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Abstract— Planning under uncertainty is a fundamental
problem in robotics. Classical approaches rely on a metrical
representation of the world and robot’s states to infer the
next course of action. While these approaches are considered
accurate, they are often susceptible to metric errors and tend to
be costly regarding memory and time consumption. However,
in some cases, relying on qualitative geometric information
alone is sufficient. Hence, the issues described above become
an unnecessary burden. This work presents a novel qualitative
Belief Space Planning (BSP) approach, highly suitable for
platforms with low-cost sensors and particularly appealing
in sparse environment scenarios. Our algorithm generalizes
its predecessors by avoiding any deterministic assumptions.
Moreover, it smoothly incorporates spatial information prop-
agation techniques, known as compositions. We demonstrate
our algorithm in simulations and the advantage of using
compositions in particular.

I. INTRODUCTION

Planning under uncertainty is a vital capability in various
robotics applications, including autonomous car navigation,
indoor navigation, surveillance, and medical devices. The
planning problem is concerned with finding an optimal
course of action to be carried out by some agent to achieve
its goals. In the past three decades, extensive research efforts
have been investigated in finding diverse solutions to this
problem, among which the Belief Space Planning (BSP),
and active Simultaneous Localization And Mapping (active
SLAM) are particularly notable (see, e.g. [1], [2]).

Yet, some challenges remain. In the absence of high-
quality sensors, accurate robot methods based on the above-
mentioned solutions encounter significant difficulties. These
methods (e.g., [3], [4]) are noise-sensitive and tend to ac-
cumulate errors as they rely on metrical estimates of map
and robot’s trajectory. Thus, noisy measurements can signif-
icantly impair their accuracy, cause undesirable drifts, and
eventually lead to divergence if the loop-closer fails. Another
concern that arises from the metric approaches is the need
to maintain a dense, potentially large map representation,
which often comes at the cost of substantial computational
and memory resources. While the aforementioned is occa-
sionally essential, it might be unnecessary in some cases, and
therefore a burden. For instance, in long-term autonomous
navigation missions, the robot is often required to travel
long distances, so relying on a small number of critical
landmarks along the way might be a good enough strategy.
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Fig. 1: (a) A belief tree, suitable for the qualitative framework, is illustrated. Each
construction step between two consecutive times t−1 and t required updating the
belief according to Eq. (19). (b) The same tree is illustrated, this time with compositions
incorporated within the planning process. As shown, we can consider a wider data
association space via compositions, thereby improving planning performance.

In other scenarios, the nature of the surrounding landscape
is relatively monotonic and poor (for example, a desert or
snowy terrain), and methods that depend on finding dense
features are prone to fail.

Qualitative approaches have the potential to facilitate the
issues mentioned above. In these methods, in contrast to
the metrical, the environment and robot’s poses are tracked
using coarse, relative geometrical relations, known as qual-
itative spatial relationships (QSR). Each relationship fixes
a coordinates system based on a small set of landmarks
and discretizes space into disjoint regions, called qualitative
states. Then, the location of a target landmark or robot pose
is described in terms of these states. This coarse manner of
reasoning about spatial information is potentially more noise-
robust and suitable for low-cost platforms. Also, Qualitative
Relational Mapping (QRM) algorithms produce QSR-based
maps that sparsely represent the environment, in line with the
motivation given above. Lastly, the robot can reason about
the environment and even plan while accounting for partial
information involved in a single or few QSR only, thus saving
computational energy. While most of the research done in
the qualitative field mainly addressed passive aspects such
as localization and mapping, only few works (e.g., [5]–[7])
considered active planning.

In this paper, we introduce a novel BSP approach adapted
to the qualitative framework (see Fig. 1). Before we discuss
this paper’s contributions, we briefly review the most relevant
work done in the field to trace existing gaps.

A. Related Work

QSR applications for various robotics tasks began to
emerge about three decades ago. Naturally, passive aspects
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Fig. 2: Four different QSR partitions. (a) binary left-right [11]; (b) Freksa Single Cross
[12]; (c) Freksa Double Cross [12]; (d) Extended Double Cross [6].

were the first to be addressed. A pioneering work by [8]
presented a novel approach for egocentric robot localization
based on the relative ordering of observed landmarks. [9] and
[10] further improved this idea by encoding ordering views
in a more complex hence distinguishable fashion, enabling
localization ambiguity reduction.

Freksa suggested in [11] to represent the qualitative loca-
tion of a landmark relative to a boundary line settled by a
pair of other landmarks used as a reference. The location is
described as ”to the left” or ”to the right” of the boundary.
Freksa further refined this binary partitioning of space in
[12], into quadratic and hexagonal ones, by adding extra
boundary lines perpendicularly crossing the original one. The
latter mentioned partitioning forms known as the ”Freksa’s
Single Cross” (FSC) and ”Freksa’s Double Cross” (FDC).
Moreover, in [11], Freksa introduced the binary composition
operator that allows inference about the qualitative relation-
ships between landmarks not directly observed together.

