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Introduction — SLAM
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Introduction — Decision Making
= Belief Space Planning (BSP)

"Planning in Unknown Environments
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Introduction — Inpainting

" Image completion task

= Addressed by DL based generative models:
= Variational Autoencoders (VAE)
= Generative Adversarial Network (GAN)

O EHHEH I8

(L2 loss) (L2 + Adversarial loss )

L2+ A i
D. Pathak et al., CVPR 2016

= Extended map task
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Related Works

= Belief Space Planning in unknown environments

A. Kim et al.: “Active visual SLAM for robotic area coverage: Theory and experiment”, IJRR 2015.

V. Indelman et al.: “Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown
environments”, IJRR 2015.
V. Indelman: “Cooperative multi-robot belief space planning for autonomous navigation in unknown environments”, ARJ 2017.
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V. Indelman et al., IJRR 2015 V. Indelman, ARJ 2017
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Related Works

" Reinforcement Learning (RL) in POMDP setting

P. Karkus et al.: “Qmdp-net: Deep learning for planning under partial observability”, NIPS 2017.

G. J. Stein et al.: “Learning over subgoals for efficient navigation of structured, unknown environments”, CORL 2018.
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subgoal. We estimate the probability the agent will reach the The computation is recursive: after failing to reach This continues
goal and add additional estimated costs for arriving at the goal the goal via the first subgoal, the planner considers until all subgoals
or having to turn back. the next subgoal, and again tries to reach the goal. are exhausted.

G.).Stein et al., CORL 2018
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Related Works

sExperience for Planning in unknown environment

C. Richter and N. Roy: “Safe visual navigation via deep learning and novelty detection”, RSS 2017.

K. Katyal et al.: “Uncertainty-aware occupancy map prediction using generative networks for robot navigation”, ICRA 2019.
I J J |

(a) “Collision™. (b) ‘Collision”. (c) ‘Non- Col]usmn_
(d) Image for I(a). (e) Image for 1(b). () [mage for 1(c).

C. Richter et al., RSS 2017 K. Katyal et al., ICRA 2019
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Problem Statement

" Current BSP methods lack the information necessary to predict
future measurements in unknown environments.

= Contributions:

I.  predict distribution over an unexplored area for future
measurements generation

Il. incorporate experience-based prediction within BSP. In particular,
with information-theoretic costs.
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Problem Formulation - SLAM

" Motion model Notations:

X; - robot state at time i
Ly = f(aj’i—la ai—l) + Wi, w; ~ N(O, Ew) a; - action at time i
. m;- environment state(map/landmarks)
" Observation model of a raw measurement y; - raw measurement at time i

yl?’jel - relative pose measurement

yi = g(xi, m;i) + uy, u; ~N(0,%,)
" Observation model of a relative-pose measurement

urt (yi, ;) = b, @) +vij, vig ~ N0, 2 (yi. y5))
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Problem Formulation - SLAM

= Robot’s state belief

b = P(z1.k|Y1.k, G0k—1)

" Map belief

P M Qe Notations:
( k‘yl-/ﬂ 0:k 1) X1. - robot states until current time

M, - the map observed up to time k
Y1k - measurements up to time k
Ag.x—1 - actions up to time k

SEMINAR 10
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Problem Formulation - BSP

= Future belief
bt = P(xygy | Hyy Qpki—1, Yost:hsi)
= Objective function
L

J(bk,&k:k+L—1)=Z E  {c(bysr, apyi-1)}

Yk+1:k+1
I—1 +1:k+

= Optimal action

* L .
).jsy—1 = arg min J(bpy Qpeperr—1)
Ak k+1L—1
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Notations:

X1.x - robot states until current time
M, - the map observed up to time k
Y1:.k - Measurements up to time k
Ag.x—1 - actions up to time k

Hy = {¥1., @o:-11} - history

11




Problem Formulation

Inference (by SLAM) Planning (by BSP)

Actions

Objective

Belief function
Robot states

observations

—_ D 6 ® | &
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Problem Formulation

Inference (by SLAM) Planning (by BSP) in Unknown Environments
Actions :
Optimal
\ Objective next
Belief function action

»

Robot states k+1

~ Q) ()@
observations
— - ® | ©
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Approach

" Incorporation of experience D within BSP objective function
J(bkaa-k) :/P(yk+l|Hk:akaD)C(bk-i—l:ak)dyk—f—l
" Future measurement generated given a map distribution

P(yrs1|Hy, ar, D) ~ / P(yk+1|§91;+1» Mit1)P (Mg |Hk:_—|—1’ D)dmp41

M1 | Y J \ J

Observation model ?

