
Simplified Risk-aware Decision Making with Belief-dependent Rewards in
Partially Observable Domains (Extended Abstract)∗

Andrey Zhitnikov1 , Vadim Indelman2

1Technion Autonomous Systems Program (TASP)
2Department of Aerospace Engineering

Technion - Israel Institute of Technology, Haifa 32000, Israel
andreyz@campus.technion.ac.il, vadim.indelman@technion.ac.il

Abstract
It is a long-standing objective to ease the computa-
tion burden incurred by the decision-making prob-
lem under partial observability. Identifying the sen-
sitivity to simplification of various components of
the original problem has tremendous ramifications.
Yet, algorithms for decision-making under uncer-
tainty usually lean on approximations or heuristics
without quantifying their effect. Therefore, chal-
lenging scenarios could severely impair the per-
formance of such methods. In this paper, we ex-
tend the decision-making mechanism to the whole
by removing standard approximations and consid-
ering all previously suppressed stochastic sources
of variability. On top of this extension, we scruti-
nize the distribution of the return. We begin from
a return given a single candidate policy and con-
tinue to the pair of returns given a corresponding
pair of candidate policies. Furthermore, we present
novel stochastic bounds on the return and novel
tools, Probabilistic Loss (PLoss) and its online ac-
cessible counterpart (PbLoss), to characterize the
effect of a simplification.

1 Introduction
While operating in a partially observable setting, the robot
repetitively performs actions and receives observations from
the environment in an interleaving manner. The result of each
action is a imprecise change in the robot’s state. The robot
has access to the probability density of the state, given the
history of its actions and the observations alongside the prior.
We call this probability density a belief. In each planning
session, the robot shall reason about future beliefs and se-
lect an optimal action based on its current belief using belief-
dependent rewards and the objective operator. The robot shall
look into the future as far as possible. With the growing
horizon, however, the computational burden is becoming un-
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Figure 1: The Extended Belief Tree versus the standard.

bearable for the robot due to exponential growth in complex-
ity [Papadimitriou and Tsitsiklis, 1987]. Many research ef-
forts in Artificial Intelligence (AI) and Robotics communi-
ties have tackled the described problem. In AI community,
it received the name Partially Observable Markov Decision
Process (POMDP), whereas, in the Robotics community, it is
known as Belief Space Planning (BSP). In classical POMDP
the belief-dependent reward is assumed to be the average of
the state-dependent reward with respect to belief. While al-
leviating the solution, this assumption hinders the ability to
actively decrease uncertainty over the belief using general
belief-dependent operators. In BSP, general belief-dependent
rewards are essential, e.g., navigation, sensor placement prob-
lems. The classical assumption in BSP is that the belief fol-
lows Gaussian distribution [Indelman et al., 2015].

The AI community began to introduce general belief-
dependent rewards starting from the discrete domains [Araya
et al., 2010], [Fehr et al., 2018], and limiting assumptions
concerning the reward operators [Dressel and Kochenderfer,
2017]. More recent approaches such as Sparse Sampling (SS)
[Kearns et al., 2002], and Monte Carlo Tree Search (MCTS)
[Sunberg and Kochenderfer, 2018] build upon Belief-MDP
(BMDP). These methods are suitable for continuous domains.
Still, in the continuous setting of states and observations,
these methods give an approximate solution with only asymp-
totical optimality guarantees. On the other hand, the BSP
community introduced a concept of simplification [Indelman,
2016],[Elimelech and Indelman, 2022], [Shienman and Indel-
man, 2022b], [Kitanov and Indelman, 2019]. As opposed to
approximations, the simplification paradigm substitutes var-
ious parts of the decision-making problem while providing
guarantees on the impact of such a substitution.



In this work, we focus on the distribution of the rewards
in a nonparametric setting. Our objective is to simplify the
decision-making problem and analyze the impact of the sim-
plification.