McClelland et al. took a step forward and introduced
a more comprehensive QSR-based method for autonomous
localization and mapping in [13]. The proposed algorithm
constructs a graph-based map that encodes the environment
using the relative geometrical layout of landmark triplets.
For each triplet, one landmark is estimated in a local frame
defined by the other two. The landmark is associated with
one of several possible qualitative states, considering the
FDC partitioning. McClelland extended his work in [6] by in-
corporating a method of determining the qualitative state for
landmarks based on a novel set of geometric constraints. The
above yielded a new qualitative spatial partitioning called the
”Extended Double Cross” (EDC). This partition and those
mentioned above are illustrated in Fig. 2. In addition, this
work contributed a new composition operator, suitable for
triplets, formulated as a look-up table. Another followed-
up paper generalized the latter by developing a probabilistic
QRM method (PQRM, [14]). Mor and Indelman were the
first to incorporate stochastic motion model constraints in his
formulations, reducing uncertainty levels of both landmarks
and robot trajectory estimations [15]. In addition, the authors
contributed a novel derivation of a probabilistic composition.

While many qualitative methods for localization and map-
ping have been developed, active planning approaches are
much rarer. Previously mentioned [5] and [6] suggested
applying the Dijkstra algorithm on graph-based maps they
developed to find the shortest path to the desired destination.
However, they both proposed only a general strategy rather

than a detailed algorithm. In contrast, Padgett and Campbell
developed a complete qualitative planning paradigm recently
in [7]. The proposed Q-Link is a three-level planning ar-
chitecture that generates high-level plans over QRM ”links”
(edges). It then uses local planners to execute trajectories to
enable a robot to navigate from a start to a goal. However,
even though the Q-Link considered some stochastic aspects,
its high-level mechanism is essentially deterministic and does
not exploit the potential of using compositions.

B. Contributions

We shall now briefly review the main contributions of
this paper. (a) We develop a first-of-a-kind Qualitative
Belief Space planning approach. Our planning mechanism
accounts for possible future developments of the robot’s and
world’s state by propagating a corresponding probabilistic
distribution. It is not restricted by deterministic assumptions,
in contrast to the methods discussed in Sec. I-A, and thus is
more general; (b) We innovatively incorporate compositions
in our algorithm, allowing our planning process to consider
qualitative relationships between landmarks that have never
been observed together. Building upon [16], we benefit from
using these new relationships in two ways. Firstly, we can
plan under challenging scenarios where other algorithms
have failed. Secondly, we are able to find better plans in
terms of expected cumulative cost, i.e., to find shortcuts; (c)
We introduce the concept of qualitatively estimating global
scales of frames. Namely, we reason about the distances
between pairs of landmarks, which form different reference
frames. The distances are evaluated qualitatively in global
terms. This capability is crucial when estimating the likeli-
hood to observe a specific triplet of landmarks, which may
not have been viewed together so far, given a candidate
action to execute; (d) We further take advantage of the latter
capability and derive a new cost function, which globally
measures metric path length.

The rest of this paper is arranged as follows. First, in
Sec. II, we define basic notations and state the problem we
aim to solve. Then, in Sec. III, we describe our qualitative
BSP approach, wherein in Sec. III-F, we explain how com-
positions can be integrated within it. Finally, we evaluate
our approach in Sec. IV. This paper is accompanied by
supplementary material [17] that provides further details and
mathematical derivations.

II. NOTATIONS AND PROBLEM FORMULATION

A. Qualitative Belief Definition

We consider a robot operating in a partially known en-
vironment, consisting of a known set of key landmarks,
denoted by L. As it travels in space, the robot moves between
different landmark-centric frames (see e.g. [6], [14]). Each
frame sets a local coordinate system determined by two
reference landmarks. The first fixes the origin, i.e., (0, 0),
whereas the second fixes an additional coordinate, in most
cases, (0, 1). Then, a predefined partition divides space into
a finite set of non-overlapping and complementary regions,



known as qualitative states (see Fig. 2). We denote by F the
set of all available frames, based on landmarks from L.

The robot maintains its self-poses and map through Qual-
itative Spatial Relationships (QSRs). Each QSR localizes
a target point, either a landmark or a robot pose, relative
to a chosen frame F∈F by associating it with one of the
qualitative states discussed above. This ternary type of QSRs
is often referred to as triplets. In this work, we consider only
triplets, as this is the most basic and standard case, and richer
QSRs can always be split into triplets. We exclude binary
QSRs, as these are relevant when dealing with complex
volumed landmarks (extended landmarks, see [5] and [18]),
while we assume point landmarks. In the following, we
denote an ordered triplet by τ , or explicitly by F :L, where F
and L are the triplet’s reference frame and target landmark,
respectively (for example, τ=AB:C). We further denote by
Sτ and X τ , or explicitly by SLF and XLF the qualitative
and metric location of L relative to F (i.e., of τ=F :L).
Similarly, SXtF and XXtF denote the robot’s qualitative and
metric location at time step t, both relative to F as well.
Note that SLF and SXtF are discrete variables, while XLF and
XXtF are continuous.