Notations:

X1.x - robot states until current time
M, - the map observed up to time k
m; © M; - sub map around x;

Y1:.x - Measurements up to time k
Ag.x—1 - actions up to time k

Hk = {yl:k' aO:k—l} - history
D - experience

8 June 2020 SEMINAR 14




Approach

" Future measurement generated given a map distribution

P(yk—{—]’Hkaak-D)%/ P(yr1|@p s muep 1) P(mg1 [H oy, D)dmy 4

M1 | Y J \ J

Observation model ?

" Experience-based prediction of map distribution

. Notations:
P(mk+1 |Hk, ar, D) ~ ]P)(mk_|_1 |Mk, arg, D) X1. - robot states until current time
A M, - the map observed up to time k
~ ]P(mk+1 | mi, aj, D) m; € M; - sub map around x;

Y1:x - measurements up to time k
Ag.x—1 - actions up to time k

Hk = {yl:k' aO:k—l} - history
D - experience
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Approach — Map Prediction

" Purpose — learn the future map distribution offline

P(m'|m, a)

"Data Set - floor plans (KTH)
D = {(m,a,m’)}
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Approach — Map Prediction

= CVAE architecture — | dtg]

e

" Encoder
Q(z | M, C;¢) = N(u(m',C;0).2(m',C;0))

" DeCOder :] conditioning
'!iiﬁlil~[£ii; ; N, Qg

P(m'|z,C;0) = N(f(2,C;0),0% 1)

o S ae Z~N(u2)
= | oss function / oecode\ |

zco [ fzco )

(a) CVAE Training (b) Deployment

Encoder

lm" = f(2, C;0)|I* + KLIN (u(m, C5 ), £(m', C; 9)) || N(0,1)]
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Approach (Reminder)

" Incorporation of experience D within BSP objective function
J(br, ar.) :/P(yk+l|Hk:akaD)C(bk-i—l:ak)dyk—f—l
" Future measurement generated given a map distribution

P(yps1|Hy, ap. D) ~ / P(yk+1|§7k+1amk+1)P(mk+l|Hk+1aD)dmk+1
M1

* Experience-based prediction of map distribution  Notations: | |
X1.x - robot states until current time
M, - the map observed up to time k
m; © M; - sub map around x;
) Y1:.x - Measurements up to time k
~ ]P(mk+1 | mi, ag, D) Ay.x—1 - actions up to time k

Hy = {yl:k' aO:k—l} — history

D - experience

P(my.i1|Hp, ay, D) &~ P(myi1| My, ax, D)
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Approach — Novelty detection

" |s the experience relevant and reliable for the current task?

" In our method we measure the reconstruction error (RE) in the
copy operation of the overlap area (OA) between the conditional
input and the map prediction: | -

RE(mk) — || {77“17 }OA o {f(z7 M, Ak 9* ) }OA || ° Reconstruction area

= If RE(m;) > threshold, a standard BSP method will be used
instead. .
[F3-+—1%
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Results — Map Prediction

" Example 1 - most predictions are correct (low prediction error (PE))

Conditioning m'~P(m'|z, m, a; 0)

Map Action Worst sample Best sample Ground truth

RE = 0802 PE=1.345 RE = 1512 PE = 0.278
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Results — Map Prediction

" Example 2 - most predictions are wrong because of an unfamiliar
input (high PE and high RE).

Conditioning m'~P(m'|z,m, a; 6)

Map Action Worst sample Best sample Ground truth

RE = 3.115, PE = 45,940 RE = 3.865, PE = 26.116
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Results — Map Prediction

=" Example 3 - most predictions are wrong because of uncommon
ground truth map (high PE and low RE)

Conditioning m'~P(m'|z,m, a; 0)

Action Worst sample Best sample Ground truth
RE = 0.001, PE—30542 RE = 0.001, PE = 13.49

o
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Results — Map Prediction

07 035 Reconstruction area
0.6 0.30
0.5 0.25
‘GC-J, 0.4 § 0.20
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0.1 0.05
0.0 0.00
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Reconstruction Error Prediction Error
Reconstruction and error of the test set
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BSP with Experience-Based Prediction

Algorithm 1 BSP with Experience-Based Prediction

1: Inputs:

20

22:

23

24:

by: state belief at current time

P(Mj|H;.): map belief at current time

g 1_1: a candidate L look-ahead steps action sequence

f(.;8%): trained decoder

Outputs:

