
Qualitative Belief Space Planning via Compositions

Supplemenary Material

Itai Zilberman and Vadim Indelman

This document provides supplementary material to [3]. Therefore, it should not be considered a self-contained
document, but instead regarded as an appendix of [3]. Throughout this report, all notations and definitions are with
compliance to the ones presented in [3].

1 Supplementary derivation of P(βt|SXt

Ft−1
,SFt−1,Sτβt ,H−t )

We further develop the term P(βt|SXtFt−1
,SFt−1 ,Sτβt ,Ht) via marginaliztion over relevant metric realizations and

considering dependencies:

P(βt|SXtFt−1
,SFt−1 ,Sτβt ,H−t )=

∫∫∫
x∈SXtFt−1

,d∈SFt−1 ,L∈Sτβt

P(βt|x, d,L, Ft−1)P(x|SXtFt−1
,H−t )P(d|SFt−1 ,H−t )P(L|Sτβt ,H−t ) dx dd dL. (1)

The term P(βt|x,d,L,Ft−1) is a deterministic geometric model that equals 1 if the metric hypotheses of βt landmarks
are inside the robot’s sensing range, R (assumed to be a known hyperparameter), and 0 else, i.e.:

P(βt|x,d,L,Ft−1)=
∏

Li∈{L1,L2,L}

1

{
‖Li−x‖2≤

R

d

}
, (2)

where L1 and L2 are the local metric coordinate of the reference landmarks creating Ft−1. In most cases, L1=(0, 0)
and L2=(0, 1). The metric priors can be further approximated as uniform distributions by neglecting the history
term. Accordingly, (1) can be calculated offline.

2 Supplementary derivation of P(zt|SXt

Ft−1
,Sτβt ,βt,H−t )

We further develop the term P(zt|SXtFt−1
,Sτβt ,βt,H−t ) via marginalization over relevant metric realizations and con-

sidering dependencies:

P(zt|SXtFt−1
,Sτβt ,βt,H−t )=

∫∫
x∈SXtFt−1

,L∈Sτβt

P(zt|x,L, Ft−1)P(x|SXtFt−1
,H−t )P(L|Sτβt ,H−t ) dx dL, (3)

The term P(zt|x,L, Ft−1) is the metric measurement model. The metric priors P(x|SXtFt−1
,H−t ) and P(L|Sτβt ,H−t ) can

be further approximated as uniform distributions by neglecting the history term. Accordingly, (3) can be calculated
offline.
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3 Supplementary derivation of Eq. 11

J(bk,ak+)=E
βk+1

[
E

zk+1|βk+1

[
c1(bk+1,ak)+J(bk+1,a(k+1)+)

]]
(4)

=
∑
βk+1

P(βk+1|bk,ak)

∫
zk+1

P(zk+1|βk+1,bk,ak)·(c1+J(bk+1,a(k+1)+)) dzk+1

≈
Nβ∑
m=1

P(βmk+1|bk,ak)∑Nβ
q=1 P(βqk+1|bk,ak)︸ ︷︷ ︸

w̃m

∫
zk+1

P(zk+1|βmk+1,bk,ak)·(c1+J(bk+1,a(k+1)+)) dzk+1

≈
nβ∑
i=1

w̃i∑nβk
q=1 w̃

q︸ ︷︷ ︸
wi

∫
zk+1

P(zk+1|βik+1,bk,ak)·(c1+J(bk+1,a(k+1)+)) dzk+1

≈
nβ∑
i=1

wi

nz

nz∑
j=1

P(zi,jk+1|β
i
k+1,bk,ak)·(c1+J(bk+1,a(k+1)+)),

where in the 1st approximation, we consider only the subset of Nβ βk+1’s realizations containing triplets that involve
the current frame (Nβ=|L|−2), in the 2nd approximation, we further reduced this subset to the nβ triplets available
in the belief (nβ≤Nβ), and finally, in the 3rd approximation, we show how the inner expectation term can be
evaluated via averaging over a finite set of zk+1 samples.

4 Supplementary derivation of P(SXt

Ft
|SXt

Ft−1
,Sτ ,Ht)

For each possible realization of the input variables described above, we marginalize over the corresponding metric
state to calculate the model’s outcome:

P(SXtFt |S
Xt
Ft−1

,Sτ ,Ht)=
∫∫

XXtFt−1
∈SXtFt−1

,X τ∈Sτ

P(SXtFt ,X
Xt
Ft−1

,X τ |SXtFt−1
,Sτ ,Ht) dXXtFt−1

dX τ . (5)

We continue developing the inner term using chain rule:

P(SXtFt ,X
Xt
Ft−1

,X τ |SXtFt−1
,Sτ ,Ht)=P(SXtFt |X

Xt
Ft−1

,X τ ,aLinkt )P(XXtFt−1
|SXtFt−1

,Ht)P(X τ |Sτ ,Ht), (6)

where P(SXtFt |X
Xt
Ft−1

,X τ ,aLinkt ) is a geometric model that deterministically determines the new state, given a metric

realization of the former one and of the related triplet. The metric priors P(XXtFt−1
|SXtFt−1

,Ht) and P(X τ |Sτ ,Ht) can

be further approximated as uniform distributions by neglecting the history term. Accordingly, (5) can be calculated
offline.