2 Notations and Problem Formulation
Let P be the probability density and P the probability. In
this paper, we focus on the finite horizon setting. Fur-
ther, to shorten notations, we shall often use �k+ to denote
�k+1:k+L, where L is the planning horizon. By ≡ we denote
identity.

2.1 POMDP with Belief Dependent Rewards
ρ-POMDP [Araya et al., 2010] is an eight tuple

〈X ,A,Z, T,O, ρ, γ, b0〉, (1)
where X ,A,Z are state, action, and observation spaces with
x ∈ X , a ∈ A, z ∈ Z the momentary state, action, and
observation, respectively, T (x, a, x′) , PT (x′|x, a) is the
transition model from the past momentary state x to the next
x′ through action a, O(z, x) , PZ(z|x) is the observation
model, ρ (b′, z′, a, b) is a scalar reward operator, γ ∈ (0, 1] is
the discount factor, and b0 is the prior belief.

2.2 Belief Space Planning
The posterior belief at time instant k is given by

bk(xk) ≈ P (xk|b0, a0:k−1, z1:k) . (2)
The usual assumption is that the belief is a sufficient statistic
for decision making objective [Bertsekas, 1995]. However,
in practice, the belief requires some representation. This rep-
resentation is not perfect, e.g., parametric or sampled form;
thus, in (2), we used the ≈ sign. In a real life scenario
bk = ψ(ψ(. . . ψ(b0, a0, z1), ak−2, zk−1), ak−1, zk), where ψ
is a method for updating the belief. By π , πk:k+L−1 we
denote a vector of policies for L time steps starting from time
step k. Each such policy π` at time step ` maps belief to an
action π`(b`) = a`. The general decision making under un-
certainty objective function is of the following form

V L(bk, π) = ϕ
(
P (ρk+1:k+L|bk, πk:k+L−1) , gk

)
(3)

s.t. b` = ψ(b`−1, π`−1(b`−1), z`),

where L is the planning horizon, ρ` is a random immediate
reward, ϕ is an objective operator, and gk , fgk(ρk+1:k+L)
is the return [Sutton and Barto, 2018]. A common choice
for ϕ is expectation over the distribution of future rewards
given all data available [Defourny et al., 2008]. The re-
turn is a deterministic known function of the realization of
ρk+1:k+L, e.g., it could correspond to the cumulative reward
gk =

∑L
`=1 ρk+`. Finally, ψ is a general method for propa-

gating the belief with action and updating it with the received
observation.

The objective (3) is ultimately based on the distribution
of the return given all information available for planning
under selected policy P(gk|bk, πk), which decomposes via
marginalization over future observations zk+ ≡ zk+1:k+L as

P(gk|bk,π)=
∫
zk+

P(gk|bk, π, zk+)P(zk+|bk, π)dzk+. (4)

A common assumption is that P(gk|bk, π, zk+, ) is a Dirac
delta function.

3 Foundations
In this section we introduce probabilistic ρ-POMDP and rig-
orously define the simplification paradigm. We further con-
tinue to the formulation of the general bounds on the re-
ward/return which can be analytical or stochastic.

3.1 Extended Setting, Probabilistic ρ-POMDP
Sometimes the belief b`−1 has a simple parametric form,
where θ`−1 is a vector of parameters, e.g., a Gaussian be-
lief. In this case, belief update ψ can be deterministic,
and is denoted by ψdt(θ`−1, π`−1(θ`−1), z`). In more gen-
eral and challenging scenarios the belief b`−1 is given by a
set of weighted samples {(wi`−1, x

i
`−1)}Ni=1. Therefore, ψ

is a stochastic method, e.g., a particle filter [Thrun et al.,
2005]. Applying multiple times ψ on the same input will
yield different sets of samples approximating the same dis-
tribution of the posterior belief. We denote the stochastic ψ
by ψst(b`−1, π`−1(b`−1), z`). Another form to formulate the
above is that the distribution

B(b`−1, a`−1, z`, b`) , PB (b`|b`−1, a`−1, z`) , (5)

is not a Dirac delta function. This aspect was disregarded so
far, to the best of our knowledge. Note that in a Belief MDP
(BMDP) formulation, the assumption is that B is a Dirac
delta function. Similar arguments hold for the momentary
reward operator of the belief. We extend ρ (b′, z′, a, b) to

R(b`−1, a`−1, z`, b`, ρ`) , PR (ρ`|b`, z`, a`−1, b`−1) , (6)

To our knowledge, we are the first who treat these aspects as
random.

