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Abstract

Autonomous navigation missions require online decision making abilities, in order to choose
from a given set of candidate actions an action that will lead to the best outcome. In a partially
observable setting, decision making under uncertainty, also known as belief space planning
(BSP), involves reasoning about belief evolution considering realizations of future observations.
Yet, when candidate actions lead the robot to an unknown environment the decision making
mission becomes a very challenging problem since without a map it is hard to foresee future
observations. The main question investigated in this thesis is how to utilize information collected
in the current navigation missions by SLAM and the experience from other environments for
planning tasks in unknown environment. We develop a data-driven approach for predicting
a distribution over an unexplored map, generating future observations, and combining these
observations within BSP. However, previous experience based on a given dataset may not assist
in some cases, so we suggest a novelty detection method. Using our novelty detection method,
we identify online cases where the given map constructed up to current time is very different
from the train-set maps. In these cases, standard BSP is preferred and used instead. In the
results, we showed the performance of the map prediction algorithm on test-set and discussed
success and failure cases. Additionally, We examine our approach and compared it to existing
BSP methods in a Gazebo simulation. The results show that our approach often yields improved
performance over standard BSP, leading to fewer mistakes in decision making and preferable
in the uncertainty error for most scenarios. We also present a case where the navigation takes
place in an unfamiliar environment, that is very different from the training-set, and show how

our proposed novelty detection method is capable of successfully identifying this case.
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Chapter 1

Introduction

Autonomous navigation in an unknown environment is a challenging problem in robotics. In
this situation the agent starts from a point where it has no information about the environment,
and its mission is to reach a given goal. One of the main approaches to address this challenge
is simultaneous localization and mapping (SLAM). Using SLAM, an agent deals with two
missions at the same time, first it perceives the surrounding environment using its onboard
sensors (e.g. cameras and laser scans) and creates a representation of the map. Second, the agent
estimates its pose relative to this map [2].

Another task in autonomous navigation is decision making. The agent generates candidate
actions (e.g. by PRM, RRT [22], [27]) and it needs to choose which action will lead to the best
outcome. One method to address this problem is belief space planning (BSP) [16,39]. Using
this method, the agent performs belief propagation and evaluates the objective function for each
candidate action given a history of measurements and actions that the agent has performed up
to current time, and determines the best action as the one that leads to the highest value of the
objective function.

However, despite the recent progress, state of the art BSP approaches that address au-
tonomous operation in unknown environments have some limitations. First, these approaches
consider areas not yet mapped to be obstacle-free, causing some of the generated candidate
actions to be infeasible in practice. Second, existing approaches perform belief propagation
within unexplored areas by only considering uncertainty due to motion model and without
explicitly modeling the expected sensor observations in those areas.

In contrast, when thinking about a human navigating in an unknown environment, he/she
most likely does not rely solely on sensory inputs, but also on past knowledge and experience. In
particular, using past experience in similar areas, and based on only partial sensory information
obtained thus far, one is able to envision the expected map in unexplored nearby areas. For
example, when seeing 3 walls connected to each other, as in a room entry, we can envision
and complete the shape of the room based our knowledge that rooms are usually rectangular.
Similarly, we are able to leverage experience to predict high-level semantics (e.g. doors, elevator)
in unexplored nearby environments.

One method by which a robot can learn from experience is deep learning (DL). Specifically



relevant to this map prediction task is the inpainting problem - the task of completing partial
images [31]. In this method, a neural network (NN) is trained with a dataset of partial images. In
the training part the NN has access to the ground truth, and so it can improve itself by comparing
the prediction’s result to the given data. Afterwards there is a deployment stage, where the NN
does not have access to the original pictures, and it completes an unfamiliar set of partial images
based on the experience learned in the training stage. The DL architectures popular to solve the
inpainting problem are generative adversarial network (GAN) [17] and variational autoencoders
(VAE) [7].

In this work, we develop an approach to incorporate relevant prior experience to predict
distribution over unexplored environments within belief space planning framework. We focus
specifically on unexplored areas as belief propagation and reward calculation can be readily
performed for candidate actions that pass through already mapped environments. In contrast,
our data-driven approach approximately predicts a distribution over unexplored areas along each
candidate action using a conditional generative model. This distribution enables to perform
belief propagation while accounting for future sensor observations, and we show empirically
our approach predicts posterior uncertainty over robot trajectory that is typically close to the
actual uncertainty that will be obtained upon mapping the corresponding environment. This, in

turn, enables to choose most informative actions by evaluating information-theoretic rewards.

1.1 Related Work

1.1.1 Simultaneous Localization And Mapping

In this work, we consider the inference stage as SLAM setting. SLAM research involves many
different areas. At the lower level (front-end) SLAM intersects other research fields such as
computer vision and signal processing; at the higher level (back-end), SLAM is an appealing
mix of geometry, graph theory, optimization, and probabilistic estimation. SLAM has two main
formulations for the estimation of robot and map states. The first is full-SLAM, wherein the
robot and map states are estimated together, and the second is pose-SLAM, in which they are
estimated separately.

Another division of SLAM is by two approaches of estimation: filtering-based and optimization-
based. The most popular filtering-based approach is EKF-SLAM [13,29] which works by two
main steps. First, it predicts how the platform moved and then updates the current state with new
measurements. Yet, in visual SLAM where the state dimension grows over time (e.g. map states
represented by landmarks), EKF-SLAM approaches have high computational complexity. In
contrast, optimization-based approaches like bundle adjustment estimate in each step the current
and past states (in full-SLAM also the map states). These approaches perform calculation in
the information space and can therefore exploit the inherent sparsity of the system. One of the
successful approaches is Smoothing and Mapping (SAM) [5], which formulates the optimization
problem by a factor graph and exploits sparsity in the (square root) information form, making

calculations very efficient. In an advanced version, known as ISAM?2 [19], there has been an



improvement to incremental computational scheme, with new reordering methods that were

computationally preferred.