5 Supplementary derivation of P(SFt−1|Ft−1,SL1

AB,S
L2

AB,H
ABL1
t ,HABL2

t ,SAB)
We can further develop this posterior term, assuming Ft−1=L1L2, via marginalization over the metric state of AB:L1

and AB:L2, followed by chain rule:

P(SFt−1 |Ft−1=L1L2,SL1

AB ,S
L2

AB ,H
ABL1
t ,HABL2

t )= (7)∫∫
XL1
AB ,X

L2
AB

P(SFt−1 |Ft−1=L1L2,XL1

AB ,X
L2

AB)P(XL1

AB ,X
L2

AB | S
L1

AB ,S
L2

AB ,H
ABL1
t ,HABL2

t ) dXL1

AB dX
L2

AB ,

where P(SFt−1 |Ft−1=L1L2,XL1

AB ,X
L2

AB) is a Dirac function equals to 1 if
∥∥∥XL1

AB −X
L2

AB

∥∥∥
2

is in the interval represented

by the value of SFt−1 and to 0 otherwise. The metric prior term can be approximated via
P(XL1

AB ,X
L2

AB | S
L1

AB ,S
L2

AB ,H
ABL1
t ,HABL2

t ) ≈
∏2
i=1 P(XLiAB | S

Li
AB ,H

ABLi
t ), where ∀i∈{1,2} the individual prior term

can be further approximated via P(XLiAB | S
Li
AB ,H

ABLi
t )≈P(XLiAB | S

Li
AB), i.e., assuming a uniform distribution.
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6 Composable triplet sets

This section provides a reminder of the term Composable sets of triplets, which is only briefly (and informally)
discussed in the paper. Moreover, the definitions given in this section are crucial to understanding the proof in
Sec. 7.3.

In the following, we provide a series of definitions, originally formulated in [4], where the last one refers to the
Composable set term.

Definition 1. Let T be a set of triplets. The Landmark Space of T , denoted by L(T ), is defined as:

L(T )=
⋃
τ∈T

τ

Note that the Landmark Space of a single triplet set is the triplet itself: L({τ})=τ .

Definition 2. Let T be a set of triplets. A Cut C=(TL,TR) of T , is a partition of T into two disjoint subsets, TL
and TR, s.t. ∀τ∈T , either τ∈TL or τ∈TR, but not both.

Definition 3. Let T be a set of triplets and let α∈N∪{0}. A Cut C=(TL,TR) of T is called α-common if
|L(TL)∩L(TR)|≥α.

We are now ready to define the term of a Composable set of triplets.

Definition 4. Let T be a set of triplets and let L be a Landmark Space. We say that T is Composable under L, if
L ⊆ L(T ), and one of the following holds:

1. |T |=1.

2. |T |>1 and there is a 2-common Cut C=(TL, TR) of T , s.t. TL is Composable under L(TL) and TR is
Composable under L(TR).

An illustration of a Composable set of triplets under the Landmark Space L can be found in Fig. 1a.s

7 Compositions and Link-Graphs

A Link-Graph is a topological graph representation for QRM. In this section, we use the Link-Graph and its properties
to prove that in some scenarios, a plan can be found exclusively via compositions. We emphasize that we do not
use the Link-Graph in our algorithm but rather exploit it for explanatory purposes alone.

7.1 Link-Graph

First defined in [2], the Link-Graph was used for generating high-level plans over a QRM as part of a more compre-
hensive planning architecture called Q-Link .

The Link-Graph encodes connectivity between triplets, represented by its nodes, and local frames, represented
by its edges, as illustrated in Fig. 1b. Formally, the Link-Graph is defined as follows:

Definition 5. A Link-Graph is a graph G=(V ,E) where:

1. Each node v∈V represents a triplet of landmarks, i.e., v={L1,L2,L3}.

2. There is an edge e=(v1,v2)∈E if and only if |v1
⋂
v2|=2 (i.e., nodes v1 and v2 share exactly 2 landmarks in

common).

7.2 Link-Graph ’s connectivity and Links

The Link-Graph is a good representation for links mobility, since each triplet node enables a transition, or Link,
between any two frames’ edges connected to it.

We provide the following example to clarify the above state. Consider a robot localized relative to frame AB
and the triplets ABC and BCD to be the only available information. Suppose the robot aims to find landmark D.
The location of D is only available relative to frame BC, through the triplet BCD. Consequently, the robot aims
to link to BC next. To that end, it first deduces that the edge representing BC connects BCD with the triplet that
includes its current frame, ABC. Then, the robot uses AB:C estimation to reach C and localizes itself relative to
BC, i.e., it links from AB to BC. Finally, to accomplish its goal, it finds D via BC:D.

