beliefs, we shall resort to a particle filter [42] which is a 
stochastic belief update method since it is based on sample approximations.

1.1. Contributions

We study the simplification impact on decision making under uncertainty considering a general objective operator and 
non-parametric beliefs, which therefore involves the distribution over returns. This distribution conveys all the information 
about the decision making problem. Our overall goal is to examine how the simplification method influences the perfor-
mance of the decision-maker while accelerating the decision making process.

To account for the impact of simplification on the distribution over returns, we first relax typical assumptions regarding 
the belief update along with the operator reward and introduce probabilistic ρ-POMDP, which we denote as Pρ-POMDP. 
Given a simplification and an objective operator, we utilize bounds over the return to provide performance guarantees in 
terms of quality of solution with respect to the original (un-simplified) decision making problem. These bounds can be 
analytical, and thus hold with probability one. Crucially, we also introduce stochastic bounds that are applicable to any 
reward function, in contrast to analytical bounds that must be derived for each reward function separately.

Further, we consider specifically simplification impact on decision making with risk averse objectives. To the best of 
our knowledge, this is the first work that investigates simplification in this context. Our key result is the derivation of 
deterministic bounds on the risk averse objective (Value at Risk) using stochastic bounds on the return/reward. Consequently, 
we obtain solving speedup and provide guarantees.

Moreover, we examine how simplification impacts the joint distribution over the returns for two candidate policies. 
We believe this distribution conveys previously unaccounted information, as generally the returns for different policies, 
conditioned on the current belief, are coupled. To the best of our knowledge, this joint distribution has not been studied 
yet. Towards this end, we propose a novel risk aware objective operator on top of the joint distribution over returns for 
two candidate policies. This is as opposed to conventional objectives that are based on the marginal distribution of the 
return given a policy. Furthermore, we develop a method to provide guarantees for the simplification of such an objective. 
Specifically, we introduce probabilistic loss (PLoss) and the corresponding online bound on probabilistic loss (PbLoss) 
to completely characterize the simplification impact on the joint distribution of the rewards given two candidate policies, 
meaning for any objective operator. We then utilize the latter to provide performance guarantees in terms of deterministic 
bounds considering the mentioned risk aware objective operator.

Finally, we apply our general formulation considering a specific simplification: reducing the number of samples of the 
belief for the reward calculation. To be precise, in the setting of an explicitly given belief surface (e.g. Gaussian mixture 
model), we endow the stochastic bounds with an adaptivity property and show how to take the lowest possible number of 
samples while remaining action consistent. In the setting of general beliefs represented by particles we lower the number 
of particles of the belief and provide performance guarantees.

To summarize, our key contributions are as follows. (a) We extend ρ-POMDP to probabilistic ρ-POMDP (Pρ-POMDP) by 
relaxing the assumption that the reward operator and the belief update are deterministic; (b) We introduce novel stochastic 
bounds on the return/reward and rigorously formulate the simplification framework on top of general objective operators 
and returns/rewards; (c) Using our formulations we present simplification of risk averse decision making under uncertainty; 
(d) We present a novel objective utilizing joint distribution of the rewards corresponding to two candidate policies and de-
scribe a method to simplify such decision making while preserving action consistency; (e) We introduce the general concept 
of PLoss and provide its online description with PbLoss and utilize it to provide guarantees in terms of deterministic 
bounds; (f) Finally, we exemplify our framework on a particular simplification technique, which is reducing the number of 
samples within planning.

1.2. Paper structure

This paper is organized as follows. In section 2 we introduce the notations and formulate the problem. In section 3 we 
provide mathematical foundations for our approach. We then focus on the marginal distribution of the return in section 4
and on the joint distribution of a pair of the returns corresponding to two candidate policies in section 5. We present a 
specific simplification in section 6. In section 7 we exemplify our findings on the problem of autonomous navigation with 
light beacons.

2. Notations and problem formulation

Let us denote by P the probability density function and by P the probability. By lowercase letter we denote a random 
vector or its realization. For two random variables x and y, we say that they are equal x = y if they are equal as functions on 
their measurable space. Further, to shorten notations, we shall often use �k+ to denote �k+1:k+L , where L is the planning 
horizon. By ≡ we denote identity. We summarize important notations used throughout the paper in Table 1.
3
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Table 1
List of important notation.

Nomenclature

X ,A,Z State, Action, and Observation spaces

xk ∈ X ,ak ∈ A, zk ∈ Z Momentary state, action, and observation, respectively.

1{·} Indicator function defined on set {}.

a ∧ b min{a,b} where a,b ∈R.

a ∨ b max{a,b} where a,b ∈R.

ρk+ , ρk+1:k+L Reward vector from time index k + 1 until k + L including the ends.

ρ̆k+ , ρ̆k+1:k+L Simplified reward vector.

gk
Return calculated from the reward vector, such that gk � f gk (ρk+1:k+L)

and f gk is some deterministic function.

ğk Simplified return calculated from simplified reward vector.

zk+ , zk+1:k+L Observation vector from time index k + 1 until k + L including the ends.

ψ A general method for updating the belief.

π , πk:k+L−1 Policy sequence from time index k up until k + L − 1 including the edges.

ν , νk:k+L
The sequence of simplification operators

from time index k up until k + L including the edges.

Hk+L � {bk,π, zk+} The future history at the time index k + L.

2.1. POMDP with belief dependent rewards

Let k be an arbitrary time step. ρ-POMDP [1] is an eight tuple

〈X ,A,Z, T , O ,ρ,γ ,b0〉, (1)

where X , A, Z are state, action, and observation spaces with xk ∈ X , ak ∈ A, zk ∈ Z the momentary state, action, and 
observation, respectively, T (xk, ak, xk+1) = PT (xk+1|xk, ak) is the stochastic transition model from the past momentary state 
xk to the next xk+1 through action ak , O (zk, xk) = PZ (zk|xk) is the stochastic observation model, ρ

(
bk+1, zk+1,ak,bk

)
is 

a scalar reward operator, γ ∈ [0, 1] is the discount factor, and b0 is the belief about the initial state (prior). Notably, the 
infinite horizon planning case necessitates γ < 1, whereas γ = 1 is permitted in a finite horizon. In this paper, we focus on 
the finite horizon setting. Moreover, the reward can be dependent on consecutive beliefs and the elements relating them 
(e.g., information gain [10]).

2.2. Belief space planning

The posterior belief at time instant k is given by

bk(xk) ≈ P
(
xk|b0,a0:k−1, z1:k

)
. (2)

The belief is an efficient way of storing all relevant information that has been obtained so far. The usual assumption is 
that the belief is a sufficient statistic for decision making objective [3]. However, in practice, the belief requires some 
representation. In general, this representation is not perfect, e.g., parametric or sampled form; thus, in (2), we used the ≈
sign. In a real life scenario

bk = ψ(ψ(. . .ψ(b0,a0, z1),ak−2, zk−1),ak−1, zk), (3)

where ψ is a method for updating the belief. Denote by π� policy at time step � such that π�(b�) = a� maps belief to the 
action. It is noteworthy that policy π(b) is a random function of the belief in general. For simplicity we assume that policy 
is deterministic. However, our development is not constrained to deterministic policies. By π � πk:k+L−1 we denote a vector 
of policies for L time steps starting from time step k. Let us focus on the finite horizon setting. The general decision making 
under uncertainty objective function is of the following form

V L(bk,π) = ϕ

(
P
(
ρk+1:k+L |bk,πk:k+L−1

)
, gk

)
(4)

s.t. b� = ψ(b�−1,π�−1(b�−1), z�),

where L is the planning horizon, ρ� is a random immediate reward, ϕ is an objective operator, and gk � f gk (ρk+1:k+L) is 
the return [38]. The return is a deterministic function of the realization of ρk+1:k+L . A common choice for ϕ is expectation 
over the distribution of future rewards given all data available [6]. The return is some known function of the realization 
4
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of ρk+1:k+L ; as discussed in [6], e.g., it could correspond to the cumulative reward gk =∑L
�=1 ρk+� . Finally, ψ is a general 

method for propagating the belief with action and updating it with the received observation.
The objective (4) is ultimately based on the distribution of the return given all information available for planning and some 

selected policy P (gk|bk, πk:k+L−1), which decomposes via marginalization over future observations zk+ ≡ zk+1:k+L as

P (gk|bk,π) =
∫

zk+

P (gk|bk,πk:k+L−1, zk+1:k+L) · P (zk+1:k+L |bk,πk:k+L−1)dzk+1:k+L . (5)

A conventional assumption is that P (gk|bk, π, zk+, ) is a Dirac delta function.

3. Foundations

In this section we extend POMDP with belief-dependent rewards to probabilistic POMDP and rigorously define the sim-
plification paradigm. We further continue to the formulation of the general bounds on the reward/return which can be 
analytical or stochastic. We conclude this section with our key insight.

3.1. Extended setting, probabilistic POMDP with belief dependent reward

Sometimes the belief b�−1 has a simple parametric form, where θ�−1 is a vector of parameters, e.g., a Gaussian be-
lief. In this case, belief update ψ can be deterministic, and is denoted by ψdt(θ�−1, π�−1(θ�−1), z�), where the subscript dt
stands for deterministic. In more general and challenging scenarios the belief b�−1 is given by a set of weighted samples 
{(wi

�−1, x
i
�−1)}N

i=1. Therefore, ψ is a stochastic method, e.g., a particle filter [42]. Applying multiple times ψ on the same in-
put will yield different sets of samples approximating the same distribution of the posterior belief. We denote the stochastic 
ψ by ψst(b�−1, π�−1(b�−1), z�). Thus, ψst is a random function of the previous belief, an action and the observation. Note 
also another common situation where b�−1 is parameterized, but there is no closed form update. In this case, ψ is also a 
stochastic method. Another form to formulate the above is that the distribution

B(b�−1,π�−1(b�−1), z�,b�)� PB (b�|b�−1,π�−1, z�) , (6)

is not a Dirac delta function. This aspect was disregarded so far, to the best of our knowledge. Note that in a Belief MDP 
(BMDP) formulation, the assumption is that B is a Dirac delta function.

Similar arguments also hold for the momentary reward operator of the belief and the previous action. In its pure theo-
retical form, the momentary reward is a deterministic operator of the posterior belief and possibly an action. For example, 
a common immediate reward is of the form

ρdt(b) = Ex∼b [ f (b(x), x)] =
∫
x

b(x) f (b(x), x)dx, (7)

where usually f (b(x), x) = − log b(x) or some reward on the state f (b(x), x) = r(x), producing differential entropy or mean 
distance to goal. Unfortunately, an analytical expression for the reward operator ρdt(·) is available in only limited scenarios, 
e.g., if the belief is modeled as Gaussian and the reward is differential entropy. The representation of the beliefs in (6)
dictates adequate practical reward operators. Sometimes the deterministic operator can be constructed on top of a particular 
belief representation. E.g., (6) outputs a set of weighted samples and (7) is adapted to be a deterministic operator of this 
output [4]. However, it is not always possible. In extremely challenging situations the reward includes modification of the 
representation of the belief. This could introduce an additional source of stochasticity. We extend (7) to

R(b�−1,π�−1(b�−1), z�,b�,ρ�) � PR (ρ�|b�, z�,π�−1(b�−1),b�−1) , (8)

embracing these possibilities. To our knowledge, we are the first who treat these aspects as random.
Before introducing simplification formally and analyzing its impact, we shall account for all potential sources of variabil-

ity. We remove conventional approximations by extending (1) to a probabilistic reward model R (8) and probabilistic belief 
update B (6), and introduce

M = 〈X ,A,Z, T , O , R, γ ,bk, B〉, (9)

which we name probabilistic ρ-POMDP (Pρ-POMDP). The rationale behind these conditional distributions (R and B) is to 
capture additional sources of stochasticity, such as stochastic belief update, stochastic calculation of a given reward operator 
or simply not knowing the operator reward in an explicit analytic form.

As discussed earlier, the value function (4) is based on (5). These previously overlooked sources of stochasticity impact 
the likelihood of the observations

P
(
zk+1:k+L |bk,π

)
, (10)
5
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Fig. 1. Illustration of one branch of the extended belief tree. In a conventional setting (bottom), under the policy π , a specific realization of observations 
zk+1:k+3 defines the beliefs along the way. In our extended setting (top), that is not the case, as discussed in text. It is customary to choose the same 
beliefs used to build the tree to obtain reward distribution or samples from the reward. We decoupled beliefs from the tree and beliefs from the reward 
calculation. By the red arrow, we denote our extension (red e). (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

as well as the joint reward distribution P
(
ρk+|bk,π, zk+

)≡ P
(
ρk+1:k+L |bk,πk:k+L−1, zk+1:k+L

)
given a realization of future 

observations. The latter can be factorized as

P
(
ρk+|bk,π, zk+

)=∫
bk+1

PR
(
ρk+1|bk+1, zk+1,πk,bk

)
PB

(
bk+1|bk,πk, zk+1

)
∫

bk+2

. . .