1.1.2 BSP in unknown environments

BSP is an approach developed following efforts of merging SLAM and path planning into an
integrated framework. Prentice and Roy [33] suggested considering the state’s uncertainty in the
decision making processes in a known map setting. Decision making approaches in an unknown
environment and Partially Observable Markov Decision Process (POMDP) setting can involve a
variety of information-theoretic rewards and tasks. Stachniss et al. [37] develop an active SLAM
approach that compares between two utilities associated with the action of exploration and
revisiting. Kim et al. [23] integrated navigation algorithm that automatically balances between
exploration and revisiting using a BSP reward framework that considers the visual perception
measurement likelihood. Indelman et al. [16] developed general and continuous frameworks
of the BSP approach for both families: robot and environment states. All of these three works
suggested to consider the landmarks/map that was seen up to current time by predicting future
loop closure, but also assume that the other area (unexplored area) is free. [15] proposed a
cooperative multi-robot BSP in which future information sharing is considered in the planning
phase, similar to loop closure but now with other agents. In practice, when the action leads to an
unexplored area and the setting of the sensors is environment dependent (e.g. camera or laser
scan), the future information-theoretic reward should be dependent on the unexplored area.
Another important aspect in BSP is computational complexity. Standard BSP methods
usually perform posterior belief for each candidate action from scratch, which are very expensive
calculations. Kopitkov et al. [24,25] suggested to resort to matrix determinant lemma and
calculation re-use techniques for information-theoretic decision making. Farhi et al. [10]
introduced an approach for incremental expectation belief space planning that avoids the
common assumption of maximum likelihood observations. Elimelech et al. [8] suggested to
perform a precursory variable reordering procedure on the belief, in order to optimize the

number of variables to update in planning.

1.1.3 Experience-based planning

Experience-based navigation or planning is usually linked to reinforcement learning (RL). RL
and BSP both share the same goal of finding the optimal action, but there are differences
in approaches. In RL the policy is mostly learned offline based on experience from similar
missions; numerous model-free and model-based approaches have been developed in recent
years due to rise of DL. However, the vast majority of these approaches consider a Markov
decision process (MDP) problem, i.e. the state is fully observable. Contrarily, BSP is calculated
online based on the history of information in the current mission and it is an instantiation of a
partially observable MDP (POMDP) problem.

Recently several works addressed (deep) RL under POMDP setting, considering different

levels of end-to-end planning under uncertainty in order to deal with the active localization



problem [4,20, 26], assuming environment is known. More closely related to us are learning
approaches that consider autonomous navigation in unknown environments [34,38]. These
approaches focused on the goal to find the shortest feasible action in unknown environments
without considering the uncertainty that propagated due to future observations.

However, end-to-end approaches have limitations in terms of interpretability. Therefore,
another approach is a hybrid between classic planning methods and experience based methods.
In other words, most of the planning process is based on models and incorporates experience
just for specific hard problems when there is no sufficient model. For example, Richter et al. [35]
added a NN to visual navigation for predicting future collisions in an unknown environment, and
Katyal et al. [21] used a NN for map prediction that assisted an efficient exploration of unknown
environments. Our approach belongs to this category as well, as we utilize classic model based
BSP while reasoning about previously mapped environments and incorporate experience-based

map prediction only for the unexplored environments.

1.2 Contributions

We contribute an approach that appropriately incorporates experience within belief space
planning, considering operation in unknown environments. In particular, we (i) develop an
algorithm to calculate a predicted distribution over an unexplored area; (ii) we leverage this
distribution to predict future observations and incorporate these within BSP; (iii) we suggest an
online novelty detection method to avoid using irrelevant experience; (iv) we study our approach

in a realistic simulation in Gazebo.

1.3 Organization

This thesis is organized as follows.

1. Chapter 2 introduces the concepts of pose-SLAM, BSP, and gives a formal statement of
the problem.

2. Chapter 3 describes our approach divided to five steps.
3. Chapter 4 presents experimental results.

4. Conclusions and future work are described in Chapter 5.



Chapter 2

Problem Formulation

2.1 SLAM

The SLAM problem involves inferring states of the robot (e.g. pose and velocity) and of the
map (e.g. occupancy grid, landmarks). Let x.; = {x,~}f.‘:l denote the robot’s states until current
time, which includes in this work the poses (position and orientation) of the robot. We denote
by M} the map observed by time k, and by m; C M; the sub-map that is within the field of view
of the sensor located at state (pose) x;. Let y;.x = {y1, .., yx} and agx-1 = {ao, ..., ax—1} denote,
respectively, the obtained measurements and the actions up to time k. In the current case we will
be basing on motion and observation models with additive Gaussian noise. The motion model

for a given action @;_; and robot state x;_; is
xi = f(xi-1,ai-1) + wi, wi ~ N(0,%,). (2.1)

The formulation of an observation model is dependent on the kind of sensor and measurement
algorithm we are using. Some sensors measure directly the robot state, e.g. GPS, while others
like cameras or laser sensors measure the robot state in relation to the environment. For the latter
case, the generative/measurement model for the raw measurements (e.g images, pointclouds)

thus depends both on the robot state and the environment, i.e.
yi = g(xi, m;) + uj, ui ~ N(0,%,), (2.2)

Where X, and X, are the process and measurement noise covariance matrices of the motion and

observation models, which are assumed to be given.

rel
ij
between two robot poses x; and x;. When the raw measurements are pointclouds, the algorithm

Using two raw measurements, y; and y;, we can create a relative pose measurement y

could be e.g. ICP, and with raw images measurement it could be Visual Odometry (VO). In these
algorithms, the relative-pose observation model is often modeled, for simplicity, by a Gaussian

distribution, i.e. measurement noise is modeled as Gaussian (see e.g. [3,28]),

Vi i) = hxi, ) + vij vij ~ NO,Z,(i, ). (23)



Note that the relative-pose measurement y{ I‘fl depends on the raw measurements y; and y;, which,
according to the generative model (2.2) depends also on the environment map. Importantly,
while the covariance Z, is assumed constant in most previous works, in practice, similarly to the
measurements ylf]?l, it is a function of the raw measurements and thus the map [3, 28].