The topological rule illustrated in the example above is formulated as follows:
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(a) (b)

Figure 1: (a) An illustration of a Composable set under L={A,B,C,D,E}, consists of three tripelts; (b) An illustration of a Link-Graph,
based on the set from (a). The graph has a single edge connecting ABC with BCD, as B and C are mutual landmarks; There is an Invertible
transformation between the two.

Lemma 1. A direct Link from F1 to F2 is feasible based on a triplet τ , if Fi⊆τ , ∀i∈{1,2}, or, in Link-Graph’s
terms, if the edges representing F1 and F2 are connected to the node representing τ .

One can further conclude from Lemma 1 that a Link-Graph’s path encodes a feasible sequence of link actions,
where the edges along the path are the different frames, and the in-between nodes are the triplets the robot relies
on to execute the Links.

7.3 Compositions’ necessity in sparse scenarios - A Link-Graph based proof

Using the insight from Sec. 7.2, we now aim to prove that in some cases, a plan can be found only via compositions.
Before approaching the formal proof, we provide some intuition. The key point of our explanation is simple. Via

compositions, the robot can link to more frames than it could before. According to the conclusion from Lemma 1,
the robot is allowed to link based on a path of a Link-Graph, whose nodes represent the set of available triplets,Mk.
Thus, without compositions, links are possible only based on existing paths. In contrast, using composition, we can
create new triplets, i.e., augment the graph with new nodes, thus creating additional paths. Consequently, in cases
where there is no path in the Link-Graph at planning time to a target triplet without compositions, we cannot find
a valid plan towards the triplet.

Suppose that the robot’s initial map, Mk, is Composable under L (see Fig. 1a for illustration). Alternatively,
we could assume that a Link-Graph whose nodes represent Mk is Composable under L, considering the following
definition:

Definition 6. Let G=(V ,E) be a Link-Graph. We say that G is Composable under L if V represents a Composable
set of triplets under L.

We aim to prove that any connected Link-Graph is, in particular, Composable, but not the other way around:

Theorem 2. Let Gcn and Gcm be the sets of all connected and Composable Link-Graphs under the landmark space
L, respectively. Then Gcn(Gcm.

Proof. First we show that Gcn⊆Gcm.
Let G=(V ,E) be a connected Link graph under L. We prove that G is also Composable under L by induction on
number of vertices in G, |V |.
Base step: When |V |=1, V is Composable under L by definition. Thus, G is also Composable under L by definition.
Induction step: Suppose G is Composable under L for all 1≤|V |≤n. We show that G is Composable under L for
|V |=n+1. We choose a cut in G, C=(S,T ), s.t. GS,

(
S,
{

(u,v)∈E|(u,v)∈S2
})

and GT,
(
T,
{

(u,v)∈E|(u,v)∈T 2
})

are both connected graphs, where S, T 6=∅. Note that such choise always exists for any |V |>1, since G is connected.
Let us now observe the set of edges in G connecting S with T , that is, ES,T,{(u,v)∈E|u∈S ∧ v∈T}. Since G
is connected, we are guaranteed that ES,T 6=∅. Thus, C is a 2-common cut in G. Finally, since GS ,GT are both
connected subgraphs of G, they are both connected Link-Graphs, and since 1≤|S|,|T |≤n, we further conclude that
they are both Composable under L, according to the assumption. That is to say, we showed by definition that for
|V |=n+1, G is Composable under L.
Conclusion: Gcn⊆Gcm.
We are left to show an instance of a Composable Link-Graph under L that is not connected. To that end, consider
the landmark space {A,B,C,D,E}, and the Link-Graph from Fig. 1b.
Final conclusion: Gcn(Gcm

�
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Figure 2: Relationships between general Link-Graphs (G), Composable Link-Graphs (Gcm), and connected Link-Graphs, all under the same
landmark space, (Gcn) are described through a Venn diagram.

Meaning, in some scenarios, where Mk creates a Composable Link-Graph that is disconnected, compositions are
necessary to allow the robot to plan towards its goal.

8 Supplementary derivation of a single composition operation

We directly compose the triplet τ3 using the source triplets τ1 and τ2, using the following probabilistic formulation,
based on [1]:

P(Sτ3 |Sτ1 ,Sτ2 ,H1,H2)=

∫∫
X τ1∈Sτ1 X τ2∈Sτ2

P(Sτ3 |X τ1 ,X τ2)P(X τ1 ,X τ2 |Sτ1 ,Sτ1 ,Hτ1t ,H
τ2
t ) dX τ1 dX τ2 , (8)

where P(Sτ3 |X τ1 ,X τ2) is a simple deterministic geometric model. The metric prior term can be approximated

via P(X τ1 ,X τ2 |Sτ1 ,Sτ1 ,Hτ1t ,H
τ2
t ) ≈

∏2
i=1 P(X τi |Sτi ,Hτit ), where ∀i∈{1,2} the individual prior term can be further

approximated via P(X τi |Sτi ,Hτit )≈P(X τi |Sτi), i.e., assuming a uniform distribution.
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