∫
bk+L

PR
(
ρk+L |bk+L, zk+L,πk+L−1,bk+L−1

)
PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)
dbk+L . . . dbk+2dbk+1. (11)

In contrast, in the regular setting of POMDP and ρ-POMDP P
(
ρk+|bk,π, zk+

)
is Dirac’s delta function. If B is a Dirac 

function, a sample from (10) uniquely defines the corresponding posterior beliefs bk+1:k+L . This, therefore, corresponds to 
the classical belief tree (R could still be non a Dirac function). In contrast, our Pρ-POMDP (9), corresponds to an extended
belief tree, which, due to (6), allows many samples of the beliefs bk+1:k+L for each sample of zk+1:k+L from (10). We 
illustrate this in Fig. 1.

3.2. Simplification formulation

To formally define the simplification procedure, we augment the Pρ-POMDP tuple (9) with a simplification operator ν ,

Mν = 〈X ,A,Z, T , O , R, γ ,bk, B, ν〉, ν � νk, . . . , νk+L . (12)

This general operator defines any possible modification of the original problem defined by (9) alongside with (4) to a new, 
simpler to solve, problem. The definition (12) allows us to retain the connection to the original nonsimplified problem (9)
and examine the impact of the simplification on (9). Further, we also define a novel decision making problem, undergoing 
simplification to ease the computational burden. The operator ν can be for example, sparsification of the initial belief bk
[8], substitution of the operator differential entropy by a simpler operator, e.g., trace of covariance matrix, discarding the 
normalizer in the differential entropy operator [30], replacing the reward by its topological signature [19], direct calculation 
of lightweight reward bounds [40], selecting a subset of hypotheses in a hybrid or mixture belief [32]. In Section 6, we 
consider a specific simplification of taking less samples for reward calculation considering parametric and non-parametric 
beliefs.

Generally, M and Mν are different decision making problems. We shall be interested in working online with the latter 
while providing the guarantees with respect to the former.

To distinguish a simplified reward from the original reward, we denote the former by ρ̆ instead of ρ; similarly, we 
denote the simplified belief by b̆ instead of b. Note the operator ν can be stochastic, as discussed below.

Specifically, belief simplification is described by the distribution

P (b̆�|b�;νb
� ). (13)

In general, the distribution (13) over the simplified belief b̆� corresponds to a stochastic simplification operator νb
� . This is 

the case, for example, when b� is represented by a set of N weighted samples and νb
� is the operation of subsampling n

samples according to weights; i.e., applying this operation on b� multiple times leads to different sets of n samples, each 
6
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representing another realization of b̆� from (13). Overall there are 
(N

n

)
such combinations. For a deterministic operator νb

� ,
(13) is a Dirac function.

Further, there are several cases of how a simplification affects belief update (6) from time � − 1 to �.

1. Without any simplification we have PB (b�|b�−1, π�−1, z�) from (6).
2. Given a simplified belief b̆�−1, while keeping the original stochastic belief update ψst , we have

PB(b̆�|b̆�−1,π�−1, z�),

where each realization of b̆� is obtained via ψst. Thus, given b̆�−1, this distribution is not a function of ν .
3. We can also simplify the belief update operator, ψst , to ψ̆st. Denoting the corresponding simplification operator νψ

� , this 
yields

PB̆(b̆�|b̆�−1,π�−1, z�;νψ
� ).

4. Finally, one can decide at time � to apply simplification on the belief (determined by νb
� ) via (13). The corresponding 

belief update can be written as

PB̆(b̆�|b̆�−1,π�−1, z�;νb
� , ν

ψ
� ) =

∫
b̃�

P (b̆�|b̃�;νb
� )PB̆(b̃�|b̆�−1,π�−1, z�;νψ

� )db̃�,

where b̃� is the integration variable.

We combine these cases and write

B̆
(
b̆�−1,π�−1, z�, b̆�;ν

)
�PB̆(b̆�|b̆�−1,π�−1, z�;νb

� , ν
ψ
� ). (14)

Similarly, reward simplification could be, in general, stochastic, leading to the distribution

P (ρ̆�|ρ�;νρ
� ). (15)

Thus, given a simplified belief b̆� and b̆�−1, and recalling (8), the distribution over ρ̆� is

PR̆(ρ̆�|b̆�, z�,π�−1(b̆�−1), b̆�−1;ν)=
∫
ρ̃�

P (ρ̆�|ρ̃�;νρ
� )PR(ρ̃�|b̆�, z�,π�−1(b̆�−1), b̆�−1)dρ̃�,

which we denote as the simplified reward model,

R̆(b̆�, z�,π�−1(b̆�−1), ρ̆�;ν) � PR̆

(
ρ̆�|b̆�, z�,π�−1(b̆�−1), b̆�−1;ν

)
. (16)

Throughout the document we assume that operator ν does not affect the observations likelihood. In other words, the 
measurements are sampled as in the original problem as in (10).

3.2.1. Joint distribution of simplified and the original reward given the candidate policy and the observations
Consequently, the models (14) and (16) impact (11), and lead to several alternatives for the original and the simplified 

joint reward distribution given a realization of the future observations. The first alternative is to simplify the initial belief 
bk to b̆k and apply the update method ψst on the simplified belief

P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)=∫
b̆k

P (b̆k|bk;νb
k )

∫
bk+1

∫
b̆k+1

PB̆

(
b̆k+1|b̆k,πk, zk+1;ν

)
PB

(
bk+1|bk,πk, zk+1

)

· PR̆

(
ρ̆k+1|b̆k+1, zk+1,πk, b̆k;ν

)
PR

(
ρk+1|bk+1, zk+1,πk,bk

) ∫
bk+2

∫
b̆k+2

. . . (17)

∫
bk+L

∫
b̆k+L

PB̆

(
b̆k+L |b̆k+L−1,πk+L−1, zk+L;ν

)
PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)

PR̆

(
ρ̆k+L |b̆k+L, zk+L,πk+L−1, b̆k+L−1;ν

)
PR
(
ρk+L |bk+L, zk+L,πk+L−1,bk+L−1

)
dbk+Ldb̆k+L . . .

dbk+2db̆k+2dbk+1db̆k+1db̆k.
7
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The second alternative is to maintain/update the original belief. In this situation, we maintain and update the original 
belief and then use it to determine a simplified belief to calculate the simplified reward. This is in contrast to updating 
based on simplified beliefs from previous times as in (17). Thus,

P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)=∫
b̆k

P (b̆k|bk;νb
k )

∫
bk+1

∫
b̆k+1

PR̆(ρ̆k+1|b̆k+1, zk+1,πk(b̆k), b̆k;ν)PR
(
ρk+1|bk+1, zk+1,πk,bk

)

P (b̆k+1|bk+1;νb
k+1)PB

(
bk+1|bk,πk, zk+1

) ∫
bk+2

∫
b̆k+2

. . .

∫
bk+L

∫
b̆k+L

PR̆(ρ̆k+L |b̆k+L, zk+L,πk+L−1(b̆k+L−1), b̆k+L−1;ν)PR
(
ρk+L |bk+L, zk+L,πk+L−1,bk+L−1

)
(18)

P (b̆k+L |bk+L;νb
k+L)PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)
dbk+Ldb̆k+L . . . dbk+2db̆k+2dbk+1db̆k+1db̆k.

Having introduced the two alternatives above, we are ready to go through their differences. The simplification approach 
defined by (17) uses only the observations from the belief tree. In the sequel, we explain why it is advantageous. In this 
setting, in addition to maintaining/updating b� for constructing the extended belief tree, we also have to maintain/update 
the simplified version b̆� . Nevertheless, the advantage is that by definition of (17), we nullify covariance between simplified 
and the original reward/return as opposed to the equation (18). In other words, considering (17) one can write,

P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)= P
(
ρk+|bk,π, zk+

)
P
(
ρ̆k+|bk,π, zk+, ν

)
(19)

Alternatively, if maintaining/updating a simplified belief is not desirable, e.g., belief is given as a surface but no closed 
form solution for reward exists, the update of a simplified belief b̆� can be avoided. Towards this end we use (18). This is 
in contrast to updating based on simplified beliefs from previous times as in (17). Such simplification does not necessarily 
require to sample the original beliefs again. One could utilize original beliefs already present in the belief tree for simulating 
the observations. In the next section we delve into the subject of the bounds. Importantly, from structure of (18) we see 
that this distribution cannot be broken down to the multiplication of the marginals as in (19). In particular, the correlation 
is present through the component P (b̆�|b�; νb

� ).
Note, sometimes estimators of the reward, e.g., [4] require a specific connection between two consecutive beliefs.

3.3. Online stochastic and analytical bounds

While thus far we considered the joint distribution over original and simplified rewards, P
(
ρk+, ρ̆k+|bk,π, zk+, ν

)
, in 

an online setting we do not have access to the original rewards as calculating them explicitly defeats the purpose of 
simplification. Instead, we shall now utilize simplification to provide bounds over the original rewards. These bounds can be 
used to provide performance guarantees, and should be cheaper to calculate than the original rewards.

Further, the bounds can be analytical as in previous simplification approaches, e.g., [8]. The bounds can be obtained via 
a simplified reward or directly as in [39]. For example, the authors of [39] proposed lightweight analytical adaptive bounds, 
calculated from the original belief, such that l� ≤ ρ� ≤ u� is always true by definition. If the bounds are calculated directly, 
we skip (18) and have instead the following.

P
(
ρk+, lk+, uk+|bk,π, zk+, ν

)=
∫
b̆k

P (b̆k|bk;νb
k )

∫
bk+1

∫
b̆k+1

P (ρk+1, lk+1, uk+1|bk+1, b̆k+1, zk+1,πk(bk),bk, b̆k;ν)P (b̆k+1|bk+1;νb
k+1)PB

(
bk+1|bk,πk, zk+1

)
(20)∫

bk+2

∫
b̆k+2

. . .

∫
bk+L

∫
b̆k+L

P (ρk+L, lk+L, uk+L |bk+L, b̆k+L, zk+L,πk+L−1(bk+L−1),bk+L−1, b̆k+L−1;ν)

P (b̆k+L |bk+L;νb
k+L)PB

(
bk+L |bk+L−1,πk+L−1, zk+L−1

)
db̆k+Ldbk+L . . . db̆k+2dbk+2db̆k+1dbk+1db̆k.

The simplification type depicted by (20) is an extension of in-place simplification described in [39] to an extended setting. 
Ultimately for each realization of the return we are interested in the following relation

l ≤ gk ≤ u. (21)
8
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Fig. 2. Our extended setting permits variability of the reward given the present and a realization of the future. On the contrary, in a conventional setting, 
(23) is always a Dirac delta function. Our extension reflects on the original distribution of the return as well as the simplified.

One way to do that is to develop analytical bounds, which will hold for any possible observation zk+1:k+L received and any 
realization of return, e.g., as in [39].

In this section we show that there is another way to find more lenient bounds. Let Hk+L � {bk, π, zk+} be future history 
at the time index k + L. Our extension allows R and B , as well as R̆ and B̆ to be any distributions.

They can remain Dirac functions, e.g., if belief update and the reward calculation have a closed form

P (ρ�|b�−1,a�−1, z�)=δ(ρ�−ρdt(ψdt(θ�−1,a�−1, z�))). (22)

Successively, P (gk|bk, π, zk+, ) remains Dirac delta. However, in the more general case, following our extension, there is a 
joint distribution of original and simplified returns given a realization of the future and the present

P (gk, ğk|Hk+L, ν), (23)

as illustrated in Fig. 2. As we observe in Fig. 2, given the history Hk+L , the return gk as well as the simplified return ğk
has variability, in contrast to the conventional approach. Ordinarily, the belief update is commenced once and treated as 
deterministic. So as the rewards and return do not have variance given the history of the actions and the observations. Since 
(23) is no longer a Dirac function, we can use knowledge about this distribution to design bounds, which will hold with 
some probability. In Section 6, we show that it is possible to harness the structure of (23) to design the mentioned more 
lenient online bounds.

Our framework permits to detach the process of estimation of the bounds from the realization of the reward and truly 
use all accessible information in a simplified problem. For example, one way to design probabilistic bounds is to find online 
a random variable or deterministic scalar ε such that the probability

P (|gk − ğk| ≤ ε|Hk+L, ν) (24)

is bounded from below. The corresponding probabilistic lower and upper bounds will be l = ğk − ε and u = ğk + ε , re-
spectively. We, therefore, refer to l and u as random variables. In our setting, even if the bounds actually bound with very 
low probability, it is still possible to analyze the quality of the simplification. Moreover, analytical bounds, designed in a 
conventional setting, can be used in our extended setting without any revision. In our extended setting, they will bound 
with probability one.