SLAM has two main formulations. The first is full-SLAM where the robot and map states
are estimated together. The second is pose-SLAM, in which the robot states are estimated
separately and independently of the map estimation. In the current work we consider a pose-
SLAM framework, hence the conditional probability density function (pdf) over the joint states,
the belief, at time instant k is by = P(x1.x|H), where Hy = {y1., ap.x—1} denotes measurements

and actions history. Using Bayes rule and standard assumptions it can be rewritten as
k
b = P(xo) | [PGilxicr, @) | | PO i )1, (2.4)
i=1 j

where 1 includes all terms that do not involve the states, P(xp) is the prior on xqo, P(x;|x;-1, ai-1)
and P(y;;l |x;, x;) denote, respectively, the motion model (2.1) and measurement likelihood (2.3)
terms. The belief is represented by a Gaussian distribution by = N (X4, X¢), parametrized
by mean X, and covariance ;. Computationally efficient inference approaches, such as

ISAM2 [19], can be used to calculate these parameters.

The posterior over the map M, an occupancy map in our case, can be calculated via

marginalization over robot states, as in

P(M|Hy) = fP(Mklxl;k,Hk)P(xlzlek)dxlzk- (2.5)

However, in practice, these calculations are computationally expensive, and therefore, a

common alternative in pose-SLAM is to approximate it using only the mean of the belief:

P(Mi|Hy) ~ P(M|X1:k, y1:1)- (2.6)

2.2 Belief Space Planning (BSP)

n
i=1

choose the best action according to an objective function. Here, we consider a discrete action

In the planning stage the robot gets a set of (non-myopic) actions A = {afc: wir) ey and has to

space. Generally, each action could have a different planning horizon. The objective function is

given by

L
J(bk, akke1-1) = Z} E {c(bis1, rsi-1)}, 2.7
=1

Vk+1:k+1

where the cost ¢(.) is a function of the posterior future belief

biv1 = P(X1:k41 | His Qs 1=15 Yier1:k+0)5 (2.3)

10



which by itself depends on future observations. The expectation operator accounts for all
possible realizations of these future observations. Generally, each action could have a different
planning horizon.

The expectation can be explicitly written as

L
J(bi, Apksr-1) = Z f Pis 1:k+11Hks Qe 1-1)C(Dres 1, pri—1)dYies 1:k41- (2.9)
=1

The optimal (non-myopic) action is defined as

Apprp—y = argmin J(by, aprr-1)- (2.10)

Ak:k+L-1
To calculate optimal action, one has to evaluate Eq. (2.7) for each candidate action. To do so,
we should be able to reliably predict future observations, and appropriately approximate the

expectation in (2.7), typically via sampling.

2.3 Problem Statement

In this work we will develop a method to predict the distribution of the future measurements.
In order to predict this distribution, based on Eq. (2.2), the future map and robot states are
required. If the action leads the robot to an environment that it mapped before (e.g. for myopic
case, my+1 C M) then we could generate future measurements based only on history. In our
case, we focus on a situation where the goal is outside the map which the robot has seen and
therefore there is no access to future measurements. Hence, given that action a; yields x|
outside of the current map My, without any additional or prior knowledge, the distribution of
my41 1s uninformative, i.e. uniform.

Current BSP methods lack the information necessary to predict future measurements in
unknown environments. To address this problem we suggest to incorporate experience within
BSP, aiming to improve prediction of future observations as part of the expectation calculations
in Eq. (2.7).

11
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Chapter 3

Approach

3.1 Incorporating Experience within BSP

We propose to appropriately incorporate experience within the BSP framework, aiming to
improve prediction of future observations as part of the expectation calculations in Eq. (2.7).
In this section we define the available experience to include any data that could contribute to
the prediction of future observations task. Further in section 3.3, we will define the experience
more specifically as appropriate to the current work. Denoting the available experience by D,

we re-write Eq. (2.9) as

L
J(b, arkrr-1) = Z f Pis1:k+1lHi, Qcieri=1, DYC(Drats Qs 1-1)AYis 1:k41 3.1
=1

For simplicity, in this section we present formulation for a myopic setting (L = 1), and extend
later the discussion to the more general, non-myopic case (L > 1). Denoting H,_, = {Hy, a},

we re-write Eq. (2.7) as

J(bi, a) = fP()’k+l|H/:+1’D)C(bk+1,ak)dyk+l- (3.2)

Further, we empirically approximate the expectation via sampling. Considering N samples, we
get
1
Joway~~ >, clbiap. (3.3)

N
Vi1 ~POk+1|Hy,ax,D)

To sample future observations yi1, we first marginalize over the robot state x|, and recalling

the generative model (2.2), also over the corresponding sub-map/scene m. .
P(yk+11H, 1, D) = f f P(Vks 15 Xer 1, My 11 H, y, D)dmyey 1d Xy . (3.4)
X+ 1~ My 1

Note in cases the map m is a discrete variable (e.g occupancy grid), the integral over my.; should
be replaced by a sum operator. In general, the map could be a continuous variable. For example,

the map representation could include the color of the enviourment, on top of the geometry (see

13



e.g [9]). Applying the chain rule and recalling the Markov assumption yields

P(YkﬂlHk_H,D) = f Prss | X1, Micy1)-
Xie+1Mk+1 (35)

P(xir1 | mps1, H, D)YP(myy | Hy

+1°

D)dmy1dxp41.

Recalling the pose-SLAM framework we, omit in the second term above the dependency of
the belief on the robot state on the map, and furthermore, we omit the conditioning on the
experience since the probabilistic models are considered given, i.e. P(xg+1 | mys1, H . D) =
P(xk+1 | Hy, ), which can be calculated by propagating the belief from the previous time

instant and marginalization: P(xgy1 | Hg,ar) = f

e POk | HOP (e | X, ag)dxrx. We note

as the considered pdfs are Gaussian, this marginalziation can be performed analytically and
computationally efficiently, yielding P(xk+1 | Hy, ax) = N(%, |, X, ))-
In practice, we approximate the expectation over xi. with a single sample from P(x¢+1 | H,, ),

the maximum likelihood estimate £, | (see line 15 in Algorithm 3.1). Thus, we re-write (3.5) as

P(qulHk,ak,D)%f POrr11X, 1> ks 1 )Py 1 [Hyy, D)dmyy. (3.6)

M+ 1
As seen, we get an intuitive result: to generate future observations we need a distribution over

sub-maps/scenes. This is where we propose to leverage experience.