Apart from self-poses and triplets, the robot accounts
also for Global Frame Scales’. A Global Frame Scale is
a new concept suggested in this work, which refers to the
global metric distance between the two landmarks creating
the frame. For example, the global frame scale of AB is
the global metric distance between the landmarks A and B.
We further clarify the usage of this term in Sections III-
C and III-G. We denote the metric and qualitative scale of
a frame F by XF and SF , respectively. Furthermore, we
denote by nF ∈ N the resolution according to which we
evaluate SF . Given a selected value of nF (typical values
are 4 − 6), SF is a discrete random variable (RV) equals
to s ∈ [1, 2, . . . , nF ] if XF∈

[ (s−1)·2R
nF

, s·2RnF

]
and equal to

nF + 1 if XF∈
[
s·2R
nF

,∞). Here, R is the robot’s sensing
range given in some global frame units (for example, meters).
In the case where sF=nF + 1, the frame is considered
unobservable since its global scale is bigger than 2R.

Due to the nature of the robot’s mobility, we consider two
types of actions. The first, referred to as qualitative action,
allows the robot to travel between different qualitative states
w.r.t. a given frame. We shall denote by aq

t a qualitative
action taken at time step t. In contrast, the second type,
referred to as link action [7], enables the robot to switch
from one local frame to another. We shall denote by aLink

t

a link action taken at time step t. The robot executes the
abovementioned actions alternately. Namely, consider the
robot’s frame at time step t, Ft, and the corresponding robot’s
state SXtFt . After executing aq

t , the robot moves to a new state,
SXt+1

Ft
. Then, it links to a new frame by executing the action

aLink
t , which results in the state SXt+1

Ft+1
. Note that aLink

t is not
a natural action in the sense that the robot makes no actual
movement. In fact, the latter can equivalently be written as a
tuple of source and destination frames, i.e., aLink

t ,(Ft, Ft+1).
Note that aLink

t may be degenerated, in case Ft=Ft+1. Each

time the robot completes a qualitative action, it acquires a
new measurement. Let zt denote a measurement acquired
by the robot at time step t. We further denote by βt the
data association from time step t, that is, the identity of the
landmarks captured in zt. Of course, determining the data
association is a very challenging problem in itself. In this
work, we assume it to be solved.

Consider k as the current time step. We denote by Hk the
history of applied actions, measurements and data associa-
tions up to that time step. That is, Hk,{a1:k−1, z1:k, β1:k},
where ai represents a consecutive pair of qualitative and link
actions {aq

i ,a
Link
i },∀i∈{1, . . . ,k}. The index t:t

′
compactly

refers to a series of elements between time steps t and t
′
. Due

to the stochastic nature of the problem, the robot maintains a
qualitative belief, i.e., a posterior probability over the states
of the robot, landmark triplets, and frames’ scales, given by:

bk , P(SX1:k ,SMk ,SFk |Hk), (1)

where SX1:k represents the set of robot states
SX1:k,{SXiFi }

k
i=1, SMk represents all available landmark

triplets states at time step k, SMk,{Sτj}mkj=1, with mk

being the set size, and finally, SFk represents all available
frames’ scales at time step k, i.e., SFk,{SFq}pkq=1, with pk
being the set size.

Inspired by [7], [14], we maintain marginals over qualita-
tive states conditioned on only local information, prioritizing
computational speedup over an accurate model. Accordingly,
we maintain the belief as a product of individual posteriors:

bk≈
k∏
i=1

P(SXiFi |H
Xi
k )

mk∏
j=1

P(Sτj |Hjk)
pk∏
q=1

P(SFq |Hqk). (2)

In the above, HXik ,Hjk,H
q
k denote relevant part of the history

used to evaluate SXiFi ,S
τj , and SFq , respectively. While

Eq. (2) is beneficial for implementation needs, the theoretical
formulations in this paper are derived using Eq. (1) to stay
as general as possible.

B. Qualitative Belief Space Planning

We now introduce a belief space planning (BSP) formula-
tion considering the qualitative framework discussed above.

BSP, in essence, is the problem of finding an optimal
sequence of actions, or policy, that minimizes a meaningful
objective function. In this work, we consider actions se-
quences rather than policies. Assuming a future horizon of L
look-ahead steps, we compactly represent by ak+ a candidate
sequence of actions from time step k to the predefined
horizon, that is, ak+,ak:k+L−1. The objective function maps
the current belief, bk, and a candidate actions sequence, ak+,
to an expected cumulative cost:

J(bk,ak+), E
zk+1:k+L

[ L∑
l=1

cl(bk+l, ak+l−1)

]
, (3)

where cl is the l-th cost function with the appropriate
arguments, with l∈{1,2,. . .,L}.

