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Abstract— High accuracy navigation in GPS-deprived envi-
ronments is of prime importance to various robotics appli-
cations and has been extensively investigated in the last two
decades. Recent approaches have shown that incorporating
sensor’s calibration states in addition to the 6DOF pose states
may cause better performance of the system. However, these
approaches typically consider a passive setting, where robot
actions are externally defined. On the other hand, belief space
planning (BSP) approaches account for different sources of un-
certainty, thus identifying actions that improve certain aspects
in inference, such as accuracy. Yet, existing BSP approaches
typically do not consider sensor calibration, nor a visual-inertial
SLAM setup. In this paper we contribute a BSP approach for
active sensor calibration of a visual-inertial SLAM setup. For
this purpose we incorporate within the belief both robot’s pose
and sensor calibration states while considering operation in
partially unknown and uncertain environment. In particular, we
leverage the recently developed concept of IMU pre-integration
and develop appropriate factor graph formulation for future
beliefs to facilitate computationally efficient inference within
BSP. Our approach is valid for general cost functions, and
can be used to identify best robot actions from a given set of
candidate actions or to calculate locally-optimal actions using
direct trajectory optimization techniques. We demonstrate our
approach in high-fidelity synthetic simulation and show that
incorporate sensors calibration state into the BSP significantly
improved estimation accuracy.

I. INTRODUCTION

Autonomous navigation in unknown or uncertain envi-
ronments has been extensively investigated over the past
two decades with numerous applications in robotics, in-
cluding aerial GPS-denied navigation, indoor navigation and
autonomous driving. Highly accurate online navigation in
these, and many other, applications is of prime importance.
Modern navigation systems no longer rely solely on inertial
measurement units that are suspect to drift and on GPS
that may be unreliable or unavailable, but calculate the
navigation solution by fusing measurements captured by
different on-board sensors (e.g. camera, laser sensors). When
the environment is unknown or uncertain, robot localization
(and navigation) involves also mapping the environment, a
problem known in the navigation context as visual-inertial
SLAM.

The corresponding inference problem involves tracking the
probability density function (pdf) over variables of interest
given available information. These variables often include
navigation state, landmarks representing the mapped envi-
ronment thus far, and sensor calibration parameters. The
latter can represent extrinsic calibration, such as relative
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pose between different sensors, and also intrinsic parameters
such as IMU bias and camera focal length. While some
calibration parameters can be recovered in an offline fashion,
due to stochasticity, some sensors (e.g. IMU) require also
online calibration, without which navigation accuracy will
be compromised. Online IMU calibration, however, is tradi-
tionally done considering GPS availability with pre-defined
trajectories (i.e. actions) that were specifically calculated for
such a setting.

Yet, actual performance depends, among other factors, on
robot actions - different robot actions can often result in
different estimation accuracies, especially in lack of external
information (such as GPS). Thus, attaining high-accuracy
navigation involves deep intertwining between inference and
planning, requiring the latter to account for different sources
of uncertainty. The corresponding planning approaches are
known as belief space planning (BSP) methods, which have
received considerable attention in recent years in the context
of autonomous navigation in known, and more recently,
unknown environments. However, existing BSP approaches
typically do not consider sensor calibration aspects in the
context of visual-inertial SLAM, while hard-coded actions
that were suitable for GPS setting may perform poorly in
scenarios considered herein.

In this paper we develop a BSP approach for active sensor
calibration and accurate autonomous navigation considering
a visual-inertial SLAM setting. Our approach is capable
of calculating optimal actions for reducing estimation error
within inference, reducing estimation error growth rate via
IMU sensor calibration, or a combination of both. Additional
typical costs in the objective function, such as reaching a goal
and control effort, are naturally supported as well. Moreover,
we leverage recent work that addressed visual-inertial SLAM
using factor graphs and incremental smoothing [15], and use
these techniques also within belief space planning. Finally,
within this framework we extend the recently-developed
concept of IMU pre-integration [21], that was used thus far
only for information fusion and visual-inertial SLAM [15],
to BSP so that longer planning horizons can be efficiently
considered in presence of high-rate IMU measurements.