3.2 Experience-Based Prediction of Future Observations

In this section we consider the problem of approximately representing the distribution over future

maps, i.e. P(my1|H,_

1> D), utilizing available experience. While there are different approaches

to address this problem, herein, we present our proposed method which uses generative models

within a deep learning framework.

We start by marginalizing over the current map My,

P(mk+1|H1;+1,D):f P(mgs1, Mi|H, D)Yd M

My

- f P(mi 1| My ai, DYF(MUH )M, (3.7)
My

where the posterior over the map, P(My|Hy), is already available (see Eq. (2.6)).

Further, we approximate (3.7) with a single sample from P(My|H}), the maximum likelihood
estimate M, (see line 9 in Algorithm 3.1). With this approximation the future map distribution
becomes

P(mys1|Hy, |, D) = P(mys1 | My, ax, D). (3.8)

As mentioned above, in SLAM setting, the constructed map M} grows over time. Yet, memory-

free DL architectures expect input from a pre-defined dimensionality. For this reason, in this

14



work we introduce another approximation, and use only the current sub-map /iy, C My, i.e.
P(mps1 | My, ax, D) = P(mp1 | fig, ag, D). (3.9)

As seen from (3.9), our task now is to utilize experience D to approximate the predictive
distribution over future sub-map my. 1, given current (estimated) sub-map 7, and action a.
Recalling that we focus on a setting where the action takes us to an unobserved area, our
hypothesis is that experience-based map predictions can particularly be beneficial. Thus, we aim
to learn offline the conditional distribution P(m1|C, D) given training data D and conditional

C, and query it online with the actual conditioned data {7, ai}.

3.3 Offline Training Phase

Given offline available environment maps Mp = {M' 7} and action space A = {a}, and recalling

Eq. (3.9), we define experience as
D = {(m,a,m")lm,m" € M',YM' € Mp,a € A}, (3.10)

where, each tuple (m, a, m”) corresponds to a submap m observed from some robot pose, an
executed action a which transitions the robot to a different pose, from which submap m’ is
observed. The experience D is thus constructed by randomizing these for different environment
maps in Mp. Finally, we are interested in learning a function that maps from the conditioning
C = (m, a) to a distribution over m’, i.e. P(m’|C, D), considering different realizations of C from

the dataset D. To reduce clutter, in the following we shall omit the explicit conditioning on D.

In our work we use a Conditional Variational Autoencoders (CVAE) to approximate the
distribution P(m’|C). We now briefly present this formulation for self-containment (see, e.g.,

[36]). First, we marginalize over a latent variable z and re-write P(m’|C) as
P(m’|C) = f P(m’|z, C)P(z|C)dz. (3.11)
Z

Then, as standard in CVAE, we set P(m’|z, C;6) = N(f(z, C;6), 0% = I), and refer to it as the
decoder, where f(.;6) is a deterministic function parametrized by 6 and o is a typically small
fixed hyperparameter. The integral (3.11) can be approximately calculated by sampling z from
P(z|C), which is typically a very simple distribution (e.g. a Gaussian). Yet, in practice, for
many such samples of z, P(m’|z, C; 6) will be practically zero. Hence, the key idea in VAE is
to sample z from another distribution, Q(z|m’, C; ¢), such that these samples are more likely to
generate m’. This latter distribution, denoted as the encoder, is modeled in practice as a Gaussian
Nu@m',C; ¢), Z(m’, C; ¢)) where u(.) and X(.) are deterministic functions parameterized by ¢.
Based on the definition of Kullback-Leiber divergence (KL) between Q, = Q(z | m’, C; ¢) and
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P(z | m’, C) (see more details in [7]), we get the main equation of VAE:

logP(m’ | C) = KL[Q(z | m',C;¢) | P(z | m’, C)] =

ZN%Z{IOg P(m" | z,C;0)} =KL[Q(z | m',C;¢) || P(z | O)]
In order to minimize KL[Q(z | m’, C) || P(z | m’, C)], since it is non-negative by definition and
logP(m’ | C) is independent of 6 and ¢ parameters, we can maximize just the right hand side,
which is known as the Evidence Lower Bound (ELBO). A common assumption in VAE is that
the approximation of the expectation over z ~ Q(z | m’, C; ¢) is done only by a single sample.
Also, to make the above equation tractable via backpropagation, the re-parameterization trick is
used [7]. Next, we will isolate the ELBO and substitute the explicit Gaussian models in place
of P(m’|z, C; 6) and Q(z|m’, C; ¢). Maximizing the ELBO is equivalent to minimizing the loss
function for a given sampled tuple (m’, C) ~ D, defined as

16, ¢;m’,C) = Im’ — f(z, C; 0)|I*

(3.12)
+KLIN (u(m’, C; ¢), Z(m’, C; ¢)) || N(O, D].

The first term is a measure of the "reconstruction error", the error between the decoder output
and the ground truth. The second term is KL divergence, an operator that evaluates the distance
between the encoder output and the target distribution. In our case the target distribution P(z | C)
is a normal distribution N(0, /) to allow easy sampling in the online stage. The loss (3.12),

considering the entire dataset D, can be written as

Loss(0, ;D) = Z 16, ¢: !, C). (3.13)

m’,C~D

Finally, the encoder and decoder weights 6 and ¢, are optimized as
¢*,0" = arg rgign Loss(0, ¢; D). (3.14)

In practice, this optimization is done via standard stochastic gradient methods, i.e over mini-
batches which are subsets of D. The CVAE flow chart in the training and deployment stages is
shown in Fig. 3.1.