While the above formulation is expressed in terms of a
general cost function, we choose a specific one that best



serves our purposes. We elaborate on the different types of
costs in the Approach section. The optimal action sequence
is defined by:

a∗k+ = argmin
ak+

J(bk,ak+). (4)

III. APPROACH

A. Approach Overview

We present an end-to-end algorithm to address the qual-
itative BSP problem defined in Sec. II-B. Our algorithm
operates in two steps.

First, we construct a belief tree, reflecting the future
posterior beliefs considering various possible future develop-
ments. We describe the construction process and the different
models assumed in this work in Secs. III-B-III-D. We explain
how to update the belief between two adjacent tree nodes in
Sec. III-E. In Sec. III-F, we further explain how compositions
can be incorporated within the updating step. We construct
the tree considering a predefined depth L∈N.

In the second step, we utilize the constructed belief tree to
evaluate the objective (7) for each candidate action sequence.
Then, we search for the action sequence that minimizes the
objective through a proper optimization process. In Sec. III-
G, we suggest two types of costs to consider while evaluating
the objective.

B. Qualitative Action and Transition Model

The qualitative action enables the robot to move from one
qualitative state to another, considering a specific reference
frame. Mathematically, we assume a probabilistic transition
model,

P(SXtFt−1
|SXt−1

Ft−1
,aq
t), (5)

which maps any realization of the pair SXt−1

Ft−1
,aq
t to a Q

dimensional vector which describes the outcome distribution
of the new robot’s state, SXtFt−1

. The values of each vector
are chosen or learned offline according to the level of noise
that characterizes the robot’s control system. We consider
this transition model to be available and assume that a
proper low-level controller exists. Furthermore, we assume
a finite set of (Q − 1)2 qualitative actions, where for any
mutual realization SXtFt−1

=i,SXt−1

Ft−1
=j, where i6=j, there is a

corresponding qualitative action that transforms the robot to
state j with high probability, given that its current state is i.

C. Data Association and Measurement Likelihood

The objective requires evaluating the likelihood of captur-
ing a measurement zt and a corresponding data association
βt for any time step t∈{k+1, . . . ,k+L}. In this section, we
rigorously derive the abovementioned likelihood term.

Formally, we can rewrite Eq. (3) recursively, as follows:

J(bk,ak+)= E
zk+1

[
c1(bk+1,ak)+J(bk+1,a(k+1)+)

]
, (6)

where the expectation is with respect to P(zk+1|H−k+1).
In the above, and throughout the rest of this paper,
H−t ,Ht−1∪{at−1},∀t∈{k+1, . . . ,k+L}. Uniquely in this
work, data associations play a major role as they dictate link

actions considered by the robot, as we shall see in Sec. III-D.
Therefore, explicitly incorporating them within the objective
is useful. We can rewrite (6) as:

J(bk,ak+)=E
βk+1

[
E

zk+1|βk+1

[
c1+J(bk+1,a(k+1)+)

]]
, (7)

where c1,c1(bk+1,ak). As the above implies, the law
of total probability relates between zt and βt, for any
t∈{k+1,. . .,k+L}. That is:

P(zt|H−t )=
∑
βt

P(zt,βt|H−t ). (8)

We aim to derive the joint likelihood term P(zt,βt|H−t ),
given specific realizations of zt and βt. In contrast to [19],
we do so considering a qualitative framework.

First, we marginalize over the robot states SXtFt−1
and

SXt−1

Ft−1
, global frame scale SFt−1 and, the qualitative state

Sτβt that corresponds to the considered data association
realization βt. To simplify the exposition, we consider the
latter to be a single landmark triplet, although this is not a
limitation of our formulation:

P(zt,βt|H−t )= (9)∑
SXtFt−1

∑
S
Xt−1
Ft−1

∑
SFt−1

∑
Sτβt

P(zt,βt,SXtFt−1
,SXt−1

Ft−1
,SFt−1 ,Sτβt |H−t ).

Continuing with chain rule over the inner expression, we get:

P(zt,βt,SXtFt−1
,SXt−1

Ft−1
,SFt−1 ,Sτβt |H−t )= (10)

P(zt|SXtFt−1
,Sτβt ,βt,H−t )P(βt|S

Xt
Ft−1

,SFt−1 ,Sτβt ,H−t )

P(SXtFt−1
|SXt−1

Ft−1
,aq
t−1)P(S

Xt−1

Ft−1
,SFt−1 ,Sτβt |Ht−1).