II. RELATED WORK

Traditional inertial navigation systems are based on the
strapdown mechanism [6], in which IMU measurements are
integrated into a navigation solution. Typically, navigation
aiding methods apply filtering approaches for fusing mea-
surements from other available sensors with the inertial so-
lution. More recent approaches for information fusion in in-
ertial navigation systems are calculating the optimal solution



based on a non-linear optimization involving all the unknown
variables (and using all the available measurements). These
approaches, also directly related to bundle adjustment (BA),
are commonly used in the robotics community for solving the
full simultaneous localization and mapping (SLAM) problem
(see e.g. [3], [5]). In particular, [5] represents the posterior
pdf using the factor graph graphical model [19], which
naturally encodes the inherent sparsity of the underlying
(square root) information matrices. Kaess et al. [17], [16]
develop incremental smoothing and mapping (iSAM) ap-
proaches that, utilizing graphical models, allow to efficiently
update the posterior with each new incoming measurement.
Indelman et al. [13] introduced a related concept in the
context of multi-robot collaborative navigation, however,
considering the covariance form and not the information
form as in [17], [16].

While iSAM is a general approach for efficient maximum
a posteriori (MAP) inference given available measurements,
possibly from different sensors, recent work [14], [15] ex-
amined its specific use for inertial navigation systems in
presence of high rate sensors such as IMU. The recently
developed concept of IMU pre-integration [21], [15], [7]
allows to avoid the issue of adding factornodes to the graph at
IMU rate, by summarizing consecutive IMU measurements,
and incorporating into the factor graph only the summarized
quantities while still supporting real time performance (see
[15] for details).

While the above approaches focus on inference (e.g. es-
timating robot poses) given actions, different actions can
lead to substantially different estimation performance, for
example, in terms of accuracy. The corresponding prob-
lem of finding an optimal action(s) is an instantiation of
a partially observable Markov decision process (POMDP)
problem, which is computationally intractable [24]. Numer-
ous approaches that trade-off optimality with computational
complexity have been developed in recent years. These
approaches are often known as belief space planning (BSP).
These approaches can be segmented into several categories:
point-based value iteration methods [20], [25], simulation
based approaches [27], [28], sampling based approaches [9],
[10], [26] and direct trajectory optimization approaches [11],
[12], [29].

Yet, only few BSP approaches consider sensor calibration
aspects [30], [8], [23]. For example, Hausman et al. [8]
consider IMU calibration (in terms of bias), optimizing a
nominal trajectory for self-calibration. However, that ap-
proach assumes GPS availability, in contrast to the problem
setup considered herein. Webb et al. [30] develop a method
for active calibration of extrinsic system parameters using
continuous POMDP. Active calibration of extrinsic system
parameters (e.g. transformation between frames) is also con-
sidered in [23]. However, neither of these works considers
visual-inertial navigation systems, nor active calibration of
intrinsic parameters such as IMU bias.

III. PROBABILISTIC FORMULATION AND NOTATIONS

Let xi =
[
pi vi qi

]
and ci =

[
di bi

]
rep-

resent the navigation state vector and sensors calibration
state vector, respectively, at time ti. Here, pi, vi and qi
are the position, velocity and orientation (represented as
a quaternion) of the body in the world frame and di, bi
are the gyroscope drift and accelerometers bias. Similarly
we can add to the calibration state vector of other sensors
parameters, e.g. camera calibration parameters. Also denote
by Li the perceived environment, e.g. in terms of 3D points,
by time ti.

We define the joint state Θk
.
= {Xk, Ck, Lk} where Xk

.
=

{x0, . . . , xk} and Ck
.
= {c0, . . . , ck} represent, respectively,

navigation and calibration states up to time tk. Similarly we
define Z0:k

.
= {z0, . . . , zk} and U0:k

.
= {u0, . . . , uk}, where

ui and zi represent control and obtained measurements at
time ti. In the following, we shall use the notation zIMU

i ∈
Zi to denote IMU measurements and zi ∈ Zi to denote
camera observations.

Given these definitions, the probability density function
(pdf) at time k, also referred as the belief, is given by

b (Θk) = p (Θk|Z0:k, U0:k−1) , (1)

from which the maximum a posteriori estimate

Θ? = arg max
Θk

b (Θk) , (2)

can be efficiently calculated while exploiting sparsity and
re-using calculations [16].