Remark: We note that whereas in this work, ideal submaps for training are considered (see
Eq. (3.10)), i.e. m,m’ € M, one could instead use the estimated maps 71, that would be

obtained by performing SLAM offline. We leave this aspect to future work.

3.4 Online Deployment

Having described the offline learning of the conditional distribution P(my. | C, D), we now focus
on the deployment stage, considering a planning session at time instant k. Recalling Eq. (3.9),

and the sub-map estimate 7z, we resort to a sampling-based approximate representation of the
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Figure 3.1: Training and Deployment.

distribution P(my. 1|/, ay, D) for different candidate actions a;. Observe that this distribution is
conditioned on data 7, ax that generally is different from the conditioning C considered in the
offline training phase. We shall come back to this key point later on.

The conditional distribution can be expressed as

P(myy1 | i, a, D) = f]P’(mkH | z, i, ax, D)P(z | i, ax, D)dz,

Z

which can be approximated via sampling as

P(mir | i, ag, D) ~ Z P(micr | 2,1, g, D),
z~P

where n, is the number of samples, and P, = P(z | A, ax, D).

Given a trained decoder P(m’|z, C; 8) = N(f(z, C;6), 0% = I), see Section 3.3, the distribution
P(my+1|1, ax, D) can be approximately represented by a Gaussian mixture model

Blmt | D)~ — > N(f (ot aiz 6,0 5 D, (3.15)

L 2~N(0.D)
where, as standard in VAE, we consider P(z | 7w, ax, D) = P(z) = N(0,1). As the decoder is
learned, i.e. function f(; #*) is deterministic at this point, sampling z corresponds to choosing
one of the components in the GMM representation (3.15), from which we can easily sample
a realization of the future sub-map i.e. myy1 ~ N(f(z, i, ax; %), o? % I). See illustration of
this process in Fig. 3.1(b). The obtained predicted maps my,; are then used for generating

future raw observations yi+1, see Eq. (3.6). These raw measurements, along with an appropriate
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measurement likelihood model are used to update the future posterior belief by, followed
by calculation of the cost function. In the non-myopic case, we repeat for L look-ahead steps
the above mentioned process, when the map prediction from previous time, my ;1 is used as
conditioning for the next prediction my, ;. Recalling the empirical expectation from Eq. (3.3),
this entire process is repeated N times for each candidate action sequence, each time with a
different sampled sequence of future raw observations. The entire process is summarized in
Algorithm 3.1.

Algorithm 3.1 BSP with Experience-Based Prediction

: Inputs:

. by: state belief at current time

. P(My|Hy): map belief at current time

ay.k+1-1: a candidate L look-ahead steps action sequence

f(.;6"): trained decoder

: Outputs:

. J(bk, akk+1-1): computed objective function for a given action sequence

OO AW~

© My < P(Mi|Hy) > Get maximum likelihood estimate of map belief
10: iy C My > Get current sub-map estimate from M (Eq. (3.9))
11: fori=1:Ndo

12: m;( = ﬁ1k

13: for j=1:Ldo

14: > Get ML estimate without future observations

15: Fevj & PO jiHE, Qhres j-1)

16: 7~ N(O,I)

17: > Predict sub-map (Eq. (3.15))

18: m  ~ N(FE oy g jo1367),0% = 1)

19: >_Generate future»observation (Eq. (3.6))

20: Yisj ™~ POk+j | M o ¥er ) _
21: Calculate by , ; > Calculate future belief using y; +j (Eq. 2.8)

22: Calculate cost/reward c(b;'(ﬂ.)

23: > Accumulate costs

24: J(br, kv 1) = J(brs Apekrr-1) + by, )
25: end for

26: end for

27: » Normalize to get empirical expectation

28: J(by, akrr-1) = % J(bes aperer-1)

29: return J(by, aiirr-1)

3.5 Novelty Detection

It is common to assume that the environments considered in the offline training should be
representative and similar to the environment where the robot is actually deployed. More
specifically, these environments can be implicitly characterized by a distribution P(M), that
could correspond to, e.g., typical apartments, office environments, underground mines, etc.
In practice, however, we do not have access to such a distribution; instead, the environment
maps Mp = {M'} used for training should (at least) approximately represent P(M). The actual
environment map M°™"€ is assumed to be of a similar nature, i.e. M°*'i%¢ ~ P(M). Note that
this assumption does not imply M°*'i"¢ € M. For example, this would correspond to the
setting where the robot is deployed in a previously unseen office environment, while training
data captures typical office environments.

Moreover, in the considered SLAM setting, M = M online j5 1ot available to the robot; rather,
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at time k, the robot observed with its (noisy) sensors only part of the environment, M; € M, and
maintains a belief over it, i.e. P(My | Hy). Therefore, when using algorithms based on experience
we need to determine how much the experience is relevant and reliable for the current task.
While this is a very active research area on its own (see e.g. [11,30,32]) and is outside the scope
of this paper, in this work we consider the simpler problem of novelty detection, aiming to
decide whether to use the experience-based map prediction or not.

One option for novelty detection is the autoencoder-based approach that was first proposed
by Japkowicz et al. [18], and used recently in the navigation domain by Richter et al. [35]. With
this approach we would need to train a separate autoencoder using the same training set D,
and calculate the reconstruction error RE(m) = ||m — Dec(Enc(m))||* for m € M € Mp. At the
deployment stage we would calculate RE(my) based on the actual sub-map my we have at the
current time k and compare it to the typical RE obtained with the training set. In case RE(my) is
significantly higher (e.g. compared to a manually determined threshold), we would decide the
available experience is less relevant for the current planning session and use a standard BSP
method instead (i.e. without predicting unexplored maps). See more details, e.g. in [35].