Having introduced the novel stochastic bounds, we proceed to the formulation of the constraints, that these bounds shall 
fulfill to be meaningful. The following conditional P (gk, ̆gk, l, u|Hk+L, ν) encloses all the variables situated in the problem. 
Let the parameter controlling the confidence level be α ∈ [0, 1). For every possible sample ğk we do not know which sample 
gk one could obtain in the original problem. However, if the bounds are designed such that P (gk, l, u|Hk+L, ν) render

1 − α ≤ P
(
1{l ≤ gk ≤ u} = 1|Hk+L, ν

)
(25)

these bounds can be useful. Notably, the above equation does not involve simplified return, so is applicable also in the case 
bounds are directly formulated (and not via a simplified return). However, in this case the bounds are analytical and α = 0. 
To summarize, there are three types of online reward/return bounds:

1. Deterministic bounds. These analytical bounds exist in case of a closed form belief update ψdt and a deterministic 
operator reward ρdt(b) from (7), e.g., belief is a Gaussian and the reward is differential entropy. In this case, even in 
our extended setting R and B remain Dirac functions.

2. Stochastic bounds that hold with probability one, namely α = 0. These are also analytical bounds. In our extended 
setting R and B are no longer Dirac functions. However, these bounds hold for any realization of sample approximation, 
as stated around (21).

3. Stochastic bounds that hold at least with probability 1 − α. They exist only in our extended setting when R and B are 
not Dirac functions.
9
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3.4. Key insight - characterization of the return using stochastic bounds

Let us recite that our goal is to accelerate the decision making. We recall the notion of “usual stochastic order” and 
interpret the definition within our context.

Usual stochastic order implies, that if for three random variables l, gk, u given bk, π holds l ≤ gk and gk ≤ u for ∀ω ∈ �, 
so ∀ξ ∈ (−∞, ∞)

P (l > ξ |bk,π,ν) ≤ P (gk > ξ |bk,π) ≤ P (u > ξ |bk,π,ν). (26)

Let us present out main theorem which we will extensively use further.

Theorem 1 (Characterization of the return using stochastic bounds). Fix α ∈ [0, 1). Assume that (25) holds. This implies that ∀ξ ∈
(−∞, ∞)

(P (l > ξ |bk,π,ν) − α) (1 − α) ≤ P (gk > ξ |bk,π) ≤ P (u > ξ |bk,π,ν)

1 − α
+ α. (27)

For the detailed proof please refer to Appendix A.1. Let us further improve the bounds as such

LBα(ξ) = 0 ∨ (
P (l>ξ |bk,π,ν) − α

)
(1 − α) ≤ P (gk >ξ |bk,π), (28)

where ∨ is a maximum operator.

P (gk >ξ |bk,π) ≤ 1 ∧
(

P (u>ξ |bk,π,ν)

1 − α
+ α

)
= UBα(ξ), (29)

where ∧ is the minimum operator.

4. Simplification impact on a marginal distribution of the return

Previously, we defined a simplification procedure that results in a corresponding new decision making problem that 
should be easier to solve. From P

(
ρk+|bk,π, zk+, ν

)
and P

(
ρ̆k+|bk,π, zk+, ν

)
we arrive at the distribution of the original 

as well as simplified returns P (gk|bk, π) and P (ğk|bk, π, ν) for the evaluated candidate policy. In this section, we show 
how the stochastic bounds can be utilized in the context of known risk aware objectives such as VaR. Notably, this section 
presents a discussion concerning the marginal distribution of the pair of the returns - original and simplified given a 
candidate policy.

4.1. Distributions affected by the simplification

In this section we decompose the distribution of interest. To grasp the simplification impact we shall assess the relation 
between simplified and original returns portrayed by the following distribution

P (gk, ğk|bk,πk:k+L−1, ν) =
∫

zk+

P (gk, ğk|bk,π, zk+, ν) · P (zk+|bk,π)dzk+. (30)

Recall that zk+1:k+L ≡ zk+ . In general the simplification operator ν can affect also the observation likelihood (10). We leave 
it to future research.

4.2. Decision making

Algorithm 1 Generic simplified with performance guarantees sampling based decision making algorithm with challenging re-
wards and objectives (note that the theory is formulated for policies but here we discuss discrete space of action sequences 
A).

Input: belief bk , action space A.
for action sequence ai from all possible action sequences i ∈ 1 : |A| do

Sample returns and calculate interval LBi , UBi .
end for
Set optimal action sequence ai∗ by i∗ = arg maxi=1:|A| LBi

Find j� = arg max j=1:|A|\i∗ UB j . Define loss incurred by the simplification as follows max{0, UB j� −LBi∗ };

In case that absolute loss doesn’t have meaning, define relative loss as follows max{0,UB j� −LBi∗ }
min{|LBi∗ |,|UB j� |} ≥ V ∗−V (bk ,ai∗ )

|V ∗| , where V ∗ is true optimal value.
10
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Fig. 3. Illustration of Value at Risk. Probability that the return will be under VaR is β . In other words VaR is β-quantile of the return.

In this section, we apply our findings in order to bound popular objectives with lightweight bounds to accelerate the 
decision making mechanism. We skip the most common objective operator, the expectation, since it is oblivious to the dis-
tribution of the returns. Therefore the expectation is not a risk averse objective. Motivated by this assertion, we consider 
more versatile objectives. Since it is not clear whether or not these objectives conform to Bellman form we incorporate 
simplification with generic decision making (Algorithm 1). In this algorithm, we traverse the loop over the possible action 
sequences. We calculate the interval defined by the upper and lower bound on the value function in each loop iteration. 
Finally, we select the action sequence with the highest lower bound and compare it with the highest upper bound corre-
sponding to all other action sequences. We report a relative loss. Using analytical or stochastic bounds on the return our 
goal is to bound the value function V as such

LB ≤ V ≤ UB (31)

to accelerate the decision making. To our knowledge there are no attempts to simplify risk aware decision making under 
uncertainty through maintaining guarantees on the simplification impact.

Risk averse objectives One possible risk averse probabilistic objective for POMDP is

E[1{gk > a}|bk,π ] = P (gk > a|bk,π), (32)

where a ∈ R. Maximizing this objective can be thought as maximizing the probability of achieving the target a. If we 
choose belief dependent reward to be the negative entropy I(bk) = −H(bk), set a = I(bk) and the return to be terminal 
reward gk = ρL , or gk = 1

L

∑k+L
�=k+1 ρ� [21], such objective quantifies the probability that information gain is positive; and 

such decision making prefers the action which maximizes probability of positive information gain. We can further control 
amount of most probable information gain by setting a = c · I(bk), where c is a factor larger than one. Once optimal action 
is obtained we are confident that gk > a with probability P (gk > a|bk, π). Substituting ξ by a the bounds from (28) and 
(29) hold for this objective.

Another objective is reward variant of Value at Risk (VaR) (Fig. 3)

VaRβ(gk|bk,π) = sup{ξ s.t P (gk > ξ |bk,π) ≥ 1 − β}. (33)

This objective articulates that we are interested in the maximal worst case return. Meaning maximal return such that 
probability mass to be above this return is larger than 1 − β . Notably, if gk|bk, π has a strictly increasing Cumulative 
Distribution Function (CDF), the VaR is its β-quantile VaRβ(gk|bk, π) = P−1(gk ≤ β|bk, π). The CDF of a continuous random 
variable is strictly increasing if it does not have intervals on a real line happening with probability zero. In the case of 
symmetrical distributions, the expected value overlaps with median, which is VaR with confidence level β = 0.5. Using 
again usual stochastic order, we can bound this objective with analytical return bounds as well as with stochastic return 
bounds. We start from analytical bounds. Let us focus on the lower bound. We want to show that

VaRβ(l|bk,π,ν) ≤ VaRβ(gk|bk,π). (34)

Since the bounds are analytical we use (26) to behold

{ξ s.t. P (l > ξ |bk,π,ν) ≥ 1 − β} ⊆ {ξ s.t. P (gk > ξ |bk,π) ≥ 1 − β}. (35)

We know that maximum on the containing set is above or equal to maximum on the contained. This argument yields
11
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sup{ξ s.t. P (l>ξ |bk,π) ≥ 1 − β} ≤ sup{ξ s.t. P (gk >ξ |bk,π) ≥ 1 − β}. (36)

Switching roles of l to gk and gk to u we have that

VaRβ(gk|bk,π,ν) ≤ VaRβ(u|bk,π,ν). (37)

Now let us bound the objective (33) using stochastic bounds.

Theorem 2 (Deterministic bound of Value at Risk using stochastic bounds on the return). Assume that (25) holds. Let 0 ≤ α < 1 , 0 ≤
β < 1. Assume that α(2 − α) ≤ β ≤ 1 − α.

VaR β−α(2−α)
1−α

(l|bk,π,ν)≤VaRβ(gk|bk,π)≤VaRβ+α(2−β−α)(u|bk,π,ν). (38)

The reader can find the detailed proof in Appendix A.2. Let us mention that the above bounds hold for theoretical 
objectives. In practice, however, the sample approximations are sufficiently close to the theoretical values.

5. Simplification impact on the joint distribution of the returns given two policies

So far, we analyzed marginal distributions over the returns/rewards corresponding to a candidate policy in the context 
of known risk aware objectives. Interestingly, if we consider the joint distribution over the returns corresponding to two 
candidate policies, as we further show, we can define novel objectives and harness the information encoded in the joint 
distribution.

We start by showing that P (gk, g′
k|bk, π, π ′) �=P (gk|bk, π) ·P (g′

k|bk, π ′). The source for correlation is the mutual likeli-
hood of observations:

P (gk, g′
k|bk,π,π ′) =

∫
zk+
z′

k+

P (gk, g′
k|bk,π,π ′, zk+, z′

k+) · P (zk+, z′
k+|bk,π,π ′)dzk+dz′

k+ = (39)

∫
zk+
z′

k+

P (gk|bk,π, zk+)P (g′
k|bk,π

′z′
k+) · P (zk+, z′

k+|bk,π,π ′)dzk+dz′
k+ (40)

Let us observe the joint likelihood of observations given the belief at present time and two candidate policies 
P
(

zk+1:k+L, z′
k+1:k+L |bk,π,π ′

)
breaks down using chain rule as follows

P
(
zk+1:k+L, z′

k+1:k+L |bk,π,π ′)= P
(
zk+1, z′

k+1|bk,πk,π
′
k

)∫
bk+1

∫
b′

k+1

P
(
zk+2|bk+1,πk+1

)
P
(
z′

k+2|b′
k+1,π

′
k+1

)
PB

(
bk+1|bk,πk, zk+1

)
PB

(
b′

k+1|b′
k,π

′
k, z′

k+1

)
(41)

∫
bk+2

∫
b′

k+2

. . .

∫
bk+L−1

∫
b′

k+L−1

P
(
zk+L |bk+L−1,πk+L−1

)
P
(
z′

k+L |b′
k+L−1,π

′
k+L−1

) ·
PB

(
bk+L |bk+L−1,πk+L−1, zk+L

)
PB

(
b′

k+L |b′
k+L−1,π

′
k+L−1, z′

k+L

)
dbk+L−1db′

k+L−1 . . . dbk+2db′
k+2dbk+1db′

k+1

The myopic observations P
(

zk+1, z′
k+1|bk,πk,π

′
k

)
are correlated through the present time belief bk . To see this explicitly 

we marginalize over the propagated states and employ the observation and motion models

P
(
zk+1, z′

k+1|bk,πk,π
′
k

)=∫
xk+1
x′

k+1
xk

PZ (zk+1|xk+1)PZ (z′
k+1|x′

k+1)PT (xk+1|πk(bk), xk)PT (x′
k+1|π ′

k(bk), xk)bk(xk)dxk+1dx′
k+1dxk. (42)

This insinuates that to base decision making on marginal means to lose this correlation which we aim to exploit. Prompted 
by this insight we suggest an objective uncovered in the next section.

Remark: Note that when the belief is parametric, we do not have a way to jointly parametrically propagate the belief 
with a pair of actions as in (42). However, we can always sample the parametric belief. So even if the belief bk is parametric 
we still can account for correlation in (42) by switching to samples.
12
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Fig. 4. This figure shows alteration of the distribution of joint returns gk and g′
k of two candidate policies π and π ′ as a result of simplification. Color 

intensity denotes distribution values. This is a conceptual illustration, i.e., we do not imply higher/lower rewards or change of support due to simplification.

Extension of the decision making objective Let us define the objective to be maximized involving two candidate policies.

J L(bk,π,π ′) = ϕ

(
P
(
ρk+1:k+L,ρ

′
k+1:k+L |bk,π,π ′

)
, (gk, g′

k)

)
(43)

s.t. b� = ψ(b�−1,π�−1(b�−1), z�).