The term P(zt|SXtFt−1
,Sτβt ,βt,H−t ), known as the measure-

ment model, describes the probability of capturing the
measurement zt, given the robot’s state SXtFt−1

, the data
association βt with its corresponding state Sτβt , and his-
tory. The term P(βt|SXtFt−1

,SFt−1 ,Sτβt ,H−t ), known as the
association model, describes the probability to observe the
triplet βt, given the robot’s and βt’s states and Ft−1’s global
scale. Intuitively, to evaluate this probability, the robot must
estimate its sensing range, R, in local terms of Ft−1. Using
Ft−1’s scale, this can be done via a simple normalization
process, described in [17, Sec. 1].

To calculate the abovementioned qualitative models in
practice, one can further marginalize over the relevant metric
state and use standard non qualitative models. See [17,
Sec. 1-2] for more details. Moreover, in (10), the term
P(SXtFt−1

|SXt−1

Ft−1
,aq
t−1) is the qualitative motion model stated

in (5), and finally, the term P(SXt−1

Ft−1
,SFt−1 ,Sτβt |Ht−1) can

be calculated via marginalization from the belief from time
instant t−1, bt−1.

Generally speaking, we need to consider all possible
realizations for both zt and βt, for any t∈{k+1, . . . ,k+L},
to calculate the objective precisely. However, in practice,
this is intractable. Alternatively, we can sample a finite set
of realizations and approximate the objective via proper



averaging. Starting with βt, we suggest considering only
triplets’ realizations containing the robot’s current frame.
This heuristic prioritizes triplets that are more likely to be
observed, as those containing the current frame are more
likely to be closer. For instance, in case Fk=AB, then ABC
is being considered, also ABD, but not ACD. This heuristic
yields Nβ=|L|−2 βt’s realizations, which is a significant
reduction compared to all

(|L|
3

)
triplets existing under the

given landmark alphabet based on L. In practice, among
these, we can only consider those which are available in
bt−1, that is, nβ realizations, where nβ≤Nβ . Crucially, as
we shall see in Sec. III-F, utilizing composition we are
able to extend nβ to come closer to, and under a certain
assumption equal to, Nβ . Considering also a finite set of nz
measurement realizations zt for each realization of β (see
Fig. 1 for illustration), the objective (7) can be approximated
as follows:

J(bk,ak+)≈ (11)
nβ∑
i=1

wi

nz

nz∑
j=1

P(zi,jk+1|β
i
k+1,bk,ak)·(c1+J(bk+1,a(k+1)+)),

where wi, w̃i∑nβk
q=1 w̃

q
, with w̃i,

P(βik+1|bk,ak)∑Nβ
q=1 P(βqk+1|bk,ak)

. For the

full derivation of Eq. (11), see [17, Sec. 3].

D. Link Action and Transition Model

The Link action allows the robot to switch between differ-
ent reference frames. Even though it is considered an action,
in practice, the robot does not make any actual movement
when executing it. Accordingly, a Link action taken at time
step t is denoted by aLink

t , but alternatively can be written
as a tuple of source and target frames, (Ft−1,Ft). As Fig. 1
illustrates, the Link action adds another level of decision-
making compared to the traditional BSP approaches, which
use a single global frame.

We assume a probabilistic Link model,

P(SXtFt |S
Xt
Ft−1

,Sτ ,Ht), (12)

representing the probability of the robot being located
at state SXtFt , given its state relative to the former frame,
SXtFt−1

, the state of the triplet relates between the frames,
Sτ , with τ,Ft−1:Ft\Ft−1, and history, which includes the
action aLink

t . To understand why this model is a probabilistic
one, consider the following example. Suppose that, at time
step t, the robot is located relative to an old frame Ft−1=AB
and aims to link to a new one, Ft=BC. To that end, it
must translate its location from AB’s terms to BC’s. Given
its (unknown) current metric location XXtAB and C’s metric
location in terms of the same frame, XCAB (i.e., τ=AB:C),
the robot can easily infer XXtBC , using a simple geometric
transformation. Fig. 3 demonstrates two sets of metric real-
izations as described above. However, since the Link model
considers only the corresponding qualitative locations rather
than the actual metric ones, the robot must account for many
possible metric hypotheses. For this reason, it can only infer a

Fig. 3: Illustration of two possible hypotheses for XCAB . While both hypotheses yield
the same qualitative state SCAB , they yield different states for SXtBC .

distribution over the resulting state SXtFt . We further elaborate
on how this model can be calculated in [17, Sec. 4].

E. Belief Update Step

This section focuses on updating the qualitative belief
defined in Eq. (1) a single step into the future. Formally,
consider the belief from time step t−1∈{k,. . .,k+l−1},
bt−1, candidate action, at−1,{aq

t−1, a
Link
t−1}, a measurement,

zt, and a corresponding data association, βt. We aim to infer
the belief at time step t, bt, via a proper Bayesian update rule:

bt = ψ(bt−1, at−1, zt, βt). (13)

We start by marginalizing over the next robot’s position
relative to the current frame, SXtFt−1

:

bt=
∑
SXtFt−1

P(SX1:t ,SXtFt−1
,SMt ,SFt |Ht). (14)

We continue by breaking the inner term using chain rule:

P(SX1:t ,SXtFt−1
,SMt ,SFt |Ht)= (15)

P(SXtFt |S
Xt
Ft−1

,Sτβt ,Ht)P(SX1:t−1 ,SXtFt−1
,SMt ,SFt |Ht).