Noting the above approach requires training separate NNs for map prediction and novelty
detection, we suggest a simple method that executes these missions concurrently. In our method,
we assume there is an overlap area (OA) between the conditional input 7, and the map prediction
f(z, my, a; %), which the NN should learn to copy shifted according to the action. We therefore,
suggest to measure the error in the copy operation of this overlapping area, i.e. for sub-map my,
calculate RE(my) = ||{my )94 — { [z, my, ag; 6*)}9A|2, where {m}?4 denotes the corresponding
overlapping area in sub-map m. Finally, we can use a threshold over this re-defined RE, similarly

to the above-mentioned autoencoder-based novelty detection approach.
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Chapter 4

Results

We evaluate the performance of our approach in two steps. First, we examine the map prediction
algorithm using a dataset of real floor-plans. Then, we study the performance of our experience-

enhanced BSP in a realistic simulation of autonomous navigation in an unknown environment.

4.1 Map Distribution Prediction With CVAE

In this section we show the implementation for map distribution prediction as described in
Section 3.3, while discussing success and failure cases.

The dataset that was used is the KTH dataset [1] which includes 182 floor-plans and nearly
38,000 real-world rooms. The XML files of floor-plans were converted to 2D occupancy grid
maps with fixed scale (four pixels for one meter). Next, each map was cut into sub-maps with
fixed size (32/32 pixels). Finally, we created N tuples of sub-maps, action (direction and length
of stride) and the ground truth map post action i.e (i, a,m’) (see Fig. 4.1). The actions between
the sub-maps were defined by one-hot vector that represents the four possible stride directions
(up, down, left, right). In the training stage we used the KTH dataset (593,264 tuples of (i, a,m’)
in indoor enviourment) and separated this data to 80% train set and 20% test set.

We examined the prediction performance on testset maps that were not part of the training
process. Fig. 4.2 demonstrates four examples of prediction results. For each prediction we
calculate the reconstruction error (RE) on the overlap area by the novelty detection method
that was presented in Section 3.5, and additionally the prediction error (PE) on the unknown

area against the ground truth. Examples in (I) show successful prediction results even in the

m’

™m a
q 1m Left q
- T ]

Figure 4.1: Process of organization the dataset.
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RE—0802 PE = 1.345 RE—1512 PE = 0.278

RE = 0.001, PE = 13.49

(a) (c)

Figure 4.2: Examples of the prediction algorithm. (a) Inputs - sub-map and action; (b) Outputs - two samples of prediction with
reconstruction error (RE) and prediction error (PE). On the left worst prediction result and on the right best prediction result; (c)
Ground truth.
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worst case, while in example (I) most predictions had mistakes, since they mostly did not
predict the wall that closed the room. It is possible that since the trivial solution is that the same
wall continues further as in Fig. 4.2c.1, and does not close into a room as in Fig. 4.2c.II, the
NN predictions will mostly present the solution that appeared a greater amount of times in the
training dataset. However, our results are probabilistic, and therefore, the non-trivial cases (right
sample in example II) are still represented. Examples (III) and (IV) show a conditioning with an
uncommon wall shape (circular or diagonal). In this case, most predictions have failed, since
the training dataset included only very few to none cases of such walls.

These examples represent three families of experience-based prediction results: (I) most
predictions are correct (low PE); (II) most predictions are wrong because of uncommon ground
truth map (high PE and low RE); (IIT) most predictions are wrong because of an unfamiliar input
(high PE and high RE). Using the novelty detection method from Section 3.5 we can identify
online cases with unfamiliar input, and hence, avoid using DL-based predictions. In contrast,
the second family type is problematic for our method, as identifying it online is impossible;
thus, in such setting, wrong DL-based predictions could disturb rather than improve the decision
making. Nevertheless, statistically we assume that in most cases the online map will be of a
similar nature as the dataset maps (as discussed in Section 3.5), and therefore, most cases will
be from the first family above and, thus, improve the decision making process.

For more statistical results we calculate the RE and PE for entire KTH dataset. Figs. 4.3.a-b
show the RE histogram of the train set and the test set: we can see very similar statistics in
both of the sets, since both are of the same enviourment type (KTH dataset). Based on these
results, we can define the novelty detection threshold to be 5 (See section 3.5). In addition, in
Fig. 4.3.c-d we show the PE histogram of the train set and the test set. We can see most of the

results are with prediction error less on 5.

4.2 BSP in Unknown Environments Simulation Results

In this section we examine our experience-enhanced BSP approach and compare it to an existing
BSP approach, in a realistic Gazebo simulation, considering autonomous navigation in an
unknown environment. The simulation setting is a Pioneer robot that navigates autonomously
in a 3D Gazebo world (see Fig. 4.4a) using odometry and Lidar sensors. The odometry sensor
provides relative measurements with a constant motion model. The Lidar sensor provides laser
scans that are used to build a map, and for relative measurements via ICP with an environment-
dependent model [3]. The ICP measurement model function needs as input raw (LIDAR)
measurements and provides covariance that represents the uncertainty of the ICP measurement
(calculated relative pose based on two laser scans). In our setting the ICP measurements are
more accurate than the odometry, and therefore, preferable by default; but when ICP fails
(un-matching two scans) the odometry will be used instead. Our pose-SLAM implementation
uses GTSAM [6] and the mapping process uses OctoMap [14].

In the planing stage, the robot starts from a defined point and gets a set of actions randomly

by the PRM method or manually by the user. The robot’s mission is to choose the best action by
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Figure 4.3: Reconstruction error histogram: (a) trainset; (b) testset. Prediction error histogram: (c) trainset; (d) testset
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Figure 4.4: (a) 3D Gazebo simulation world; (b) Planning session with three candidate actions; (c) Occupancy grid of the partial
map that was used for prediction.
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(d) Action 1 (e) Action 2 (f) Action 3

Figure 4.5: Map prediction results for three actions from Figure 4.4b. Ground truth maps in relevant regions are shown in (a) for
action 1, in (b) for action 2, and in (c) for action 3. Figures (d), (e) and (f) show five samples of map predictions for each of the
actions. Conditional map in light green, predicted map in dark green.
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calculating the objective function for each action. The main question in this work is how we
can do this calculation when the action places the robot in an unknown area. The solution by a
standard BSP method, denoted baseline, is to ignore the unknown future measurements (in our
case point clouds) and take into consideration only the motion model. The non-realistic solution,
denoted GT-map, is to use the ground truth maps to generate the expected future measurements
and take them into consideration in the objective function calculation. Our approach suggests to
leverage experience to predict the unknown area around the candidate actions given the partial
map observed in the inference stage. In our evaluation below, we compare our approach to the

baseline BSP method and investigate which one is closer to the GT-map BSP method.