5.1. Distributions affected by simplification

Now we stipulate on the quality of the simplification for two candidate policies π and π ′ . To quantify the impact of the 
simplification procedure, we shall concentrate on the joint distribution of the pair of simplified and original returns appro-
priate for two candidate polices P (gk, g′

k, ̆gk, ̆g′
k|bk, π, π ′, ν). Our goal is to examine how the simplification procedure alters 

the joint distribution P (gk, g′
k|bk, π, π ′) towards P (ğk, ̆g′

k|bk, π, π ′, ν). These two distributions are illustrated in Fig. 4. In 
the context of (43) we focus on

P (gk, g′
k, ğk, ğ′

k|bk,π,π ′, ν), (44)

i.e., the joint distribution over original and simplified returns of both policies. This distribution decomposes via marginal-
ization over future observations zk+ ≡ zk+1:k+L and z′

k+ ≡ z′
k+1:k+L as

P (gk, g′
k, ğk, ğ′

k|bk,π,π ′, ν) =
∫

zk+
z′

k+

P (gk, g′
k, ğk, ğ′

k|bk,π,π ′, ν, zk+, z′
k+) · P (zk+, z′

k+|bk,π,π ′)dzk+dz′
k+, (45)

which, according to (6), (8) and (14)-(16), decomposes to∫
zk+
z′

k+

P (gk, ğk|Hk+L, ν)P (g′
k, ğ′

k|H′
k+L, ν) · P (zk+, z′

k+|bk,π,π ′)dzk+dz′
k+. (46)

Note that the pair of histories is defined as follows Hk+L � {bk, π, zk+} and H′
k+L � {bk, π ′, z′

k+}; where the belief bk is 
shared by both histories.

In other words, the simplification operator ν independently affects each realization of the future. Given two such real-
izations (Hk+L, H′

k+L, ν), the pairs of original and simplified returns are statistically independent of all other rewards. This 
crucial observation will be significant in the sequel.

5.2. Decision making

This section outlines a generic algorithm for decision making favoring pairwise joint distribution of the returns (Algo-
rithm 2). This algorithm starts by taking the first action sequence as the best. We again traverse the loop over the possible 
action sequences. We compare two action sequences in each loop iteration and select the current optimal sequence. In the 
end, the optimal action sequence is optimal with respect to all possible action sequences. In particular, we propose a novel 
method to perform decision making using the joint distribution of the returns corresponding to the two candidate policies. 
The authors from [27] proposed to perform decision making with maximum likelihood observations. However, when the 
belief distribution is general and sophisticated, a generalization of [27] is to compare number of samples which fulfill the 
13
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Algorithm 2 Generic simplified with performance guarantees sampling based decision making based on pairwise joint distri-
butions (note that the theory is formulated for policies but here we discuss given discrete space A of action sequences).

Input: belief bk , A.
a∗ ← a1

for action sequence ai from all possible action sequences do
Make simplified decision making using two actions a∗ and ai

a∗ ← action defined as optimal in the line above
end for
return a∗

Fig. 5. (a) Hypothesis based decision making; (b) The outcome of decision making is wrong with margin 6 samples due to simplification.

hypothesis that gk > g′
k with number of samples satisfying gk < g′

k . Such a decision making process can be thought as risk 
aware, since we are concerned with choosing an action which will be optimal with higher probability. Namely, if

s∑
i=1

1{gi
k > g′ i

k } ≥
s∑

i=1

1{gi
k < g′ i

k }, (47)

where the summation is over s samples of the pairs of the returns, we declare that π is better, else the π ′ is better. Note 
we assume that the event gk = g′

k happens with probability zero. This assumption is fulfilled with continuous distributions.

Simplified hypothesis based decision making Assume for the moment that bounds in (21) are analytical (hold with probability 
one), e.g., bounds from [39]. We can then define simplified returns as follows ğk = l+u

2 and ğ′
k = l′+u′

2 . Simplification of the 
decision making portrayed by (47) is as follows. We take a simplified return instead of the original and ask if the following 
inequality is fulfilled

s∑
i=1

1{ği
k > ğ′ i

k } ≥
s∑

i=1

1{ği
k < ğ′ i

k }. (48)

If the answer is yes, we declare that π is better, else π ′ is better. Similar to not simplified decision making (47) we assume 
that the event ğk = ğ′

k happens with probability zero.
The question is can we make a wrong conclusion with respect to the original problem due to the simplification, see 

Fig. 5. To provide guarantees on such a simplified decision making we first develop a novel mathematical tool we call 
Probabilistic Loss, which we believe has much bigger potential since it is able to describe the simplification impact for any
operator objective ϕ . We then, in section 5.4, show how to provide guarantees for the specific objective operator (47).

5.3. Probabilistic loss (PLoss)

Let us define the following random variable, which we shall refer to as “loss”

L� fL(gk, g′
k, ğk, ğ′

k)=
{

max{g′
k − gk,0} if ğk > ğ′

k,

max{gk − g′
k,0} if ğk < ğ′

k.
(49)

With (49) we aim to capture a complete impact of a simplification onto the decision making problem (43). Specifically, 
this definition captures for each possible realization of gk, g′

k, ̆gk, ̆g′
k the absolute difference between the original returns 

� = |g′
k − gk| in case action trend was not preserved on this realization. Meaning, at this realization, the optimal actions 

of original and simplified problems would differ. Given a sample (gk, g′
k, ̆gk, ̆g′

k), the simplification is action consistent at 
this sample if the sign of the difference of the returns is preserved. In other words, the same action would be identified 
14
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Fig. 6. Illustration of (a) the distribution of loss, and (b) the online bounds of the return.

as optimal with the original and simplified returns; else we must account for the loss (49). Our object of interest is the 
distribution density of L given all the information available at our disposal,

P
(
L|bk,π,π ′, ν

)
. (50)

We denote this distribution by Probabilistic Loss (PLoss). See illustration in Fig. 6a. E.g., if (50) is the Dirac delta function 
δ(L), the simplification method is absolute action consistent for every possible objective operator ϕ . Moreover, for any �, 
its CDF P

(
L≤ �|bk,π,π ′, ν

)
provides probability to suffer loss at most �. Similarly, the Tail Distribution Function (TDF) 

P
(
L> �|bk,π,π ′, ν

)
provides probability to suffer loss greater than �. The source of distribution (50) is (44).

5.3.1. Online bound on probabilistic loss (PbLoss)
The distribution defined by (50) requires access to (44) which we do not have in an online setting. To circumvent 

the requirement of accessing gk and g′
k , we propose to substitute them by online lower and upper bounds l, u and l′, u′ , 

respectively. These bounds should be accessible without knowledge of original returns. Similar to section 3.3 we aim to 
bound each original return corresponding to its candidate policy.

Let us consider a sampled return realization (gk, g′
k, ̆gk, ̆g′

k) from (44). As in an online setting we do not actually have 
access to the original returns (gk, g′

k), we strive to bound the latter,

l ≤ gk ≤ u, l′ ≤ g′
k ≤ u′, (51)

where, for now, we assume (51) holds for any sample of (gk, g′
k, ̆gk, ̆g′

k); for example, these could be analytically-derived 
bounds. This setting is illustrated in Fig. 6b. However, further we also discuss a more general setting where we allow (21)
to be violated with probability larger than zero.

Using these bounds we are able to define online a bound on loss (49) without accessing the original problem (R and B),

L̄� fL̄(ğk, l, u, ğ′
k, l′, u′)=

{
max{u′−l,0} if ğk > ğ′

k,

max{u−l′,0} if ğk < ğ′
k.

(52)

Note that sometimes we can find bounds over the returns by applying the same function f gk on the bounds on the momen-

tary rewards (returns when L = 1), e.g., in case of cumulative reward u =∑k+L
�=k+1 u� and l =∑k+L

�=k+1 l� . However, this is not 
always possible, e.g., if gk deviates from the sum of momentary rewards or in the case of Bellman form of the objective. 
Sometimes it is, therefore, better to work with momentary bounds.

In an online setting, we are interested in the distribution density of L̄,

P
(
L̄|bk,π,π ′, ν

)
, (53)

which we denote by Probabilistic Bound on Loss (PbLoss).
As we discuss in Section 5.3.2, PbLoss characterizes the impact of a simplification in an online setting; thus, it enables 

to determine online if a candidate simplification is acceptable given a user-specified criteria. The decision to either accept 
or decline a (candidate) simplification is guided by probabilistic guarantees, as provided by our approach.

5.3.2. Description of PLoss online
In this section, we show how PbLoss can be used in an online setting to characterize PLoss (which is unavailable 

online). In turn, this enables us to provide online probabilistic performance guarantees for a considered simplification (rep-
resented by operator ν), or to decide if it is adequate given a user-specified criteria.

Specifically, recall PLoss CDF and TDF, i.e., probability to suffer loss at most, or greater, than � ∈R, respectively,

PLoss CDF: P
(
L ≤ �|bk,π,π ′, ν

)
(54)

PLoss TDF: P
(
L > �|bk,π,π ′, ν

)
. (55)
15
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We now aim to bound PLoss CDF (54) from below, and PLoss TDF (55) from above by utilizing PbLoss.
We now consider PLoss TDF and express P

(
L> �|bk,π,π ′, ν

)
as

P
(
L > �, L̄ ≥ L|bk,π,π ′, ν

)+P
(
L > �, L̄ < L|bk,π,π ′, ν

)
.

The first term can be written via chain rule as

P
(
L > �|L̄ ≥ L,bk,π,π ′, ν

)
P
(
L̄ ≥ L|bk,π,π ′, ν

)
. (56)

Performing chain rule similarly also on the second term and recalling that P (L̄ ≥ L|·) + P (L̄ < L|·) = 1, allows to express
PLoss TDF as

P
(
L > �|L̄ ≥ L,bk,π,π ′, ν

)
λ + P

(
L > �|L̄ < L,bk,π,π ′, ν

)
(1 − λ), (57)

where

λ � P
(
L̄ ≥ L|bk,π,π ′, ν

)≡ P
(

1{L̄≥L} = 1|bk,π,π ′, ν
)

. (58)

While λ from (58) is unavailable, we can bound it from below using

1 − α ≤ P
(
1{l≤gk≤u} = 1|Hk+L, ν

)
(59)

and

1 − α ≤ P
(

1{l′≤g′
k≤u′} = 1|H′

k+L, ν
)

(60)

and

Theorem 3 (Probability that bound bounds). Fix α ∈R. Assume that (59) and (60) hold. Then:

P
(

1{L̄≥L} = 1|bk,π,π ′, ν
)

≥ (1 − α)2. (61)

We provide the detailed proof in Appendix A.3. Now we show that given the event {L̄ ≥ L}, PLoss TDF is bounded 
from above by PbLoss TDF. It is clear that ∀� ∈R,

P
(
L > �|1{L̄≥L} = 1,bk,π,π ′, ν

)
≤ P

(
L̄ > �|1{L̄≥L} = 1,bk,π,π ′, ν

)
. (62)

Finally, we characterize PLoss as follows.

Theorem 4 (Upper and Lower bounds). Denote

θα(�) � min

{
1,

P
(
L̄ > �|bk,π,π ′, ν

)
(1 − α)2

+ 2α − α2

}
,

so

P
(
L > �|bk,π,π ′, ν

)≤ θα(�) ∀� ∈ R≥0 (63)

and

P
(
L ≤ �|bk,π,π ′, ν

)≥ 1 − θα(�) ∀� ∈ R≥0. (64)

The full proof can be found in Appendix A.4. With accessible online θα(�) we are able to obtain a complete characteriza-
tion of the simplification. Moreover, since 0 ≤ L, setting � = 0 in Algorithm 3 we can assess the probability to be absolute 
action consistent for any ϕ .
16
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Algorithm 3 Online empirical characterization of the PLoss with PbLoss.
Input: Two candidate policies π, π ′ . Initial belief bk . Samplers from P (ğk, l, u|Hk+L , ν) and P (ğ′

k, l′, u′|H′
k+L , ν).

Sample bk or take the initial samples from inference. Obtain s samples from P
(

zk+1:k+L , z′
k+1:k+L |bk,π,π ′

)
and create two belief policy trees.

for sample pairs (zk+1:k+L , z′
k+1:k+L) do

Obtain sample (ğk, l, u, ̆g′
k, l′, u′).

Calculate fL̄(ğk, l, u, ̆g′
k, l′, u′) according to (52).

end for
{ fL̄(ğk, l, u, ̆g′

k, l′, u′)} represents the set of samples of L̄.

Output: ∀� empirically calculated P
(
L̄ > �|bk,π,π ′, ν

)
as 

∑s
i=1[L̄i>�]

s .