The left term, obtained after omitting all triplets’ states from
SMt except for βt’s, is the Link Model stated in (12). We
continue developing the right term via Bayes rule over zt
and βt taken from Ht while omitting irrelevant information:

P(SX1:t−1 ,SXtFt−1
,SMt ,SFt |Ht) = (16)

ηtP(zt|SXtFt−1
,Sτβt ,βt,H−t )P(βt|S

Xt
Ft−1

,Sτβt ,SFt−1 ,H−t )

P(SXtFt−1
|SXt−1

Ft−1
,aq
t−1)P(SX1:t−1 ,SMt ,SFt |H−t ),

where ηt,P(zt,βt|H−t ) is a normalization term,
P(zt|SXtFt−1

,Sτβt ,βt,H−t ) and P(βt|SXtFt−1
,Sτβt ,SFt ,H−t )

are the measurement and association models discussed in
Section III-C, respectively, and finally, P(SXtFt−1

|SXt−1

Ft−1
,aq
t−1)

is the qualitative transition model (5). We continue by
applying another chain rule over the remaining term in (16):

P(SX1:t−1 ,SMt ,SFt |H−t )= (17)

P(SFt−1 |SMt ,SFt−1 ,H−t )P(SX1:t−1 ,SMt ,SFt−1 |H−t ).

In the above, we consider the new set of frames’ scales at
time step t, SFt , as the former set from time step t−1,SFt−1

unified with the currently considered scale, SFt−1 , i.e.,



SFt=SFt−1∪SFt−1 . The term P(SFt−1 |SMt ,SFt−1 ,H−t ) is
the posterior over the relevant frame scale, SFt−1 , given the
map, SMt , available frames’ scales, SFt−1 , and history, H−t .
To further develop this term, we assume that the global scale
of AB, SAB , is known. This assumption is fairly reasonable,
as it requires prior knowledge of only one frame scale. Via
this scale, we can evaluate the scale of Ft−1={L1,L2}, using
the states SL1

AB and SL2

AB , which locate Ft−1’s landmarks
relative to AB. Mathematically, we approximate the above-
mentioned term by neglecting unnecessary information:

P(SFt−1 |SMt ,SFt−1 ,H−t )≈ (18)

P(SFt−1 |Ft−1,SL1

AB ,S
L2

AB ,H
ABL1
t ,HABL2

t ,SAB),

where the triplet states SL1

AB ,S
L2

AB were taken from SMt , the
frame Ft−1 and the relevant local histories HABL1

t ,HABL2
t

were taken from H−t , and finally, SAB is the known global
scale taken from SFt−1 . We further develop this term in [17,
Sec. 5]. In Sec. III-F, we explain how to compose SL1

AB and
SL2

AB in case they are not part of the current belief.
In total, we get the following update rule:

bt=
∑
SXtFt−1

P(SXtFt |S
Xt
Ft−1

,Sτβt ,Ht)ηt· (19)

P(zt|SXtFt−1
,Sτβt ,SFt ,βt,H−t )P(βt|S

Xt
Ft−1

,Sτβt ,SFt ,H−t )·

P(SXtFt−1
|SXt−1

Ft−1
,aq
t−1)P(SFt−1 |SMt ,SFt−1 ,H−t )bt−1.

The above update step describes the operator ψ(·) from
Eq. (13) explicitly. We apply it to update the belief between
consecutive time steps when constructing the tree, as illus-
trated in Fig. 1a.

F. Incorporating Compositions

So far, we have described our qualitative BSP approach in
its base form, without utilizing compositions at all. In this
section, we present our second key contribution and show
how compositions can be integrated within our algorithm to
further improve planning in two ways. Firstly, it allows us to
deal with a broader range of scenarios, i.e., in some cases,
a plan can be found only via compositions. Secondly, using
compositions, we can find better plans, i.e., ones with a lower
objective. In this section, we provide theoretical justification
for the above. Also, we formally show how to incorporate
compositions within our algorithm.

The composition operator, first suggested in 1992 by [11],
propagates data from two source triplets, τ1 and τ2, to
infer the third one τ3. From a topological point of view,
compositions must respect the following lemma [6]:

Lemma 1. A target triplet τ3 can be composed using a single
composition operation (or directly) based on the triplets τ1
and τ2, if the following hold:

1) |τ1 ∩ τ2| = 2
2) τ3 ⊂ τ1 ∪ τ2
For example, we can directly compose τ3=AB:D using

τ1=AB:C and τ2=BC:D. The mutual landmarks, B and C,
allow us to fix both triplets relative to the same frame and,

hence, infer (compose) relationships between new triplets’
combinations.

