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This document provides supplementary material to [1]. Therefore, it should not
be considered a self-contained document, but instead regarded as an appendix of [1].
Throughout this report, all notations and definitions are with compliance to the ones
presented in [1].

1 Theoretical analysis

Lemma 1. HB-MCP state-dependent reward estimator, R̂X , 1
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is unbiased.

Proof. If states are sampled i.i.d. for each hypothesis, then the expected value of the
reward estimator, R̂X , is,

E[R̂] =
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where P = P(β0:t | Ht), Q = Q(β0:t | Ht), and N and nX denote the number of
samples from Q and b[Xt]

i,j
β0:t

respectively.

Lemma 2. Given an unbiased reward estimator, R̂, the value-function estimator used
in HB-MCP is unbiased.

Proof. First, note that the value function of time step t+ 1 can be written as,

Ezt+1:τ
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[
V πt+2
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Then,
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Continuing recursively on the value function yields the desired result.

2 Implementation details - vanilla-HB-MCTS

Algorithm 1 vanilla-HB-MCTS
Procedure:SIMULATE(b, h, d)
1: if d = 0 then
2: return 0
3: end if
4: a←− arg max

ā
Q(bā) + c

√
log(N(b))
N(bā)

5: if |C(ba)| ≤ koN(ba)αo then
6: b′ ←− PRUNEDPOSTERIOR(b, a)
7: r ←− REWARD(b, a)
8: C(ba) ∪ {(b′, r)}
9: R←− r+ROLLOUT(b′, d− 1)

10: else
11: b′, r ←− Sample uniformly from C(ba)
12: R←− r+SIMULATE(b′, d− 1)
13: end if
14: N(b)←− N(b) + 1
15: N(ba)←− N(ba) + 1

16: Q(ba)←− Q(ba) +
R−Q(ba)
N(ba)

17: returnR

Algorithms 1 and 2 describe the main procedures of vanilla-HB-MCTS. Algorithm
1 follows PFT-DPW [2] closely. Line 3 in Algorithm 1 performs action selection based
on the UCT exploration bonus. In our experimental setting, we assumed discrete ac-
tion space, and thus avoided action progressive widening, which can otherwise be re-
placed with Line 3. Line 4 performs observation progressive widening, which resam-
ples previously seen observations. This step is required to avoid shallow trees due to
a continuous observation space, see [2] for further details. Algorithm 2 computes the
pruned-posterior belief, given the multi-hypotheses posterior belief from the previous
time-step and the selected action.
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Algorithm 2 PrunedPosterior
Procedure:PRUNEDPOSTERIOR(b, a)
// b , {bjt , ω

j
t}
M
j=1

1: z ← SAMPLEOBSERVATION(b, a)

2: {ωi,jt+1}
L,M
i=1,j=1 ←−COMPUTEWEIGHTS(b, a, z) //eq.(??)

3: {ωi,jt+1}
Ls(j),M
i=1,j=1 ←− PRUNE({ωi,jt+1}

L,M
i=1,j=1)

4: {ω̄i,jt+1}
Ls(j),M
i=1,j=1 ←− NORMALIZE({ωi,jt+1}

Ls(j),M
i=1,j=1 )

5: for j ∈ [1,M ] do
6: for i ∈ [1, Ls(j)] do
7: bi,jt+1 ←− Ψ(bjt , a, z, i) // eq. (??)

8: b′.append({bi,jt+1, ω̄
i,j
t+1})

9: end for
10: end for
11: return b′

3 Results
This section is intended to provide more information about the experiments that appear
in the paper. Specifically, we provide the trajectories performed by HB-MCP and at-
tempt to interpret the results below. In table 1 we provide the hyperparameters used in
our experiments and in table 2 we provide a numeric values for the average cumulative
reward of our experiments.