J(by,ap.p.p_1): computed objective function for a given action sequence aj..._q

M, = P(M|Hy) > Get maximum likelihood estimate of map belief

mg C M, > Get current sub-map estimate from M
cfori=1:N do

mj, =

for j=1:L do

Ty, ;& Pz ;|Hyg, aggerj1) © Get ML estimate without future observations
:f s J’V’[U. f}
my, ;i ~ N(f(, My i1, Akij-1;07), o’ 1) > Predict sub-map (Eq. (29))
Visj ~ P+ | m.}l,_j.:i';”-) > Generate future observation (Eq. (18))
Calculate bj, p > Calculate future belief using y;, i (Eq. (9))
Calculate cost/reward (b}, ;)
J (b, apeerr—1) = J(by, Qpepern—1) + t"(f}i__j) > Accumulate costs
end for
s b, appsrn_1) = %J(bk. ket L—1) > Normalize to get empirical expectation

return J (b, appp_1)

8 June 2020 SEMINAR

Inputs:

State belief

Map belief
Candidate action
Trained decoder

Output:
computed objective function
L

end for J(bk,ak;k+L_1):Z K {C(bkﬂa@kﬂ—l)}

Yk+1:k+1
—1 +1:k+




BSP with Experience-Based Prediction

Algorithm 1 BSP with Experience-Based Prediction

1: Inputs:

2: by: state belief at current time G et C u rre nt S u b— m a p
3. P(My|Hg): map belief at current time

4 ap.p.y_1: a candidate L look-ahead steps action sequence

5

f(.;8%): trained decoder 9: A_[k = P(ﬂ[k | Hk]

6: Outputs:

7. J(bg,ap.p.p_1): computed objective function for a given action sequence ap.p.r_q 10: Tnk g J\[L
&:
‘ 9 My < P(M|Hy) > Get maximum likelihood estimate of map belief
10: e C My, > Get current sub-map estimate from M
11: fori=1: N do
12: mj, =
13: for j=1:L do
14: :i‘LJ. < Pz j|Hy, aggerjq) © Get ML estimate without future observations bl I d e e, I . .
15: 2t~ N(0,1) Double O0p an Initialization
16: m};_+_j ~N(f(2, -rr'ri_ﬂ_l.ahj 1;60%), o * I) > Predict sub-map (Eq. (29))
17: yEHJ- ~ ]P(y;\;_j- | My js Tryy) | - Generate l'11tllrfi ()I):-i(?‘r\-'atij()]l (Eq. (18)) 11: for Z — 1 : N do
18: Calculate ‘51\-1; > Calculate future belief using y;, i (Eq. (9)) )
. . . N S i 1 _ Fal
19: Calculate cost/reward c(b ;) s 192: TTIA = My
20: J (b, apeerr—1) = J(by, Qpepern—1) + (b ;) > Accumulate costs

21: end for 13: for 7 p— 1 . L dO

22: end for
23 J(bp,aprsrp_1) = %J(bk. Qhkey L—1) > Normalize to get empirical expectation
24: return J (b, appp 1)
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BSP with Experience-Based Prediction

Algorithm 1 BSP with Experience-Based Prediction

1: Inputs: . .

2: by state belief at current time P red Ict I O n Of n ext S u b_ m a p
3. P(My|Hg): map belief at current time

4 ap.p.y_1: a candidate L look-ahead steps action sequence

5

: f(.;8%): trained decoder 15: Zi ~/ N(O I)

6: Outputs: K . :
7. J(bg,ap.p.p_1): computed objective function for a given action sequence ap.p.r_q 16: 7ni_+_‘) ~ N(f (2:2 , 7ni+-}_l . ak+3_] 9* ) . 0-2 * I)
&
9 My < P(M;.|Hy) > Get maximum likelihood estimate of map belief
10: 7 € .ff;,- & Get current sub-map estimate from ;".ﬁf_g-
11: fori=1: N do
12: mj, =
13: for j=1:L do
14: Ty, ;& Pz ;|Hyg, aggerj1) © Get ML estimate without future observations
15: 2~ N(0,1)
‘ 16: ’”i.—+_j ~N(f(2, -rr'ri_ﬂ_l.ahj 1;60%), o * I) > Predict sub-map (Eq. (29))
17: Yisj ~ P(Yrsj | -m.}\,_j.:i';”-) > Generate future observation (Eq. (18))
18: Calculate bj, p > Calculate future belief using y;, i (Eq. (9))
19: Calculate cost/reward (b}, ;) _
20: J (b, apeerr—1) = J(by, Qpepern—1) + (b ;) > Accumulate costs
21: end for
22: end for
23 J(bp,aprsrp_1) = %.I(bk.ak:k“_l) > Normalize to get empirical expectation Conditional map in ) predicted map in dark green.