5.3.3. Calculating PLoss offline and PbLoss online
One approach to obtain PLoss offline is to sample (gk, g′

k, ̆gk, ̆g′
k) from (44) using decomposition (46). PLoss is then 

represented by { fL(gk, g′
k, ̆gk, ̆g′

k)}.
We take samples of P (zk+, z′

k+|bk, π, π ′) from the corresponding extended belief policy trees. To sample

P (gk, ğk|Hk+L, ν) , P (g′
k, ğ′

k|H′
k+L, ν), (65)

we use the original (not simplified) rewards calculated from the beliefs present at the belief tree (belief tree does not 
undergo simplification) and their simplified counterparts.

So far, we did not explain how to calculate PbLoss (53). One approach is to sample (ğk, l, u, ̆g′
k, l

′, u′) from

P (ğk, l, u, ğ′
k, l′, u′|bk,π,π ′, ν) (66)

and evaluate L̄ for each such sample via (52). Then, PbLoss is represented by { fL̄(ğk, l, u, ̆g′
k, l

′, u′)}.
Generating samples from (66) involves marginalizing over future measurements zk+ ≡ zk+1:k+L and z′

k+ ≡ z′
k+1:k+L . Simi-

lar to (46), the (66) decomposes to∫
zk+
z′

k+

P (ğk, l, u|Hk+L, ν)P (ğ′
k, l′, u′|H′

k+L, ν)P (zk+, z′
k+|bk,π,π ′)dzk+dz′

k+ (67)

In practice, P (zk+, z′
k+|bk, π, π ′) corresponds to two extended belief policy trees, starting from the same root (bk) and 

having the same rule for choosing rollouts. The specific way of obtaining samples from

P (ğk, l, u|Hk+L, ν) , P (ğ′
k, l′, u′|H′

k+L, ν) (68)

depends on the operator ν . We summarized the proposed approach in Algorithm 3. In the next section, we elaborate on 
these aspects, considering a specific simplification operator.

5.4. Guarantees on simplified hypothesis based decision making

In this section we provide guarantees on the simplification portrayed by (48). We recite that the concept of PLoss
and PbLoss is valid for any objective operator ϕ . In this section we describe a specific usage for the objective operator 
presented in section 5.2. Let us make a following definition

�̆P �
∣∣∣∣∣

s∑
i=1

1{ği
k > ğ′ i

k } −
s∑

i=1

1{ği
k < ğ′ i

k }
∣∣∣∣∣ . (69)

Each not-action consistent sample decreases this margin by 2, so in order to be not-action consistent we need to satisfy

2 ·
s∑

i=1

1{Li > 0} ≥ �̆P . (70)

The following relation permits us to answer the question either or not it is possible that the order is switched due to 
simplification.

s∑
i=1

1{Li > 0} = s · P (L > 0|bk,π,π ′, ν). (71)

The offline condition that simplification is action consistent will be

2sP (L > 0|bk,π,π ′, ν) < �̆P . (72)
17
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From here we can define the online accessible condition that simplification is action consistent as

2 ·
s∑

i=1

1{L̄i > 0} < �̆P . (73)

We observe that the above relation involves PbLoss from Algorithm 3. Remarkably, for analytical or stochastic bounds for 
sufficiently large s so (59) and (60) hold, we obtain that the condition to be action consistent is

2sθα(0) < �̆P . (74)

Noteworthy, similar to VaR we provide deterministic guarantees using stochastic bounds.

6. Specific simplification

In this section, we exemplify our technique on a specific simplification method. Let us recite that if the simplification 
regime acts according to (17), it results in uncorrelated ğk|bk, π, zk+, ν and gk|bk, π, zk+ . Conversely, if the simplification 
strategy complies to (18), the correlation is present. We start from the setting of a given belief surface and continue to the 
general nonparametric setting. In the following section we describe adaptive stochastic bounds in the setting of an explicitly 
given belief surface.

6.1. Online adaptive bounds on sample based return with a given belief surface

Let us start from the scenario in which the belief surface is explicitly given and we are interested in negative differential 
entropy as a belief dependent reward. Assume the belief is represented in closed form as a Gaussian mixture such that we 
have a deterministic update ψdt (see e.g. [25]). Since the differential entropy doesn’t have a closed form solution, we are 
obliged to sample from the corresponding posterior belief. Assume we have n i.i.d. samples. One way to approximate the 
desired reward [10] is

I = E [ln(b(x))] ≈ −Ĥ = 1

n

n∑
i=1

ln(b(xi)). (75)

We refer to (75) as a simplified reward. This estimator is unbiased as

E

[
1

n

n∑
i=1

ln(b(xi))

]
= 1

n

n∑
i=1

E
[

ln(b(xi))
]

=︸︷︷︸
∀i xi∼b

E [ln(b(x))] = I. (76)

Assume that bk is a sampleable surface and

gk|Hk+L = f gk ((E [ln(b�(x�))])k+L
�=k+1) (77)

ğk|Hk+L, ν = f gk

⎛
⎝(1

n

n∑
i=1

ln(b�(xi
�))

)k+L

�=k+1

⎞
⎠ (78)

Note that gk|Hk+L is theoretical at this point. Its distribution is Dirac delta and its variance is zero. In case we have a belief 
surface represented as a Gaussian mixture with M components the complexity of calculating such simplified return will be 
O (n · M), where n is the number of samples from the surface.

Using a standard Gaussian confidence interval [29] we obtain

P
(|gk − ğk| ≤ zα/2se(n)|Hk+L, ν

)≈ 1 − α. (79)

Adaptive stochastic bounds Let us focus on variance of the reward. Assume that f gk is of the following form.

f gk (ρk+1:k+L) = 1

L

k+L∑
�=k+1

ρ�. (80)

Denote by 1 column vector of ones. The variance V

(
1
L

∑k+L
�=k+1 ρ̆�

∣∣∣∣∣bk,Hk+L, ν

)
can be written as

V

(
1

L
1T ρ̆k+1:k+L

∣∣∣∣∣bk,Hk+L, ν

)
= 1T �1

L2
≤ max

i
σ 2

ii . (81)
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Fig. 7. Potential simplification techniques: (a) Choosing a subset of samples only at time k and updating the simplified belief. Such a simplification corre-
sponds to (17).; (b) Choosing a subset of samples at each time � and updating the original belief. Such a simplification corresponds to (18).

From now let us focus on the variance of ρ̆�|bk, Hk+L, ν , which is (the samples from the belief surface are i.i.d.)

V

[
1

n

n∑
i=1

ln(b�(xi))|bk,Hk+�, ν

]
= 1

n
Vx∼b�

[ln(b�(x))|bk,Hk+�, ν] . (82)

If we knew how to update incrementally Vx∼b [ln(b(x))], this would yield adaptive stochastic bounds. We have samples 
from b, so we can calculate sample variance using n samples of the belief as

V̂x∼b�
[ln(b�(x))|bk,Hk+�, ν] = 1

n − 1

⎛
⎝ n∑

i=1

ln2(b�(xi)) −
(

1

n

n∑
i=1

ln(b�(xi))

)2
⎞
⎠ . (83)

Alternatively, using Taylor expansion similar to [15] we obtain an approximation for desired variance

Vx∼b�
[ln(b�(x))] = E[ln2(b�(x))] −E2[ln(b�(x))]. (84)

Suppose we use sample variance. It has readily available incremental update using Welford’s online algorithm. Suppose we 
have calculated se2

�(n) and ğn
k = 1

L

∑k+L
�=k+1 μn

� , now we want to tighten the bounds. We sample point x� ∼ b� from each 
surface � = k + 1 : k + L. Firstly we update the simplified return incrementally

ğn+1
k = 1

L

k+L∑
�=k+1

(
μn

� + ln b(x�) − μn
�

n

)
= ğn

k + 1

n

⎛
⎝1

L

k+L∑
�=k+1

ln b(x�) − ğn
k

⎞
⎠ . (85)

We then update the se2
�(n) towards se2

�(n + 1). Again the incremental update is readily available

(n + 1) · se2
�(n + 1) = n · se2

�(n) + (ln b(x�) − μn
�)(ln b(x�) − μn+1

� ). (86)

We will have to bookkeep μn
� .

Unfortunately, the belief surface is not always obtainable. Moreover, not always not-simplified reward has zero variance. 
To these aspects we devote the next section.

6.2. Online bounds on sample based return - general setting

Suppose we are given from the inference stage a belief represented by a set of N weighted particles bk = {wi
k, x

i
k}N

i=1. 
We would like to simplify planning by taking substantially less particles b̆k = {w j

k, x
j
k}n

j=1. Alternatively we subsample the 

original belief b� at each time index to obtain b̆� = {w j
�, x

j
�}n

j=1. Our simplification operator ν provides a way to choose a 
subset of n samples from the original N samples. For example, subsampling according to weights. We take ψst as an off-
the-shelf particle filter, which produces the same number of samples as the input. The two ways of updating the belief are 
illustrated in Fig. 7. To present development for (25), we continue with unbiasedness assumption and take an inspiration 
from confidence intervals. Let us introduce the following model(

gk
ğk

)
|Hk+L, ν ∼ N

((
μ
μ

)
;
(

se2(N) cov
cov se2(n)

))
, (87)

where se is the standard error and cov is the covariance. Online we do not have access to these quantities. The standard 
error depends on the number of samples N and n respectively, dwindling as the number of samples increases. We assume 
that each marginal is distributed around the same mean value μ (no bias).
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Denote y = gk − ğk . It is known that y is a zero mean Gaussian with the following variance

var(y) = se2(N) + se2(n) − 2cov. (88)

Let z = y√
var(y)

∼N (0,1) and zα/2 = �−1 (1 − α/2), where � is a CDF of a standard normal variable so P (z > zα/2) = α/2

and

P
(−zα/2 ≤ z ≤ zα/2

)= 1 − α. (89)

In other words

P
(
|y| ≤ zα/2

√
var(y)|Hk+L, ν

)
= 1 − α. (90)

Using the facts se(N) ≤ se(n) and cov ≤ se(N)se(n) we arrive at two cases. The first case is the zero covariance (cov = 0).

var(y) = se2(N) + se2(n) ≤ 2se2(n). (91)

The second case is more general.

var(y) = se2(N) + se2(n) − 2cov ≤ 4se2(n). (92)

Thus, from (90) we obtain for both cases

P
(
|gk − ğk| ≤ zα/2

√
2se(n)|Hk+L, ν

)
≥ 1 − α. (93)

P
(|gk − ğk| ≤ zα/22se(n)|Hk+L, ν

)≥ 1 − α. (94)

6.2.1. Comparison to baseline methods
As a baseline we take conventional methods applying ψst once and treat the sample obtained as representative.

Sample mean Let us assume that the objective is the sample mean of the return with one sample of return per observation 
and {zk+1:k+L}s

i=1 samples of observations. Suppose that samples of observations are i.i.d. Let us recall that the variance of 
this sample mean is as follows

V

(
1

s

s∑
i=1

gi
k

)
= 1

s

(
Ez+[se2(zk+, N)] +V (μ(zk+))

)
. (95)

With analytical bounds we bound deterministically every sample gi
k so we bound sample mean. However in case of stochas-

tic bounds we can not bound expected value but we can use samples of simplified return instead original. Under the model 
(87) the expected value of the same sample mean will stay the same however the variance of the estimator will grow. In 
this case we will accelerate decision making but we will pay with increasing variance

V

(
1

s

s∑
i=1

ği
k

)
= 1

s

(
Ez+[se2(zk+,n)] +V (μ(zk+))

)
. (96)

We believe that this is an interesting relation.

Sample Value at Risk When the objective is sample approximation of VaR with analytical bounds as well with stochastic 
bounds, we can bound only the theoretical VaR.