Before introducing simplification formally and analyzing
its impact, we shall account for all potential sources of vari-
ability. We remove conventional approximations by extend-
ing (1) to a probabilistic reward modelR (6) and probabilistic
belief update B (5), and introduce

M = 〈X ,A,Z, T,O,R, γ, bk, B〉, (7)

which we name probabilistic ρ-POMDP (Pρ-POMDP). The
rationale behind these conditional distributions (R and B) is
to capture additional sources of stochasticity, such as stochas-
tic belief update, stochastic calculation of a given reward op-
erator or simply not knowing the operator reward in an ex-
plicit analytic form.

As discussed earlier, the value function (3) is based on (4).
These previously overlooked sources of stochasticity impact
the likelihood of the observations

P (zk+1:k+L|bk, π) , (8)

as well as the joint reward distribution P (ρk+|bk, π, zk+) ≡
P (ρk+1:k+L|bk, πk:k+L−1, zk+1:k+L) given a realization of
future observations. In contrast, in the regular setting of
POMDP and ρ-POMDP P (ρk+|bk, π, zk+) is Dirac’s delta
function. IfB is a Dirac function, a sample from (8) uniquely
defines the corresponding posterior beliefs bk+1:k+L. This,
therefore, corresponds to the classical belief tree (R could
still be non a Dirac function). In contrast, our Pρ-POMDP
(7), corresponds to an extended belief tree, which, due to (5),
allows many samples of the beliefs bk+1:k+L for each sample
of zk+1:k+L from (8) ( See Fig. 1).
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Figure 2: Our extension and the simplification in the context
of a single candidate policy.

3.2 Simplification Formulation
To formally define the simplification procedure, we augment
the Pρ-POMDP tuple (7) with a simplification operator ν ,
νk, . . . , νk+L,

Mν = 〈X ,A,Z, T,O,R, γ, bk, B, ν〉. (9)

This general operator defines any possible modification of the
original problem defined by (7) alongside with (3) to a new,
simpler to solve, problem. The definition (9) allows us to re-
tain the connection to the original nonsimplified problem (7)
and examine the impact of the simplification on (7). The op-
erator ν can be for example, sparsification of the initial belief
bk [Elimelech and Indelman, 2022], replacing the reward by
its topological signature [Kitanov and Indelman, 2019], di-
rect calculation of lightweight reward bounds [Sztyglic and
Indelman, 2022], selecting a subset of hypotheses in a hybrid
or mixture belief [Shienman and Indelman, 2022a], to name
a few.

Generally, M and Mν are different decision making prob-
lems. We shall be interested in working online with the latter
while providing the guarantees with respect to the former. To
distinguish a simplified reward from the original reward, we
denote the former by ρ̆ instead of ρ; similarly, we denote the
simplified belief by b̆ instead of b. Note the operator ν can be
stochastic, as discussed below. Specifically, belief simplifica-
tion is described by the distribution

P(b̆`|b`; νb` ). (10)

In general, the distribution (10) over the simplified belief b̆`
corresponds to a stochastic simplification operator νb` . This
is the case, for example, when b` is represented by a set of
N weighted samples and νb` is the operation of subsampling
n samples according to weights; i.e., applying this operation
on b` multiple times leads to different sets of n samples, each
representing another realization of b̆` from (10). Overall there
are
(
N
n

)
such combinations. For a deterministic operator νb` ,

(10) is a Dirac function.
Further, there are several cases of how a simplification af-

fects belief update (5) from time `− 1 to `.
1. Without any simplification we have

PB(b`|b`−1, π`−1, z`) from (5).