24: return J (b, appp 1)
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BSP with Experience-Based Prediction

Algorithm 1 BSP with Experience-Based Prediction

1: Inputs: . .
2: by: state belief at current time Generation of future observation
3. P(My|Hg): map belief at current time

4 ap.p.y_1: a candidate L look-ahead steps action sequence

5 f(.;6%): trained decoder 14 JL = P T J|Hﬁ1”.ﬁ hetj— l}

6: Outputs: J
7. J(bg,ap.pop_1): computed objective function for a given action sequence ap.p.r_q

&: T LY - N T -
0: N = P(Mi|Hy) > Get maximum likelihood estimate of map belief L Yirg ~ Pk | Miej Ty 5)
10: e C My, > Get current sub-map estimate from M

11: fori=1: N do

12: mj, =

13: for j=1:L do .

14: Ty, ;& Pz ;|Hyg, aggerj1) © Get ML estimate without future observations mk+1 yIlC'I-l
15: 2~ N(0,1)

16: ’”i—+_,‘ ~ "A"'I’(f(:i!.”?;.-+_;'—1'ak+j 1;60%), o’ 1) > Predict sub-map (Eq. (29))

17: Yisj ~ P(Yrsj | m.}l,_j.:i';”-) > Generate future observation (Eq. (18))

18: Calculate EJ“J, > Calculate future belief using y;, i (Eq. (9))

19: Calculate cost/reward (b}, ;) _ o

20: J (b, apeerr—1) = J(by, Qpepern—1) + (b ;) > Accumulate costs -

21: end for

22: end for
23 J(bp,aprsrp_1) = %J(bk. ket L—1) > Normalize to get empirical expectation
24: return J (b, appp 1)
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BSP with Experience-Based Prediction

Algorithm 1 BSP with Experience-Based Prediction

1: Inputs: . . .

2. by state belief at current time Ca |CU |at|0n Of fUtU re bElIEf USI ng the
3. P(My|Hg): map belief at current time .

4: appo 1y a candidate L look-ahead steps action sequence ge ne ratEd (@) bse rvatlo N

5 f(.;6%): trained decoder

6: Outputs:

7. J(bg,ap.p.p_1): computed objective function for a given action sequence ap.p.r_q

&: - ; j

9 My < P(M|Hy) > Get maximum likelihood estimate of map belief b;‘+[ ]PJ{I]' k+H | H'i‘ y Qkk+1—15 Yk+1 ""'_H}
10: e C My, & Get current sub-map estimate from ;".qf_g-

11: fori=1: N do

12; mi = My . .

5 forj=1:L do Calculation of the cost function
14: Ty, ;& Pz ;|Hyg, aggerj1) © Get ML estimate without future observations

15: 2~ N(0,1) uf

16: m}"_H ~ .Nr(f(:i,-rr':i_+j_1,(:k+j_1;9‘) o * I) > Predict sub-map (Eq. (29)) ; 100

17: Yisj ~ P(Yrsj | '.'n.“j.:rkﬂ-} > Generate future observation (Eq. (18)) C( k-{-_j) — \/T'T’QCQ(Z}C_FL)

‘ 18: Calculate by, ; > Calculate future belief using v, ; (Eq. (9)) sp—e—o—=

19: Calculate cost/reward (b}, ;) _ 7t
20: J (b, apeerr—1) = J(by, Qpepern—1) + c(biy ;) > Accumulate costs 6l
21: end for 5
22: end for ‘
23 J(bp,aprsrp_1) = %.I(bk. Qhkey L—1) > Normalize to get empirical expectation N
24: return J(by, ap.pip 1) 15 20 25
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BSP with Experience-Based Prediction