6.2.2. Estimation of the variance
As we do not have access to se(n) in (93) and (94), it has to be estimated. The simplest way to do that is to repeatedly 

sample simplified returns m times from one of (17), (18), (20) depending on the simplification type. Note that a possible 
bias of the particle filter and the estimation of standard error make (90) only asymptotically correct. However, when dealing 
with a sufficient amount of samples N and n, these deviations from (87) are negligible. Even with repeated re-sampling we 
will reduce computational complexity, as we analyze in Section 7. The bounds for both simplification methods are

(no cov) u = ğk + zα/2
√

2ŝem l = ğk − zα/2
√

2ŝem, (97)

(cov) u = ğk + zα/22ŝem l = ğk − zα/22ŝem. (98)

Moreover, since we recalculate the simplified reward m times, we could improve the final simplified return. In this case, we 
take the average of the samples of the simplified return given the history (prior belief, candidate policy, and the realization 
of the observations) as a final simplified return for this history
20
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ğk = 1

m

m∑
j=1

ğ j
k (99)

and the model becomes

gk|Hk+L, ν ∼ N (ğk, se2(n)). (100)

The bounds in this case are

u = ğk + zα/2ŝem l = ğk − zα/2ŝem. (101)

These bounds asymptotically hold with probability at least 1 − α.
Using ği

k = 1
m

∑m
j=1 ğ j

k , where i = 1 : s we will obtain

V

(
1

s

s∑
i=1

ği
k

)
= 1

s

(
1

m
Ez+[se2(zk+,n)] +V (μ(zk+))

)
. (102)

6.3. Implementation details and computational complexity

Now we describe steps in building an extended belief tree which is common for all our simulations. First, we need to 
construct an extended belief tree appropriate to a given candidate policy (see Fig. 1); alternatively, if the objective operator is 
mounted on the joint distribution of a pair of returns given a pair of policies, as in (43), we shall construct a pair of coupled 
belief trees. Second, we shall apply the simplification and calculate simplified returns and bounds. In all simulations with 
nonparametric beliefs we choose ψst to be an off-the-shelf particle filter with low-variance re-sampling [42]. The entire 
belief update process complexity is O(N). Since the extended belief tree does not undergo simplification, it is common to 
the original and simplified problems.

In practice, the marginal likelihoods P (zk+|bk, π) and P (z′
k+|bk, π ′) as in section 4 or the mutual likelihood of the 

observations P (zk+, z′
k+|bk, π, π ′) as in section 5 (see (41)) correspond to two extended belief policy trees, starting from 

the same root (bk) and having the same rule for choosing rollouts.
Below we discuss the construction of the extended belief tree. Let N be a number of samples of the posterior belief. 

We choose the samples of the belief for creating the observations heuristically according to the following scheme. Let n(�)
z

be number of observations generated by each belief at level � of the tree. We specify n(1)
z (the number of observations 

generated by bk) and the dwindle factor c. Starting from � = 2 the number of observations generated by each belief on 
level � in the tree is calculated as n(�)

z = max{1, � n(1)
z

(�−1)·c �}. In the setting of nonparametric beliefs, we sample states for the 
observations from resampled posterior with Fisher-Yates shuffling (with early termination) [20]. This algorithm is O(N) for 
initialization, plus O(n(�)

z ) for random shuffling.
In our extended belief policy tree, there may be many beliefs stemming from an observation. Denote this number by nb . 

In the setting of nonparametric beliefs represented by the particles, the complexity of constructing the tree is

O(N)

L−1∑
�=1

�∏
i=1

nbn(i)
z . (103)

At each level of the tree beside the bottom, we must apply a particle filter number of times equal to the total number of 
the beliefs at the next level, which is 

∏�
i=1 nbn(i)

z at level �. Also, we need to subsample observations at the current level. 
Since the number of beliefs at the next level is not smaller than at the current level, and the subsampler and particle filter 
complexity is linear in N , we are left with (103). Let us mention that sampling from the belief and application of particle 
filters on each level can be done in parallel.

Now we analyze the speedup in running time as a result of simplification in the setting of nonparametric beliefs. As a 
momentary reward, we take the differential entropy estimator from [4]. This selection makes the complexity of calculating 
the momentary reward to be O(N2). For the bounds calculation depending on the simplification method we need to apply 
particle filter with n samples (17) or with N (18), (20)) samples, L times for each return. Since its complexity is linear in the 
number of samples, the expected speedup is governed only by the immediate reward and bounds calculation. The speedup 
is approximately

N2

n2 · m
. (104)

This acceleration has a rather intuitive explanation. Since we are comparing running time of exactly the same function the 
ratio gives approximately exact speedup. The empirical behavior of estimator is as �(N2). We obtained this speedup in all 
our simulations.
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Fig. 8. Gazebo simulated environment. Each square in the map corresponds to 1 × 1 meters square.

7. Simulations and results - autonomous navigation with light beacons

In this section, we demonstrate our findings. In the center of our focus are the risk-averse operators, and in all cases, 
simplification yields a significant speedup without sacrificing the quality of the solution. We consider the setting of marginal 
distributions over returns per candidate policy, as in Section 4, and the joint distribution over the returns given a pair of 
policies, as in Section 5. In both settings, we consider the problem of autonomous navigation to a pre-defined goal in an 
environment with known beacons.

We start from marginals of the return in the setting of a given belief surface and then proceed to the general domain of 
nonparametric beliefs and an inaccessible belief surface. We then continue to the joint distribution of a pair of the returns 
given two policies and PLoss and PbLoss simulations. Finally, we report the technical characteristics of computers used 
in simulations in Appendix B.

7.1. Marginal return distributions corresponding to candidate polices

For our simulations, we utilize a localization problem with a known map created in the Gazebo simulator [23]. We used 
a Pioneer 3-AT robot to perform navigation to the goal as illustrated in Fig. 8.

7.1.1. A given belief surface
We start by exemplifying the adaptive bounds from Section 6.1 in the setting described in [25]. We do not assume 

that we know which beacon generated an observation in this setting. Instead, we maintain a hypothesis about each pos-
sible configuration of the beacons creating the observation. Such an approach is realistic since, in the planning phase, the 
robot considers the future observations identically as in the inference phase when the real observation is obtained. It re-
sults in belief being a Gaussian Mixture Model (GMM), where each component corresponds to a possible configuration of 
data association. The weights of the components are probabilities of the hypothesis that the Gaussian component is an 
actual configuration. No analytical expression exists for differential entropy when the belief surface is GMM, so we are 
obliged to sample and want as few samples as possible. For simplicity, we consider only two possible paths to the goal, 

as shown in Fig. 9. We take the belief bk over of the robot’s 2D location as a Gaussian N (μ, �), where μ =
(

0.5
0.5

)
and 

� =
(

0.5 0
0 0.5

)
. The belief update is deterministic ψdt. Each beacon is visible on the maximum radius of 3 meters. Leave 

out the recursive setting instead of smoothing, we strictly follow the theory presented at [25]. Let us restate that, in plan-
ning, when considering possible observations, we do not assume that we know from which beacon they arrived; instead, 
we maintain hypotheses regarding each possible configuration of the beacons to yield an observation. We denote each such 
data association by βk+� .

In this study we utilize the following motion model T .

xk+1 = xk + ak + ‖ak‖ · wk wk ∼ N (0,�w), (105)

where x ∈ R2, a ∈ R2, �w = w · I (w is a given parameter) and action ak ∈ A. The A is the set of action sequences 
with actions of variable length. Each visible beacon b produces the observation according to the following model zi ∼
N (‖x − xb‖2

2, �v), where �v = v · I . We selected the following parameters w = 0.5 and v = 0.005. Overall observation is the 
concatenation of the observations received from all seen beacons. Let us denote by M the given map with its beacons. For 
simulating an observation for planning we sample state xk+� from the belief propagated with an action. We use the simplest 
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Fig. 9. Gazebo simulated scenario where the belief surface is explicitly given. The white numbers enumerate the paths, the black numbers enumerate the 
light beacons, the yellow circle is the goal, the black dots are the spots there the observations are taken by the robot, the purple circle is the initial belief 
bk .

model for βk+� being Pβ(βk+�(i) = 1|xk+�) = 1{‖xk+� − xb
i ‖ ≤ r}, where the index i goes from 1 until the number of beacons 

in the map. According to this model, given the state and the map, each beacon is deterministically seen or not. Once we 
obtained the configuration of the seen beacons βk+�; we sample the observation from the following model as follows. We 
define subsequence βk+�(i j) such that the index j pull in ascending order the indexes of i where βk+�(i j) equal 1.

PZ (zk+�|xk+�, M) =
nk+�(xk+�)∏

j=1

P (z j
k+�

|xk+�, M) =
nk+�(xk+�)∏

j=1

P (z j
k+�

|xk+�, xb
i j
), (106)

where nk+�(xk+�) is the number of beacons seen from the state xk+� . If no beacon is seen there is no observation received 
(nk+�(xk+�) = 0).

For belief update, however, we do not assume that we know this configuration βk+� . The belief in each time instant 
is a Gaussian Mixture. To update the belief, we propagate each gaussian with an action using standard Kalman filter [42]. 
To update propagated Gaussian with an observation, we do not assume we know from which beacons this observation is 
received. This result to Gaussian mixture obtained from each propagated Gaussian, where each Gaussian in the mixture 
corresponds to the beacons configuration, which can render such an observation. We utilize unscented Kalman filter [42] to 
update each propagated Gaussian with the observation and a realization of the βk+� . The weight of Gaussian corresponds to 
the probability that such beacons configuration resulted in the obtained observation. The above requires to model visibility 
of the beacon given the state from propagated Gaussian. Since βk+� is a discrete random variable, we normalize when all 
the above probabilities are computed. For an in-depth discussion, please refer to [25].

We sample 500 samples from propagated belief and set the parameter visibility radius as follows r = 3.
Let us recall that in this setting the original return is the theoretical differential entropy over the belief surface which is 

out of the reach. We want to set the number of samples from the belief surface n as small as possible to decide which path 
out of two brings less uncertainty. We aim to choose the path maximizing uncertainty criterion, which we define as follows

ϕ

(
P
(
ρ̆k+1:k+L |bk,πk:k+L−1, ν

)
, ğk

)
= VaRβ(ğ I

k|bk,π,ν), (107)

where

ğ I
k = I(bk+1:k+L |bk,π) = 1

L

k+L∑
�=k+1

(
1

n

n∑
i=1

ln(b�(xi
�))

)
. (108)

We set α = 0.05 such that zα/2 = 1.96, and β = 0.3, overall number of observations in the belief tree is 500. Note that the 
condition α · (2 − α) ≤ β ≤ 1 − α is fulfilled. We start from initial n = 5 and add one sample for each immediate reward 
in the belief tree until there is no overlap between the intervals. In this simulation the adaptation yielded not overlapping 
deterministic bounds on VaR when n = 28 and the second path was chosen as optimal. The interval for the first action 
sequence was [−3.77, −2.76] and for the second sequence was [−2.74, −1.52].
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Fig. 10. Diverse short paths. The current robot position denoted yellow arrow-head and the goal marked by yellow circle. Candidate paths are enumerated. 
Transparent silver spheres are the light beacons.

Table 2
Running times for each of the three action se-
quences for N = 2000 and n = 100.

a1 a2 a3

gk time [sec] 30178 23858 20664

ğk time [sec] 85 64 57

l, u time [sec] 4084 3255 2805

speedup 7.24 7.18 7.22

7.1.2. Not accessible belief surface in the setting of nonparametric belief
In this section we consider non parametric beliefs represented by particles. The belief surface in this setting is out of the 

reach. We remain in recursive formulation of the two dimensional continuous state space. For updating the belief we use 
particle filter with low variance resampler [42]. We begin by building the Probabilistic Road Map (PRM) using OMPL library. 
After the map is built we apply the Diverse Short Path algorithm [43]. The resulting paths from robot to goal are visualized 
at Fig. 10. These paths constitute our action space. We normalize by path length L to obtain fair comparison. To accelerate 
the calculations we apply Algorithm 1.

We use same motion model as in the previous section. However, the observation model varies. In this scenario there are 
four beacons, but each beacon is always seen and produces the observation according to the following observation model 
O . zi

k+�
∼N (xk+�, �v(xk+�)) for i = 1, . . . 4, where the spatially-varying covariance matrix is

�v(x) = v(x) · I, v(x) = w · ‖x − xb
i ‖2

2, (109)

where xb
i is the location of the light beacon number i. The noise parameter w is taken from the motion model. In contrast 

to the previous section, we assume that the data association is solved. Overall observation received from all the beacons 
has the following probability density function

PZ (z|x) =
4∏

i=1

P (zi
k+�|xk+�, xb

i ). (110)

Without losing generality, we assume bk at planning time is uniformly distributed in a unit square, such that the differential 
entropy is zero. In the naive approach to evaluate motion and observation models PT and PZ we need to inverse covariance 
matrix. Of course we can speedup this calculation by caching values of distribution of parameters or even value of evaluated 
motion model. However, this is out of scope of current discussion. We utilize an off-the-shelf Julia language implementation 
of Gaussian distribution. In general evaluation of the model can be extremely costly as described in [14].

We present results in Fig. 11b. Note that we chose N = 2000 guided by the works such as [4] and [11]. In this setting 
we obtain 8 times speedup according to (104), corroborated by Table 2, while the same optimal action is chosen as without 
simplification.
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Fig. 11. Simplified risk aware decision making using VaR. (a) Three candidate paths and four light beacons. (b) Results of simplified planning under 
uncertainty with β = 0.3. The first path is true optimal path due to its proximity to the beacons. In this scenario w = 0.01 and v = 0.001. The optimal path 
selected by solving the simplified problem is first and the relative error is zero whereas the online bound on the relative error is 0.07. In this simulation 
N = 2000 and n = 100. For calculation of the standard error for the bounds we recalculate the simplified reward m = 50 times.