In Eq. (1), we defined the belief as a posterior distribution
over, among others, the different triplets in the map. Consider
the map’s state at the current time step, SMk . Via composi-
tions, the robot can augmentMk with new triplets. However,
compositions are allowed only under specific topological
conditions, formulated in Lemma 1. For example, if Mk

is too sparse, the ability to compose new triplets might be
limited or even impossible. In [16], we have formulated a
sufficient topological condition attributed to the set Mk,
whose existence ensures the ability to compose any desired
triplet under the considered landmark space L. We named
such a sufficiently dense set a Composable set under L (the
formal definition can be found in [17, Sec. 6]). As this
topological aspect is not the focus of this work, we assume
that Mk is Composable under L. However, this assumption
is not a must. In Sec. III-C, we suggested a heuristic that
considers a maximum of Nβ triplets as possible realizations
for βt at any planning time step t∈{k+1, . . . ,k+L}. We
stressed that, in practice, we could consider only a subset of
nβ triplets out of these Nβ , which are available in bt−1.
Since we assumed Mk is Composable under L, we are
now guaranteed that all Nβ realizations can be considered in
planning via compositions, as illustrated in Fig. 1b. In [17,
Sec. 7], we prove that in some scenarios, a plan can be found
only via compositions.

For any planning time step t∈{k+1, . . ., k+L}, we shall
now explain how to incorporate a new set of triplets M∆

t ,
which can be chosen according to the heuristic described
in Sec. III-C, into the belief. We denote Mt,Mt−1∪M∆

t

and express the belief after combining the set, given by
bMt−1,P(SX1:t−1 ,SMt ,SFt−1 |Ht−1), in terms of the one be-
fore combining it, bt−1, via chain rule and Markov assump-
tion:

bMt−1=P(SM
∆
t |SMt−1 ,Ht−1)·bt−1. (20)

Suppose |M∆
t |=nt, the term P(SM∆

t |SMt−1 ,Ht−1) can be
further broken down into a product of individuals posteriors,
each aims to compose a single triplet from M∆

t :

P(SM
∆
t |SMt−1 ,Ht−1)≈

nt∏
i=1

P(Sτi |SM
i
t−1 ,Hit−1). (21)

In the above, Sτi denotes the state of the ith
triplet taken from SM∆

t , SM
i
t−1 denotes the minimal

subset of SMt−1 required for the evaluation, and fi-
nally, Hit−1 denotes the corresponding local history,

where SM∆
t =

nt⋃
i=1

Sτi ,Ht−1=
nt⋃
i=1

Hit−1. For instance, if

Sτi=SDAB and SMt−1={SCAB ,SDBC ,SEAD}, then the sub-
sets SM

i
t−1={SCAB ,SDBC},Hit−1={HABC ,HBCD} are cho-

sen as using the triplets AB:C and BC:D, we can compose
AC:D via a single composition. We can describe the re-
quired composition using a binary tree, consisting of a root,
representing the triplet to compose AB:D, and two leaves
connected to it, representing the required source triplets,



Cost 1 (# q-states) Cost 2 (metric path length)
W/O Comp W Comp W/O Comp W Comp

All Tests
(3000) Plan exists 68.4% 81.6% 68.4% 81.6%

Comparable
& Different
Tests (13%)

Average
executed cost 6.45 4.97 2.76 2.32

TABLE I: The first row shows the percentage of tests (considering all 3000 tests) in
which the robot was able to plan towards its goal. The second row shows the average
cost among all different and comparable tests. The two main columns are divided by
the different costs (Sec. III-G), where each considers two planning modes: without
and with compositions.

AB:C and BC:D. The abovementioned tree, also known as
Composition Tree, was first introduced in [16]. Depending on
the identity of the target triplet and the available source set,
we can generally get a large Composition Tree, representing
the sequence of compositions required to form the target
triplet. To find the tree with the minimal number of leaves
(representing the set SM

i
t−1 ), we use an Ad Hoc algorithm

developed in [16]. The chosen tree dictates the required
sequence of compositions, where each of them is then
performed using the formulation in [17, Sec. 8].

We can now incorporate compositions within the belief
update step from (19) by replacing bt−1 with bMt−1 from (20).

G. Cost Function

The objective function in (3) describes for each candidate
action sequence ak:k+L−1 its expected accumulated cost.
Having access to a qualitative belief allows defining both
state-dependent and belief-dependent cost functions. The
cost function is chosen according to the task’s nature. For
instance, if we aim to find the shortest path between some
initial and goal key points, then a distance-based cost can
be used, whereas if we wish to reduce uncertainty, then an
entropy-based cost may be a good choice.