Algorithm 1 BSP with Experience-Based Prediction

1: Inputs: . . . .
2: by: state belief at current time Calculation of the objective function
3: P(My|Hy): map belief at current time
4 ap.p.y_1: a candidate L look-ahead steps action sequence
5 f(.;8%): trained decoder
6: Outputs:
7. J(by,ap.pop_1): computed objective function for a given action sequence ay.p.y_
. ﬂ( L—1 P q L—1 J(bki aj- k+1— 1 NZ\/TT@CG(Ek+L)
9: M; < P(Mi|Hy) > Get maximum likelihood estimate of map belief
10: 7 € .ff;.- & Get current sub-map estimate from ;".qf_g-
11: fori=1:N do
12: mj, =
13: for j=1:L do
14: Ty, ;& Pz ;|Hyg, aggerj1) © Get ML estimate without future observations
15: 2~ N(0,1)
16: ?7?L+.r' ~ J’\f(f(:",?r':i_+j_1,(:k+j_1;9‘) o * I) > Predict sub-map (Eq. (29))
17: Uksj ~ Pt | Mpsjs Ty ) > Generate future observation (Eq. (18))
18: Calculate by, ; > Calculate future belief using v, ; (Eq. (9))
19: Calculate cost/reward (b}, ;) _
20: J (b, apeerr—1) = J(by, Qpepern—1) + t"(!}l__j) > Accumulate costs
21: end for
22: end for
‘ 23 J(bp,aprsrp_1) = ‘%J(bk. Qhkey L—1) > Normalize to get empirical expectation

24: return J(by, ap.pip 1)
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BSP Simulation Results
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BSP Simulation Results

Ground truth Samples

Action 1

Action 2

Action 3

Conditional map in , predicted map in dark green.
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BSP Simulation Results

Ground truth Samples Our approach baseline comparison

D I e = —

Action 1 ‘I |

p—— k‘} - .“1‘ Fot ..
* 4 (®)
Action 2 | | @ »
Ctlon 4 ) Q'Ip } e Tt 3.' X ""Y.’;
Y () st 84 ¢ 8 i { I
i ; (¥ (&) ~C
e .| (— o C 5%
‘: ¥ 7 )
4 3 .
. 4 (®)
Action 3 | |
iy ) s S \
CR |

8 June 2020 SEMINAR



BSP Simulation Results

. . r ’ ’ 0.055
O x3 O our approach 0.05 ¢ our approach [2,3,1] m}
O Baseline [1,2,3]
0.035 ¢ . i}
c 0.045 ¢
O
8 0] 8 (m}
S 0.03} o c 004y
9 =
c [t
= (] w 0.035¢+
v : s
! prar)
é‘l 0.025 8 0.03 |
g
0.025
0.02 t o 8 o ¢
o} ° I
b 0 0.02 @ o
0-015 . L L L L 4 L A A A A A A 'S
0 0.5 1 1.5 2 2.5 3 3.5 4 0'0150 0.5 1 1.5 2 2.5 3 3.5 4
Action Number Action Number
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BSP Simulation Results

" The table reports for each method the
number of action ordering mistakes with
respect to BSP with ground truth map, and

the uncertainty cost error.

Scenarios 12 3 4 5 6 7 8 910 11 12 13 14 15 [Avg
Our approach
Mistakes o 2 0 1 0 0 0o 002 0 0 10 0.43
Error|[ %] 0O 40 0 0 0 0O 0 OO 4 0 O 00 - 1]29
RE 03 1.1 1.4 06 08 0.1 1.1 22 2 1638 14 1 0 104 -

Baseline

Mistakes o 1 2 2 1 2 0 11 2 1 11 1 0 |1.07
Error| %] 0O 1 49 6 10 41 0 200 12 0 O 16 0 0 |10.3
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BSP Simulation Results

= Using the novelty detection method we
recognized unfamiliar environments and
avoided using our approach in these cases

(e.g. Sc. 15).

Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |Ave
Our approach

Mistakes o 2 0 1 0 0 o0 002 0 0 10 0.43

Error| %] 0O 490 0 0 0 0 0O O O 4 O 0 0 0 - |29
RE 03 1.1 1.4 06 08 0.1 1.1 22 2 16 38 1.4 1 0[104f -

Baseline

Mistakes 0 1 2 2 1 2 0 1 1 2 | 1 1 1 0 [1.07

Error| %] 0O 1 49 6 10 41 0 200 12 0 0O 16 0 0 [103
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Summary

= Development of an algorithm that calculates a predicted
distribution over an unexplored area using a deep learning method

" Incorporation of this distribution within BSP (considering
information-theoretic costs)

" Novelty detection for map prediction

= Gazebo simulation compared our approach to existing BSP
approaches - results indicate the potential of our approach to
improve decision making in unknown environments

8 June 2020 SEMINAR
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Conclusions and Future Work

* Good interpretability

= Low sensitivity to prediction mistakes

= Evaluation of path feasibility; improvement of map prediction
accuracy is needed.

= Future work may extend our novelty detection method to cases
with familiar inputs that still provide wrong predictions.

8 June 2020 SEMINAR 37




Thank you for listening.
Questions?

ASROMRI@GMAIL.COM