Fig. 12. Comparison of the hypotheses for action sequence one and two. The total number of samples is 500.

7.2. Joint distribution of the rewards corresponding to two candidate policies

In this section we exemplify simplified hypothesis based decision making outlined in section 5.2. We utilize the concept 
of PLoss to provide guarantees considering the specific objective from (48). Further we delve into PLoss to show the 
complete characterization of the simplification for any objective operator ϕ .

7.2.1. Simplified hypothesis based decision making
Let us focus on the previous scenario shown in Fig. 10. Our setting is as in previous section N = 2000, n = 100, m = 50. 

We start by comparing the first path to the second and show the results in Fig. 12. The first hypothesis is that the first 
action sequence is better and the second hypothesis is that the second action sequence is better. Remarkably, we observe 
that the simplification actually improves the decision making since more samples fall into the first hypothesis, and as we 
below show the first hypothesis is indeed optimal. We now utilize PbLoss at � = 0 to provide deterministic guarantees. 
Continuing the discussion on Fig. 12 we obtain �̆P = 480. The sample approximation P (L > 0|bk, π, π ′, ν) = 0.166, such 
that the offline condition (72) is met 44 < 480. The online bound on PLoss TDF at � = 0 is θα(0) = 0.47 such that the 
online condition (74) is also met as 472 < 480. Therefore, we can guarantee deterministically that the actions trend is 
preserved as a result of the simplification.

According to Algorithm 2 we shall also compare the first and the third paths. We present the comparison in Fig. 13. In 
this experiment we obtain �̆P = 408, P (L > 0|bk, π, π ′, ν) = 0.166, θα(0) = 0.83, such that the offline condition is fulfilled 
while the online condition is violated. To conclude, we were able to provide online guarantees that the simplification was 
action consistent when we compared the first and the second path. In some cases, as the comparison of the first and the 
third path, we cannot guarantee action consistency. Meaning, in this case, there is room to take more samples. It is even 
more interesting to utilize an incremental approach and develop adaptive stochastic bounds in the setting of nonparametric 
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Fig. 13. Comparison of the hypotheses for action sequence one and three. The total number of samples is 500.

beliefs. This is, however, out of the scope of this paper, and we leave it to further research. Alternatively, the analytical 
adaptive bounds from [39] can be used.

7.2.2. Probabilistic loss
We believe that the concept of PLoss and PbLoss can provide much more than showed in the previous section. PLoss

characterizes the simplification in a complete manner such that it is possible that one can define probabilistic more lenient 
action consistency on top of PLoss. Thus, we devote this section to experiments with PLoss and PbLoss. In addition we 
show time acceleration speedup of the calculation of belief dependent rewards in the belief tree as a result of simplification. 
Further we discuss empirical action consistency for any objective operator ϕ .

We exemplify our method on the problem of autonomous navigation to a goal with light beacons, which can be used 
for localization. In all our simulations in this section, the return gk is a cumulative reward. In this study, the simplification 
conforms to (17). As the action space we take the space of motion primitives. Moreover, let us emphasize we do not 
average the simplified rewards taken for the approximation of standard error since we aim to examine general behavior and 
standard error possibly can be estimated without resampling of the returns. The bounds are calculated according to (97).

For simplicity, assume we have a linear motion model T , where x ∈R2 as well as a ∈R2

xk+1 = xk + ak + wk wk ∼ N (0,�w), (111)

where �w = w · I (w is a given parameter) and action ak ∈ A, and where the action space A is the space of motion 
primitives of unit length.

We consider next probabilistic and absolute action consistency description using PLoss offline and PbLoss online. We 
say that the action consistency is probabilistic if the probability that a pair of samples of the return will not preserve the 
trend with respect to a pair of actions due to simplification is larger than zero. Remarkably, the analysis below is valid for 
any objective operator ϕ .

Characterizing probabilistic action consistency The observation model O is as follows, z ∼ N (x, �v(x)), where the spatially-
varying covariance matrix is

�v(x) = v(x) · I, v(x) = w · min{1,‖x − x∗‖2
2}, (112)

where x∗ is the location of the light beacon closest to x. The noise has a constant variance w . Without losing generality, 
we assume bk at planning time is uniformly distributed in a unit square. We set L = 12 and compare two action sequences: 
ak+1:k+12 is six times (1, 0)T and after that six times (0, 1)T . In the action sequence a′

k+1:k+12 we switched the order of 
actions such that the robot performs six times (0, 1)T and after that six times (1, 0)T .

One realization of a possible future in terms of measurements and corresponding posterior beliefs is illustrated in Fig. 14. 
It is clearly seen that proximity to a beacon improves localization. Note, the robot is always able to avoid a dead reckoning 
scenario as it always gets an observation from the closest beacon. We hope that this setting conveys a real world scenario 
where an ambulating robot is equipped with long and short range sensors. The close range sensors are activated when the 
robot is inside a unit circle around the beacon. When the robot is outside a unit circle from the closest beacon, the beacon 
is detectable only by the long range sensors, which are less sensitive. We present results of the simplification for w = 0.1, 
N = 1500, m = 50, α = 0.01, zα/2 = 2.56, and the total number of observations is 500. For each sample of zk+1:k+L , we 
sampled bk+1:k+L once. As we see in the left part of Fig. 15 we gained speedup as expected (104) for n = 175. We show 
measurements of all running times in our simulations in Table 4.
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Fig. 14. Results for scenario 1 - probabilistic action consistency: Illustration of one realization of the future in a simulated scenario considering two possible 
action sequences. We start from bk represented by samples uniformly distributed on a unit square. We demonstrated two sequences of observations 
alongside ground truth state samples, and the closest beacons produced these observations from the left. From the right, we plotted two sequences of the 
beliefs produced by these two histories. We show 100 most probable samples of each belief.

Fig. 15. Results for scenario 1 - probabilistic action consistency: (left) Demonstration of runtimes of the total number of the returns for a given extended 
belief tree where N = 1500 and n = 175. Note that this illustration agrees with (104); (right) action consistency of the samples of the return.

From these samples of the returns and bounds, we build PLoss and PbLoss in Fig. 19. In the right part of Fig. 15
quadrants II and IV, we observe samples that are not action consistent. To assess performance we need to choose some 
representative �. Since online we have access exclusively to the simplified problem, let us choose �̆∗ = |E[ğk|bk, π, ν] −
E[ğ′

k|bk, π ′, ν]| and � = 0.5�̆∗ . Note that under our model in average the sample mean is not influenced by the lowering 
the number of samples of the reward. Only the variance of sample mean is increased. Moreover we assume that the 
distributions are without gaps such that the expected value of the return is some sample with probability density function 
larger than zero. Table 3 quantifies online characterization against offline PLoss TDF.

We showed an illustration of this scenario in Fig. 14. In Fig. 16, we demonstrated scatter plots that show samples of the 
simplified and original returns’ differences. We identify that with decreasing n, more samples are not action consistent. This 
phenomenon is corroborated by the histograms of L in Fig. 17.

Let us focus on n = 175 in Fig. 18; online we can conclude that probability that loss incurred by this simplification 
will be greater than �̆∗ is at most 0.11, while actual P (L > �̆∗|·) is 0.0. Similarly, the probability for loss incurred by this 
simplification to be greater than 0.5�̆∗ is at most 0.33, while actual P (L > 0.5�̆∗|·) is 0.0. In this scenario, the simplification 
is not absolute action consistent; it means variability described by (87) is sufficient to switch the order of the returns and 
incur loss � at some sampled realization.

Furthermore, our bounds depend on variance (se2(n)) of the sample approximation of the reward (97), which, according 
to (87) does not depend on �. Hence, as � decreases towards zero, the contribution of variance versus the difference 
between simplified returns grows for any realization of L̄. Therefore, PbLoss departs from PLoss as � decreases. We 
observe this behavior in Fig. 18. Moreover, with the diminishing number of samples, this effect is amplified, as demonstrated 
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Table 3
Results for scenario 1 - probabilistic action consistency: Online characterization 
for N = 1500, α = 0.01, zα/2 = 2.56.

n P (L > 0.5�̆∗|·) θα(0.5�̆∗) �̆∗ P (L > �̆∗|·) θα(�̆∗)

175 0.0 0.33 4.14 0.0 0.11

150 0.01 0.43 4.04 0.0 0.17

125 0.01 0.43 4.21 0.0 0.2

100 0.0 0.56 4.08 0.0 0.29

75 0.01 0.64 4.01 0.0 0.39

50 0.02 0.83 3.72 0.01 0.63

25 0.07 1.0 3.34 0.03 0.94

Table 4
Results for scenario 1 - probabilistic action consistency: run times for N = 1500.

n = 175 n = 150 n = 125 n = 100 n = 75 n = 50 n = 25

gk time [sec] 104957 69658 95651 69713 68584 96354 66513

ğk and l, u time [sec] 72694 34842 33759 15498 8293 5589 969

ğk time [sec] 1454 661 669 298 172 119 14

l, u time [sec] 71240 34181 33090 15200 8121 5469 955

Fig. 16. Results for scenario 1 - probabilistic action consistency: We demonstrate from the left to the right action consistency of the samples of the returns 
for n = 175, n = 125, n = 75, n = 25, whereas N = 1500. As we see, samples violating action consistency are present at all graphs.

in Fig. 18, due to growing variance (87). Remarkably, when samples of original returns are more distinct, the effect of 
variance is nullified. In such a setting, our characterization is incredibly precise, see Fig. 24.

Thus, the behavior of the PbLoss is more conservative in more delicate scenarios, where two candidate policies are 
close to each other in terms of returns. Importantly, for significantly different policies, PbLoss becomes tighter to PLoss. 
This brings us to the next section.

Revealing empirical absolute action consistency In this scenario we modified the noise in the observation model as such 
v(x) = w ·‖x −x∗‖2

2. In addition we removed one beacon on the way of the second action sequence. We remain with w = 0.1, 
m = 50, α = 0.01, zα/2 = 2.56 and set N = 1000. In this scenario the returns of two action sequences are much more distant. 
The samples in the right segment of Fig. 21 are more distant from the origin than in Fig. 15. The characterization is shown 
in Table 5. Therefore, the simplification is empirically absolute action consistent. As we see from the Table 5, observing 
θα(� = 0.0) we are able to identify online that for n = 100 and n = 75, probability to receive samples of the returns 
violating action consistency is at most 0.03, while P (L > 0.0|·) is 0.0.

Here the covariance matrix of the observation model is

�v(x) = v(x) · I, v(x) = w · ‖x − x∗‖2
2. (113)

We demonstrated this scenario in Fig. 20. As we can see in Fig. 22, the clouds of samples are farther from the origin than 
in the previous scenario. Therefore, two action sequences are more distant. In this case, the simplification is empirically 
absolute action consistent, as we observe in the histograms of L in Fig. 23 and empirical characterization shown in Fig. 24. 
We report run times for two scenarios in Table 4 and Table 6, respectively.
A. Zhitnikov and V. Indelman Artificial Intelligence 312 (2022) 103775
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Fig. 17. Results for scenario 1 - probabilistic action consistency: Histograms of PLoss and PbLoss for N = 1500, α = 0.01, zα/2 = 2.56, bin width is 1.0; 
from the left to the right n = 175, n = 125, n = 75, n = 25.

Fig. 18. Results for scenario 1 - probabilistic action consistency: Empirical characterization for N = 1500, α = 0.01, zα/2 = 2.56, evaluated in a grid with 
intervals 0.001; from the left to the right n = 175, n = 125, n = 75, n = 25.

Table 5
Results for scenario 2 - empirical absolute action consistency: Online character-
ization for N = 1000, α = 0.01, zα/2 = 2.56.

n P (L > 0.0|·) θα(� = 0.0) �̆∗ P (L > �̆∗|·) θα(�̆∗)

100 0.0 0.03 17.54 0.0 0.02

75 0.0 0.03 17.14 0.0 0.02

50 0.0 0.06 16.65 0.0 0.02

25 0.0 0.19 15.27 0.0 0.02
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Fig. 19. Results for scenario 1 - probabilistic action consistency: Histograms of PLoss and PbLoss for N = 1500, n = 175, α = 0.01, zα/2 = 2.56 (bin width 
is 0.3, in zoom-in, bin width is 0.03).

Fig. 20. Results for scenario 2 - empirical absolute action consistency: Illustration of one realization of the future in a simulated scenario considering two 
possible action sequences. We start from bk represented by samples uniformly distributed on a unit square. We demonstrated two sequences of observations 
alongside ground truth state samples, and the closest beacons produced these observations from the left. From the right, we plotted two sequences of the 
beliefs produced by these two histories. We show 100 most probable samples of each belief.