We implemented our approach based on Algorithm 3.1, and used the DL-based prediction
from section 4.1, i.e. using the KTH dataset for training while being deployed in a previously
unseen Gazebo environment. In order to get a binary map from the DL-based prediction function
we used a constant threshold of 0.3 that was determined offline. As described, the prediction was
done for an action sequence of L steps, where each step contains one sample. In this example
this prediction was done five times (N = 5). For each map prediction we generated a laser scan
that was used to generate relative pose measurements via ICP. Also leveraging the approach
from [3] we used two laser scans to get the measurement likelihood model, i.e the measurement
uncertainty covariance. These relative measurements, along with an appropriate measurement

likelihood model are used to perform belief propagation and calculate the cost function.

The cost function that we defined in our simulation is a function of the uncertainty at the
end of the trajectory, i.e VT race(X;+r). For objective function calculation we average the cost

function of all samples, i.e

N
1 ,
T agsr1) = 5 3 || Trace(S), ). 4.1)
i=1

Since the measurement uncertainty covariance is environment-dependent, the decision making

process in our setting depends on the DL-predicted map.

We present an example of a planing mission when there are three candidate actions (see
Fig. 4.4b) and a partial map presented by an occupancy grid with equal scale of the dataset
(Fig. 4.4c). All three candidate trajectories (non-myopic actions) lead to the pre-defined goal.
Note that the partial map used is a ground truth sub-map and not from the belief. This was done

for reasons of simplification since in the current work our focus was the planning stage.

In Fig. 4.5 we show for each action the ground truth map (top row) against five samples
of map predictions (map predictions are shown by dark green color). Fig. 4.5d shows five
predictions for action 1; all samples predicted a long corridor similar to the ground truth
(Fig. 4.5a). On the other hand neither of the samples predicted the opening on the right. Figures
4.5¢ and 4.5f show prediction results for action 2 and 3, where we can see more open space and

kind of rooms similar to the real environment around these actions.

In Fig. 4.6 we show uncertainty evolution for the three actions and three BSP methods. For

action 1 even though the map prediction is not perfectly accurate, our approach predicts the
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Figure 4.6: Comparison between three methods of uncertainty evolution on three different actions from Figure 4.4b: Action 1 -
top row; action 2 - middle row; action 3 - bottom row. Uncertainty evolution using (a) ground truth map (GT-map), (b) using one
sample of prediction map (our approach), and (c) using motion model only (baseline). Column (d) presents a comparison
between all three methods. In column (b), results are shown for one sample from Figure 4.5 for each action: action 1 - first row in
4.5d, action 2 - fifth row in 4.5e, action 3 - forth row in 4.5f. Results for all samples are summarized in Figure 4.7a. For convenient
visualization covariance resolution was multiplied by 100.
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Figure 4.7: (a) Cost function results of all the samples from Fig. 4.5 compared to cost function calculated with the GT-map method.

(b) Objective function (4.1) values for the three methods. In contrast to baseline BSP, our approach preserves action-ordering
with respect to GT-map.
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uncertainty shape better than the baseline method. In a corridor environment we expect to
get laser scans without corners and correspondingly high uncertainty in the corridor direction.
Additionally, for action 2 the uncertainty evolution by our approach was very similar to th
GT-map method. In contrast, action 3, for this particular map prediction sample, predicts an
open space at the end of the path, causing the generated laser scans to be with insufficient points
for ICP matching; thus, in this part, our approach fallbacks to the baseline method.

Fig. 4.7a summarizes the cost function results of all the samples compared to the GT-map
cost function calculation. For action 1 the samples are spread, while in action 2 all five samples
were very close to the GT-map cost. In action 3, three samples (see rows 1,2,3 in Fig. 4.5f)
were close and two other predicted higher uncertainty compared to the GT-map cost (see rows
4,5 in Fig. 4.5f). The density of the samples could be used as an indication of the prediction
confidence.

Fig. 4.7b shows the calculated objective function (4.1) for the BSP methods, considering the
three candidate actions and N = 5 samples. The baseline approach, which only considers a
motion model, yields action ordering [1,2,3] i.e., action 1 is chosen. However, in our approach,
action ordering is [2,3,1] which is the same as the approach that has access to the ground
truth map, i.e., action 2 is chosen since our algorithm predicted this action will give future
measurements that are more informative than action 1 and 3. Thus, in this scenario our approach
had no ordering mistakes, while the baseline had two mistakes (without double counting).

Finally, fifteen scenarios of planning sessions are tested and summarized in Table 4.1. Each
scenario includes a different environment and three actions that lead to an unknown area, where
the first fourteen scenarios are from indoor environments and scenario 15 is very different from
the dataset (see in Fig. 4.8 the planning sessions and in Fig. 4.9 the objective function comparison
of these scenarios). We calculated the reconstruction error for all scenarios and showed that we
recognized unfamiliar environments and avoided using our approach in these cases. We can
see, that using the baseline BSP method in an unknown environment is insufficient and could
cause a lot of decision mistakes compared to GT-map. On the other hand, our approach showed
a significant performance improvement, in nine out of fifteen scenarios yielded fewer mistakes
against only one case when the baseline method was preferable. Moreover we qualitatively
compared the error that represents the uncertainty cost of making mistakes in action ordering,
ie., 100% - (JCT(b,a’) — J°T (b, a*)]J°T (b, a*). Here, a* denotes the optimal action by GT-map
and a’ the chosen action by each approach. We can see that our approach yields an improved

uncertainty cost error.