2. Given a simplified belief b̆`−1, while keeping the
original stochastic belief update ψst, we have

PB(b̆`|b̆`−1, π`−1, z`), where each realization of b̆`
is obtained via ψst. Thus, given b̆`−1, this distribution is
not a function of ν.

3. We can also simplify the belief update operator, ψst, to
ψ̆st. Denoting the corresponding simplification operator
νψ` , this yields PB̆(b̆`|b̆`−1, π`−1, z`; ν

ψ
` ).

4. Finally, one can decide at time ` to apply simplification
on the belief (determined by νb` ) via (10). The corre-
sponding belief update can be written as

PB̆(b̆`|b̆`−1, π`−1, z`; ν
b
` , ν

ψ
` ) =∫

b̃`

P(b̆`|b̃`; νb` )PB̆(b̃`|b̆`−1, π`−1, z`; ν
ψ
` )db̃`,

where b̃` is the integration variable.

We combine these cases and write

B̆
(
b̆`−1, π`−1, z`, b̆`; ν

)
,PB̆(b̆`|b̆`−1, π`−1, z`; ν

b
` , ν

ψ
` ). (11)

Similarly, reward simplification could be, in general, stochas-
tic, leading to the distribution

P(ρ̆`|ρ`; νρ` ). (12)

Thus, given a simplified belief b̆` and b̆`−1, and recalling (6),
the distribution over ρ̆` is

PR̆(ρ̆`|b̆`, z`, π`−1(b̆`−1), b̆`−1; ν) =∫
ρ̃`

P(ρ̆`|ρ̃`; νρ` )PR(ρ̃`|b̆`, z`, π`−1(b̆`−1), b̆`−1)dρ̃`,

which we denote as the simplified reward model,

R̆(b̆`, z`, π`−1(b̆`−1), ρ̆`; ν) ,

PR̆
(
ρ̆`|b̆`, z`, π`−1(b̆`−1), b̆`−1; ν

)
.

(13)

Throughout the document we assume that operator ν does not
affect the observations likelihood. In other words, the mea-
surements are sampled as in the original problem as in (8).
For the further discussion we make the following shorthand
notation. Let Hk+L , {bk, π, zk+} be future history at the
time index k + L.

3.3 Online Stochastic and Analytical Bounds
We turn now to the joint distribution over original and simpli-
fied rewards, given the future history and operator ν, namely
P (ρk+, ρ̆k+|Hk+L, ν). In an online setting we do not have
access to the original rewards as calculating them explicitly
defeats the purpose of simplification. Instead, we shall now
utilize simplification to provide bounds over the original re-
wards. These bounds can be used to provide performance
guarantees, and should be cheaper to calculate than the orig-
inal unsimplified rewards. Further, the bounds can be analyt-
ical as in previous simplification approaches, e.g, [Elimelech
and Indelman, 2022]. Ultimately for each realization of the
return we are interested in the following relation

l ≤ gk ≤ u. (14)
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Figure 3: The simplification in our extended setting and its
impact of the joint distribution of a pair of the returns corre-
sponding to the pair of the candidate policies.

One way to do that is to develop analytical bounds, which
will hold for any possible observation zk+1:k+L received and
any corresponding return, e.g, as in [Sztyglic and Indelman,
2021].

Our extension allows R and B, as well as R̆ and B̆ to be
any distributions. They can remain Dirac functions, e.g., if
belief update and the reward calculation have a closed form.
Successively, P(gk|bk, π, zk+, ) remains Dirac delta. How-
ever, in the more general case, following our extension, there
is a joint distribution of original and simplified returns given
a realization of the future and the present

P(gk, ğk|Hk+L, ν), (15)
as illustrated in Fig. 2. Given the historyHk+L, the return gk
as well as the simplified return ğk has variability, in contrast
to the conventional approach. Ordinarily, the belief update
is commenced once and treated as deterministic. So as the
rewards and return do not have variance given the history of
the actions and the observations. Since (15) is no longer a
Dirac function, we can use knowledge about this distribution
to design bounds, which will hold with some probability. In
the main paper [Zhitnikov and Indelman, 2022], we show that
it is possible to harness the structure of (15) to design the
mentioned more lenient online bounds. Moreover, analytical
bounds, designed in a conventional setting, can be used in
our extended setting without any revision. In our extended
setting, they will bound with probability one.