Fig. 21. Results for scenario 2 - empirical absolute action consistency: (left) Demonstration of runtimes of the total number of the returns for a given 
extended belief tree where N = 1000 and n = 100. Note that this illustration agrees with (104); (right) action consistency of the samples of the return.
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Fig. 22. Results for scenario 2 - empirical absolute action consistency: We demonstrate from the left to the right action consistency of the samples of the 
returns for n = 100, n = 75, n = 50, n = 25, whereas N = 1000. As we see, all the samples are action consistent.

Fig. 23. Results for scenario 2 - empirical absolute action consistency: Histograms of PLoss and PbLoss for N = 1000, α = 0.01, zα/2 = 2.56, bin width is 
1.0; from the left to the right n = 100, n = 75, n = 50, n = 25.

Table 6
Results for scenario 2 - empirical absolute action consistency: run 
times for N = 1000.

n = 100 n = 75 n = 50 n = 25

gk time [sec] 36745 45187 44899 30889

ğk and l, u time [sec] 17361 12546 4388 844

ğk time [sec] 363 247 65 14

l, u time [sec] 16998 12299 4323 830

8. Conclusions

We introduced a novel simplification framework in the challenging continuous domain with possibly nonparametric be-
liefs and general belief dependent rewards. We presented a formulation of novel stochastic bounds on the return and proved 
that these bounds yield deterministic bounds on VaR. We considered simplification impact also on the joint distribution of 
a pair of returns given two candidate policies, while accounting for the correlation between these returns. In this context, 
we proposed an innovative objective operator on top of the joint distribution. In addition, we presented a mathematical tool
PLoss and its online counterpart PbLoss to characterize the simplification impact on the decision making entirely for any 
objective operator. Moreover, we utilized it to provide deterministic guarantees for our novel risk aware objective operator 
mounted on the joint distribution of a pair of returns given a pair of policies. We presented an instance of our framework 
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Fig. 24. Results for scenario 2 - empirical absolute action consistency: Empirical characterization for N = 1000, α = 0.01, zα/2 = 2.56, evaluated in a grid 
with intervals 0.001; from the left to the right n = 100, n = 75, n = 50, n = 25.

with a specific simplification method, which is reducing the number of samples of the return or the belief used for reward 
calculation. Finally, we verified the advantages of our approach through extensive simulations. For example, in section 7.1.2
we obtained approximately 8 times speedup with respect to the original problem while still identifying the optimal action.
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Appendix A. Proofs for the theorems

A.1. Proof of the Theorem 1

Using the marginalization over future observations with Probability Density Function (PDF) being P (zk+|bk, π) we have 
that

P (1{l≤gk≤u} = 1|bk,π,ν) ≥ (1 − α)

∫
zk+

P (zk+|bk,π)dzk+

︸ ︷︷ ︸
=1

= 1 − α. (114)

The following holds from property of a lower bound (usual stochastic order) ∀ξ ∈ (−∞, ∞)

P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) ≤ P (gk > ξ |bk,π,1{l≤gk≤u} = 1). (115)

Denote λ = P (1{l≤gk≤u} = 1|bk, π, ν). This notation implies that 1 −λ = P (1{l≤gk≤u} = 0|bk, π, ν). Using marginalization over 
the indicator function we have that

P (gk > ξ |bk,π) = P (gk > ξ |bk,π,ν,1{l≤gk≤u} = 1)λ + P (gk > ξ |bk,π,ν,1{l≤gk≤u} = 0)(1 − λ). (116)

Since each summand in the equation above is non negative and using (114) we obtain

P (gk > ξ |bk,π) ≥ P (l > ξ |bk,π,ν,1{l ≤ gk ≤ u} = 1)(1 − α). (117)

Assume α ∈ [0, 1), exist c ∈R+ such that

P (gk > ξ |bk,π,ν) = c(1 − α). (118)
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This implies

P (gk > ξ ∩ 1{l ≤ gk ≤ u} = 1|bk,π,ν) ≤ P (gk > ξ |bk,π,ν) = c(1 − α). (119)

Applying the chain rule and rearranging the terms, we have that

P (gk > ξ |1{l ≤ gk ≤ u} = 1,bk,π,ν) ≤ c
1 − α

λ︸ ︷︷ ︸
≤1

≤ c. (120)

Using again marginalization over the indicator function, we represent the P (l > ξ |bk, π, ν) as

P (l>ξ |bk,π,ν,1{l≤gk≤u} = 1)λ + P (l>ξ |bk,π,ν,1{l≤gk≤u} = 0)(1 − λ). (121)

Using that λ ≤ 1 and P (l >ξ |bk, π, ν, 1{l≤gk≤u} = 0) ≤ 1 we have that

P (l > ξ |bk,π,ν) ≤ P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) + 1 − λ ≤ P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) + 1 − (1 − α). (122)

Using (115) and (118), we arrive at the desired result

P (l > ξ |bk,π,ν,1{l≤gk≤u} = 1) + α ≤
P (gk > ξ |bk,π,ν,1{l≤gk≤u} = 1) + α ≤ c + α = P (gk > ξ |bk,π)

1 − α
+ α. (123)

Rearranging the terms bears(
P (l > ξ |bk,π,ν) − α

)
(1 − α) ≤ P (gk > ξ |bk,π). (124)

Switching the roles of gk to u and l to gk , we obtain the upper bound

P (gk > ξ |bk,π) ≤ P (u > ξ |bk,π,ν)

1 − α
+ α. (125)

This completes the proof. �
A.2. Proof of the Theorem 2

Let us start from upper bound. From Theorem 1{
ξ s.t P (gk >ξ |bk,π,ν)≥1−β

}
⊆
{
ξ s.t

P (u>ξ |bk,π,ν)

1 − α
+α≥1−β

}
. (126)

Equivalently{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
⊆
{
ξ s.t P (u > ξ |bk,π,ν) ≥ (1 − β − α)(1 − α)

}
. (127)

Rearranging the terms, we have that

sup

{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
≤ sup

{
ξ s.t P (u > ξ |bk,π,ν) ≥ 1 − (β + α(2 − β − α)

}
. (128)

It is left to show that

0 ≤ β + α(2 − β − α) ≤ 1. (129)

Since α + β ≤ 2 and α ≥ 0, we have

0 ≤ β ≤ β + α(2 − β − α). (130)

To prove the right inequality we show that

β + α(2 − β − α) − 1 ≤ 0. (131)

Multiplying by −1 we observe that the inequality reads

(1 − β − α) (1 − α)︸ ︷︷ ︸
≥0

≥ 0. (132)
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Requiring that 1 − β − α ≥ 0, we obtain the condition which we already assumed

(1 − α) ≥ β. (133)

We have that

VaRβ(gk|bk,π,ν) ≤ VaRβ+α(2−β−α)(u|bk,π,ν). (134)

To prove the second part of the theorem we use the following{
ξ s.t (P (l > ξ |bk,π,ν) − α)(1 − α) ≥ 1 − β

}
⊆
{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
. (135)

Equivalently,{
ξ s.t P (l > ξ |bk,π,ν) ≥ 1 −

(
1 − 1 − β

1 − α
− α

)}
⊆
{
ξ s.t P (gk > ξ |bk,π,ν) ≥ 1 − β

}
. (136)

It is left to show that

0 ≤ 1 − 1 − β

1 − α
− α ≤ 1. (137)

We immediately see that 1 − 1−β
1−α − α ≤ 1. Rearranging the terms, we arrive at the second condition that

α(2 − α) ≤ β. (138)

This completes the proof. �
A.3. Proof of the Theorem 3

By definition

P (1{L̄≥L} = 1|1{l≤gk≤u} = 1,1{l′≤g′
k≤u′} = 1,bk,π,π ′, zk+, z′

k+, ν) = 1. (139)

We first apply marginalization over future observations zk+≡zk+1:k+L and z′
k+ ≡ z′

k+1:k+L , and events {ω|l(ω)≤gk(ω) ≤ u(ω)}
and 

{
ω|l′(ω)≤g′

k(ω) ≤ u′(ω)
}

. We then use the fact that given two histories Hk+L � {bk, π, zk+} and H′
k+L � {bk, π ′, z′

k+}, 
the events {ω|l(ω) ≤ gk(ω) ≤ u(ω)} and 

{
ω|l′(ω) ≤ g′

k(ω) ≤ u′(ω)
}

are independent of each other. Furthermore, each such 
event depends exclusively on its own history by design. We have that P

(
1{L̄≥L} = 1|bk,π,π ′, ν

)
equals to∫

zk+
z′

k+

P
(

1{L̄≥L} = 1|bk,π,π ′, zk+, z′
k+, ν

)
P
(
zk+, z′

k+ | bk,π,π ′)dzk+dz′
k+. (140)

Moreover, the P
(

1{L̄≥L} = 1|bk,π,π ′, zk+, z′
k+, ν

)
is larger or equal to

P (1{L̄≥L} = 1 ∧ 1{l≤gk≤u} = 1 ∧ 1{l′≤g′
k≤u′} = 1 | bk,π,π ′, zk+, z′

k+, ν). (141)

Engaging the chain rule and using the constraints (59) and (60), and their statistical independence we face that

P
(

1{L̄≥L} = 1|bk,π,π ′, zk+, z′
k+, ν

)
≥ (1 − α)2. (142)

The above expression straightforwardly yields that P
(

1{L̄≥L} = 1|bk,π,π ′, ν
)

≥ (1 − α)2 through the marginalization over 

the future observations since 
∫

zk+
z′

k+
P
(

zk+, z′
k+ | bk,π,π ′

)
dzk+dz′

k+ = 1. This completes the proof. �

A.4. Proof of the Theorem 4

To shorten notations let us denote |bk, π, π ′, ν by |· in the proof. Let us express PLoss TDF as

P (L > �|·) =P
(
L > �|1{L̄≥L} = 1, ·

)
P
(

1{L̄≥L} = 1|·
)

+ P
(
L > �|1{L̄<L} = 1, ·

)
P
(

1{L̄≥L} = 0|·
)

. (143)

Similarly, PbLoss TDF reads
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P
(
L̄ > �|·)=P

(
L̄ > �|1{L̄≥L} = 1, ·

)
P
(

1{L̄≥L} = 1|·
)

+ P
(
L̄ > �|1{L̄<L} = 1, ·

)
P
(

1{L̄<L} = 1|·
)

. (144)

Since α ∈ [0, 1) it exists c ∈R>0 such that

P
(
L > � ∧ 1{L̄≥L} = 1|·

)
≤ P

(
L̄ > �|·)= c(1 − α)2. (145)

This implies

P
(
L̄ > �|1{L̄≥L} = 1, ·

)
P
(

1{L̄≥L} = 1|·
)

≤ c(1 − α)2, (146)

P
(
L̄ > �|1{L̄≥L} = 1, ·

)
≤ c

(1 − α)2

P
(

1{L̄≥L} = 1|·
)

︸ ︷︷ ︸
≤1

≤ c. (147)

Moreover, using that P (1{L̄≥L} = 1|·) + P (1{L̄<L} = 1|·) = 1, we obtain

P (L > �|·) =P
(
L > �|L̄ ≥ L, ·) P

(
L̄ ≥ L|·)+

P
(
L > �|L̄ < L, ·) (1 − P (L̄ ≥ L)|·)≤

P
(
L > �|L̄ ≥ L, ·)+ 1 − (1 − α)2 ≤ c + 2α − α2, (148)

but c = P
(
L̄>�|bk,π,π ′,ν

)
(1−α)2 . We showed that

P (L > �|·) ≤ P
(
L̄ > �|bk,π,π ′, ν

)
(1 − α)2

+ 2α − α2. (149)

Furthermore, by definition of TDF

P (L > �|·) ≤ 1. (150)

We write the above two relations compactly as

P (L > �|·) ≤ θα(�), (151)

where θα(�) = min

{
1,

P
(
L̄>�|bk,π,π ′,ν

)
(1−α)2 + 2α − α2

}
. Clearly

P
(
L ≤ �|bk,π,π ′, ν

)= 1 − P
(
L > �|bk,π,π ′, ν

)≥ 1 − θα(�). (152)

This concludes the proof. �
Appendix B. Technical characteristics of computers used in simulations

Our simulations are written in Julia language with a multi-threaded calculation of immediate reward. We used 4 com-
puters with the following characteristics:

1. 40 cores Intel(R) Xeon(R) E5-2670 v2 with 256 GB of RAM working at 2.50 GHz;
2. 24 cores Intel(R) Core(TM) i9-7920X with 64 GB of RAM working at 2.90 GHz;
3. 20 cores Intel(R) Xeon(R) E5-2630 v4 with 64 GB of RAM working at 2.20 GHz;
4. 20 cores Intel(R) Core(TM) i9-9820X with 64 GB of RAM working at 3.30 GHz.
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