In this paper we focus on the first type, and suggest
now two alternatives for distance-based costs. The first is to
evaluate the expected number of qualitative states traversals:

ct(bt,at−1)= E
s1,s2

[
d(s1,s2)

]
, (22)

where s1,SXt−1

Ft−1
, s2,SXtFt−1

, and where d(s1, s2) is a metric
that returns the minimum number of qualitative states traver-
sals required to travel from state s1 to s2. For a given QSR
representation, this metric is a simple lookup table.

While the above cost measures distance qualitatively, there
is no proven correlation to the true metric distance traveled.
To bridge this gap, we propose another option of evaluating
the traveled distance metrically, given the qualitative belief
bt. The idea is simple, at each time step, we evaluate the
expected traveled distance in terms of the current local
coordinates system, multiplied by the appropriate global
scale taken from the belief. Mathematically:

ct(bt, at−1)=E
s

[
E
x|s

[ ∥∥∥XXtFt−1
−XXt−1

Ft−1

∥∥∥
2
·XFt−1

]]
, (23)

where we denoted x,{XXtFt−1
,XXt−1

Ft−1
,XFt−1}, and

s,{SXtFt−1
,SXt−1

Ft−1
,SFt−1}. Moreover, based on the Law

of Total Expectation, we can further simplify the above

Fail

31.6%

Success

68.4%

Without Compositions

(a)

Fail

18.4%

Success

81.6%

With Compositions

(b)

Fig. 4: Improvement in results due to the use of compositions. (a) Without composi-
tions, the robot succeeded in planning towards its goal in 68.4% of the tests.; (b) Via
compositions, the robot improved and planned towards its goal in 81.6% of the tests.

expression and replace it with a pure metric version:

ct(bt, at−1)=E
x

[ ∥∥∥XXtFt−1
−XXt−1

Ft−1

∥∥∥
2
·XFt−1

]
. (24)

To calculate this cost in practice, we must use (23) as we
only have access to the metric priors conditioned on the
corresponding qualitative states.

IV. RESULTS

We evaluate our approach using a simulation developed in
Python 3.7. We do not compare our performances to other
algorithms, as there are no comparable ones in the litera-
ture. The only other existing work that considers planning
under the qualitative framework, [7], assumed a deterministic
framework making any comparison irrelevant. For simplicity,
we consider the following: (1) Motion and Measurement
models with additive Gaussian white noise. (2) Small en-
vironments with 8−12 landmarks. (3) Data-Association is
solved. (4) The initial belief considers a Composable set of
triplets under L.

We performed 3000 tests, each randomizing a different
environment and choosing a target triplet randomly. We
repeated each test four times, once for each cost suggested in
III-G, with and without the robot using compositions. Table I
summarizes the overall statistics, where Fig. 4 emphasizes
the advantage of using compositions.

Two specific scenarios are demonstrated in Fig. 5, where
the robot aims to reach and observe the goal triplet ABC.

In the first scenario (Fig. 5a), which considered the
cost formulated in Eq. (22), the robot has succeeded in
reaching and observing ABC only via compositions.
Specifically, the robot’s initial frame was F1=EG, and its
initial belief was over the set of source landmark triplets
M1={ABC,ABD,ABE,ABH,ACI,DEF,DEG,EGJ}.
At time step t=2, the robot linked to a new frame, F2=AE.
This link, which was necessary to reach ABC (for more
details, see [17, Sec. 7]), was feasible exclusively based
on the triplet AEG, which was composed using source
triplets from M1. Meaning, in this case, without using
compositions, no feasible path would have been found.

In the second scenario (Fig. 5b), which considered the
cost formulated in Eq. (23), the robot was able to find a
plan without using composition. However, by composing the
triplet AIJ , it was able to link to AJ at time step t=2 and
via that link to find a shorter path towards ABC’s vicinity.
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Fig. 5: Two scenarios from our simulations are presented. We show the execution of the calculated paths with replanning between consecutive time steps. For each time step,
the local frame of the robot, considering the EDC partitioning, is displayed. In both scenarios, the robot aims to reach and observe the goal triplet ABC (filled blue circles).
(a) In scenario 1, the robot succeeded in reaching its goal only via compositions. (b) in scenario 2, the robot was able to find a path towards its goal with (upper row) and
without (bottom row) compositions. However, via compositions, the path is shorter.

V. CONCLUSIONS
In this paper, we presented a novel algorithm to address the

problem of Belief Space Planning, considering a qualitative
framework. Our algorithm operates in two steps. Given an
initial qualitative belief and a target triplet, it first constructs
a belief tree that accounts for multiple possibilities for
future developments, where each corresponds to a candidate
plan. This step is the main focus of this work, where the
belief tree is specifically designed to support qualitative
belief propagation. Then, it chooses the best plan, i.e., that
minimizes a meaningful objective function. This step is a
standard one. Moreover, our mechanism enables incorporat-
ing compositions to improve planning results. Finally, we
suggested a novel cost function, which considers metric
path length, thus being more realistic. We believe this first
work on qualitative BSP opens new research opportunities
to follow.
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