(a) cumulative return (b) initial belief (c) trajectories

Figure 1: The goal of the agent is to minimize the uncertainty of its pose and the location of all
landmarks. (a) Mean and standard deviation of the cumulative reward, over 100 trials (higher
is better). (b) Illustration of the initial belief of the agent. x∗ denotes the ground truth pose
of the agent. l∗ denotes a unique landmark. The agent receives as a prior three hypotheses
at different locations, drawn as blue ellipses. (c) Ground-truth trajectories are visualized in
transparent color, illustrated on top of the initial belief, such that multiple similar trajectories
appear in a moreopaque color.

Aliased matrix. There are many ambiguous, evenly spaced landmarks around the
agent, along with its ambiguous initial pose, as shown in figure 1b. The intuitive way
to reduce the uncertainty of the belief would be to first disprove wrong hypotheses,
and then pass near as many landmarks as possible, such that they would be within
the sensing range. The easiest way to disambiguate hypotheses would be to use the
unique landmark (see figure 1b). It is clearly shown in figure 1c that the agent indeed
prioritizes the unique landmark before passing near landmarks. Note that the unique
landmark would only be visible (and thus provide observation) if the ground-truth po-
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sition of the landmark is within the sensing range of the ground-truth pose of the agent.
It can also be seen from figure 1a that after two macro-steps, which is the distance
from the unique landmark, the descent in cumulative reward becomes less steep, and
significantly outperform other algorithms.

(a) cumulative return (b) initial belief (c) trajectories

Figure 2: The goal of the agent is to reach the target location while minimizing uncertainty. (a)
Mean and standard deviation of the cumulative reward, over 100 trials. (b) Illustration of the
initial belief of the agent. x∗ denotes the ground truth pose of the agent. l∗ denotes a unique
landmark. The agent receives as a prior three hypotheses at different locations. (c) Ground-truth
trajectories are visualized in transparent color, illustrated on top of the initial belief, such that
multiple similar trajectories appear in a moreopaque color.

Goal reaching. As shown in 2c, most of the trajectories performed by the agent
only walk through a simple straight line. Due to the multi-modal hypotheses, the agent
first prioritizes the unique landmark (figure 2b), which practically disambiguates wrong
hypotheses due to their large distance from the unique landmark. Then, the agent
chooses to reach the goal region to maximize the cumulative reward.

(a) cumulative return (b) initial belief (c) trajectories

Figure 3: The goal of the agent is to minimize the uncertainty of its pose. (a) Mean and standard
deviation of the cumulative reward, over 100 trials. (b) Illustration of the initial belief of the
agent, blue circles illustrate conditional beliefs, crosses denote landmarks. (c) Ground-truth
trajectories are visualized in transparent color, illustrated on top of the initial belief, such that
multiple similar trajectories appear in a moreopaque color.

Kidnapped robot. The trajectories shown in figure 3c do not show a strong pref-
erence to any direction. Note that the environment is highly aliased, and there is no
unique landmark where the agent may reach to easily disprove wrong hypotheses. Sim-
ilar results were obtained through all solvers (figure 3a). Although all landmarks look
alike, disambiguation may occur by utilizing the pattern of the scattered landmarks.
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However, such disambiguation may require a long planning horizon which was out of
reach for our non-optimized planner.

Hyperparameter Description Default Value
c UCB exploration constant 40
Nx Number of state particles per belief node 200
Tm Time limit per planning step (in seconds) 201 / 402

T Lookahead horizon 8
ko Observation double progressive widening multiplicative 2.0
αo Observation double progressive widening exponent 0.014

Table 1: Hyperparameters for HB-MCP (ours), vanilla-HB-MCTS and PFT-DPW algorithm. 1

indicates the planning time for Goal reaching and Kidnapped robot scenarios. 2 indicates the
planning time for Aliased matrix scenario.

Aliased matrix Goal reaching Kidnapped robot
HB-MCP (ours) -585.2 -716.8 -323.7

vanilla-HB-MCTS -909.6 -939.4 -349.5
PFT-DPW -961.8 -1009.8 -327.8
DA-BSP -979.5 -931.5 -330.4

Table 2: Comparison of algorithm performances on different scenarios. Results are based on a
simulation study with 100 trials per scenario and algorithm.
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