Extended Results - Bad Scenario Discussion

In this section, we focus on scenario 2 from Table 4.1) which was the only one where the
baseline was preferable. Fig. 4.10a shows the planning session of scenario 2 where the robot
mission was to choose the best action to execute from three candidate actions. Fig. 4.10b shows
the partial map used as a condition for the map distribution prediction task. The main question

here is: why in this case the map prediction failed? And perhaps it is more important to ask: can
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Figure 4.8: Light green - coditional map, yellow - three candidate actions. Figures (a)-(0) according to planning scenarios 1-15

from Table 4.1.

Table 4.1: Performance of our and baseline approaches in 15 different scenarios. Each scenario includes a different environment
and three actions. Several examples of planning settings are shown at the bottom. The table reports for each method the number
of action ordering mistakes with respect to BSP with ground truth map (GT-map), and the uncertainty cost error. We also show

(m)

(n)

the reconstruction error (RE) calculated by our novelty detection approach.

(0)

Scenarios 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg
Our approach
Mistakes 0 2 0 1 0 0 0 0o o0 2 0 0 1 0 - 043
Error[%] 0 40 0 0 0 0 0 0o 0 4 0 0 0 0 - 29
RE 03 1.1 14 06 08 01 1.1 22 2 16 38 14 1 0 104 -

Baseline

Mistakes 0 1 2 2 1 2 0 1 1 2 1 1 1 1 0 1.07
Error[%] 0 1 49 6 10 41 0 20 0 12 0 0 16 0 0 10.3
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Figure 4.9: Objective function values for the three BSP methods. baseline in black, our approach in red, GT-map in blue.
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Figure 4.10: (a) Planning session of scenario 2 with three candidate actions; (b) Occupancy grid of the partial map that was used
for prediction.

we recognize it online and avoid using the prediction algorithm in these cases?

First of all, we can see that this scenario was not detected as unfamiliar input by the novelty
algorithm, since the reconstruction error was low. In section 4.1 bad predictions with low RE
associate to the second prediction family: most predictions are wrong because of the uncommon
ground truth map. We show that statistically, in most cases the online map will be of a similar
nature as the dataset maps, and therefore, most cases will be from the first family above and,
thus, improve the decision making process.

As seen in Fig. 4.10a, there are many possible predictions of the environment along the
candidate actions. This variety is also expressed by the map prediction algorithm. Fig 4.11
shows the uncertainty evolution of three different actions from scenario 2. In red, we can see
three of the five samples from the prediction map for each candidate action. The uncertainty
evolution predictions are very different from each sample. The variance between the samples
can be seen more clearly in Fig. 4.12.a. For reference, Fig. 4.13.a shows the variance between
the samples of successful scenarios.

We can see from this case that the variance between the samples could be connected to the
prediction confidence. Therefore, we suggest for future work to calculate this variance at each

planning session and utilize it using one of these two methods:

e Define a threshold of confidence, similarly to the novelty detection approach, and in case

we surpass that threshold use the baseline method instead.

e Weigh the confidence in calculating a weighted objective function between the baseline

and map prediction approaches.
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Figure 4.11: Comparison between three methods of uncertainty evolution on three different actions from scenario 2: (a) Action
1; (b) action 2; (c) action 3. In blue - uncertainty evolution using ground truth map (GT-map); In black - using motion model only
(baseline); and in red - using samples of prediction map (our approach) . For convenient visualization covariance resolution
was multiplied by 100.
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Figure 4.12: (a) Cost function results of all the samples from scenario 2 compared to cost function calculated with the GT-map
method. (b) Objective function values for the three methods in scenario 2.
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Figure 4.13: (a) Cost function results of all the samples from scenario 6 compared to cost function calculated with the GT-map
method. (b) Objective function values for the three methods in scenario 6.
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Chapter 5

Conclusions and Future Work

We developed a novel approach for belief space planning (BSP) in unknown environments.
As a key contribution, we developed an algorithm to calculate a predicted distribution over an
unexplored area using a deep learning method and incorporated this distribution within BSP.
The approach has been examined in autonomous navigation scenarios in a Gazebo simulation.
Simulation results demonstrated that with our approach the decision making in most cases
was closer to BSP using (the unavailable) ground truth map, against an existing BSP approach.
These findings indicate the potential of our approach to improve decision making in unknown
environments. Furthermore, we suggested a novelty detection method to avoid using unfamiliar
inputs in the prediction.

In addition, we believe a benefit of our approach is in its interpretability, since the use
of experience in our method is done only at the prediction level, as opposed to end-to-end
methods which involve experience all through the decision making process. Moreover, as our
work focused on the uncertainty estimation of future observations, it depends mostly on the
type of unexplored area (e.g. corridor or room) rather than the exact outline, and therefore is
less sensitive to prediction mistakes. One could also envision utilizing a similar concept also
for evaluating path feasibility; however, to this end, further work is needed to improve map

prediction accuracy.

5.1 Future Work

Although a combination of learning methods and traditional algorithms in robotics tasks like
planning and navigation has become very popular in the last years, we found only few works
on planning under uncertainty in unknown environments in the learning area. Therefore, we
believe that there is a lot of possible directions to take this research forward. In this section, our
suggestions for future works are divided into 2 main topics: experience-based prediction and
the reliability question of incorporating experience in the BSP algorithm.

In this work, we chose the CVAE architecture for the map prediction task. Besides great
progress in generative models in last years, one possible research direction is to use state of the

art of generative models and adjust them for map completion. In this work, we tried conditional
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GAN [17] or combination of RNN with VAE [12] as alternative architectures, but without
improvement of accuracy and did not exhaust these directions. Another direction is to generate
future images measurements directly by generative models (see [9]) in a vision SLAM setting
and use them for our decision-making algorithm.

Future work may extend the novelty detection solution to cases with familiar inputs that
still provide wrong predictions, in order to detect which cases using experience could assist or
disturb the decision making process. In section 4.2 we showed how the only failed case could
have been recognized by high variance of the prediction. Yet, this solution was just introduced

in this work and should be thoroughly examined in future work.
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