Having introduced the novel stochastic bounds, we proceed
to the formulation of the constraints, that these bounds shall
fulfill to be meaningful. Let the parameter controlling the
confidence level be α ∈ [0, 1). For every possible sample
ğk we do not know which sample gk one could obtain in the
original problem. However, if the bounds are designed such
that P(gk, l, u|Hk+L, ν) render

1− α ≤ P (1{l ≤ gk ≤ u} = 1|Hk+L, ν) (16)
these bounds can be useful. Notably, the above equation does
not involve simplified return, so is applicable also in the case
bounds are directly formulated (and not via a simplified re-
turn). However, in this case the bounds are analytical and
α = 0. To summarize, there are three types of online re-
ward/return bounds:

1. Deterministic bounds. These analytical bounds exist in
case of a closed form belief update ψdt and a determin-
istic operator reward, e.g., belief is a Gaussian and the

reward is differential entropy. In this case, even in our
extended setting R and B remain Dirac functions.

2. Stochastic bounds that hold with probability one,
namely α = 0. These are also analytical bounds. In
our extended setting R and B are no longer Dirac func-
tions. However, these bounds hold for any realization of
sample approximation, as stated around (14).

3. Stochastic bounds that hold at least with probability 1−
α. They exist only in our extended setting when R and
B are not Dirac functions.

4 The Return Given a Candidate Policy
Applying the marginalization over the observations we obtain
the distribution of the original and the simplified return given
the candidate policy and the operator ν (See Fig. 2).

P(gk, ğk|bk, π, ν)=

∫
zk+

P(gk, ğk|Hk+L, ν)P(zk+|bk, π)dzk+.

For further discussion please see [Zhitnikov and Indelman,
2022].

5 The Pair of the Returns Corresponding to
the Pair of Candidate Policies

Imagine a pair of a candidate policies. In such a setting we
are interested in the following distribution (See Fig. 3)

P(gk, g
′
k, ğk, ğ

′
k|bk, π, π′, ν). (17)

On top of (17) we propose a tool to examine the simplifica-
tion impact on the original not simplified problem. We call it
Probabilistic Loss.

5.1 Probabilistic Loss (PLoss)
Consider a random variable L : Ω→ R over the events space
Ω defined as such

L(ω),


max{g′k(ω)− gk(ω), 0} if ğk(ω) > ğ′k(ω)

max{gk(ω)− g′k(ω), 0} if ğk(ω) < ğ′k(ω)

0 if ğk(ω) = ğ′k(ω)

(18)

The realization of random variable L(ω) = ∆ differs from
zero if the simplification have switched the ordering of the
original returns and the original difference between returns
was ∆.

5.2 Online Bound on Probabilistic Loss (PbLoss)
Since the PLoss is inaccessible online we propose another
random variable which is accessible.

L̄(ω) ,


max{u′(ω)− l(ω), 0} if ğk(ω) > ğ′k(ω)

max{u(ω)− l′(ω), 0} if ğk(ω) < ğ′k(ω)

0 if ğk(ω) = ğ′k(ω)

(19)

To give to the reader a glimpse into the connection between
PLoss and PbLoss suppose the bounds (14) are analytical.
This implies that L(ω) ≤ L̄(ω) ∀ω ∈ Ω and this implies

P(∆ ≤ L(ω)) ≤ P(∆ ≤ L̄(ω)) (20)
To the impact of the proposed ideas onto Decision Making
please refer to the journal paper [Zhitnikov and Indelman,
2022].
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