The belief (1) can be explicitly written in terms of indi-
vidual motion, calibration and observation models as (see
e.g. [11])

b (Θk) ∝priors
k∏
i=1

p
(
xi|xi−1, ci−1, z

IMU
i−1

)
· p (ci|ci−1) p (zi|Θo

i ) (3)

A. IMU observations

The probabilistic motion model, p
(
xi|xi−1, ci−1, z

IMU
i−1

)
,

is represented by the underlying nonlinear inertial navigation
equations and the captured IMU measurements zIMU

xi+1 = f
(
xi, ci, z

IMU
i

)
+ wi , wi ∼ N (0,Σw) , (4)

where wi is an additive Gaussian noise with noise
covariance matrix Σw, such that p

(
xi|xi−1, ci−1, z

IMU
i−1

)
∝

exp
[
− 1

2‖xi − f
(
xi−1, ci−1, z

IMU
i−1

)
‖2Σw

]
. The function

f
(
xi, ci, z

IMU
i

)
is governed by the following differential

equations (see e.g. [15])

ṗi = vi

v̇i = CT (qi) (ami − bi − na)− g

q̇i =
1

2
Ω (ωmi − di − ng) qi

ḋi = ng , ḃi = na, (5)

where C (qi) is the rotation matrix obtained from the quater-
nion qi, am and ωm are the measured acceleration (more



precisely, specific force) and angular velocity, and Ω (ω) is
defined as

Ω (ω) =

[
−bω×c ω
−ωT 0

]
, bω×c .=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
(6)

Since the IMU biases can change over time, they are modeled
as random walk processes with zero-mean Gaussian noise ng

and na. More advanced models are outside the scope of this
paper.

Observe that the true (noise free) acceleration and angular
velocity of the robot are a function of the controls ui; hence,
we refer to the above IMU model as motion model.

B. Pre-Integrated IMU measurements

Unfortunately, incorporating high-rate IMU measurements
into the posterior (3) and the underlying inference (2), which
involves solving a nonlinear least squares (NLS) problem,
does not provide real time performance in general. To avoid
doing so, we adopt a recently developed concept of IMU
pre-integration [21], and its application to sensor fusion in
modern navigation systems [15].

The key idea is to integrate consecutive IMU measure-
ments

(
zIMU
i , . . . , zIMU

j

)
, between two lower-frequency

measurements from other sensors such as cameras obtained
at some times ti and tj , while expressing the resulting
relative motion ∆xi→j in the body frame of xi. Importantly,
such a concept supports re-linearization, as part of the NLS
iterative optimization, without recalculating ∆xi→j [21],
[15]. Moreover, real time performance can be achieved by
using intermediate ∆i→t with t ≤ j, see [15] for details.

To summarize, we replace multiple IMU terms in the
posterior (3) between any two time instances ti and tj with
p (xj |xi,∆xi→j , ci).

C. Calibration Model

The calibration model p (ck|ck−1) is assumed to be with
additive Gaussian noise with the process noise covariance
matrix Σe, i.e.

ci+1 = g (ci) + ei , ei ∼ N (0,Σe) , (7)

D. Observation Model

The observation model p (zk|Θo
k) at any time tk can be

written as

p (zk|Θo
k) =

∏
lj∈Θo

k

p (zk,j |xk, lj) , (8)

where Θo
k ⊆ Θk are the overall involved states, zk,j is an

(image) observation of landmark lj , and the product accounts
for all landmark observations captured at time tk.

The observation model for each such observation is given
by

zi,j = h (xi, lj) + vi , vi ∼ N (0,Σv) , (9)

where vi is an additive Gaussian noise with noise covariance
matrix Σv . Note that the landmark lj can be either a
random variable (SLAM framework) or a priori known (but
uncertain) landmark at planning time.

E. Factor Graph Formulation

The joint pdf (1) can be represented using a graphical
model known as a factor graph [19]. Formally, a factor graph
is a bipartite graph Gk = (Fk,Vk, Ek) with two types of
nodes: factor nodes fi ∈ Fk and variable nodes vj ∈ Vk ≡
Θk. Edges eij ∈ Ek can exist only between factor nodes and
variable nodes, and are present if and only if the factor fi
involves a variable vj . Each factor represents an individual
term in the factorization (3) , and therefore one can write

p (Θk|Z0:k, U0:k−1) ∝
∏
i

fi
(
Vik
)
, (10)

where Vik represents an appropriate subset of variable nodes
(Vik ⊆ Vk). See illustration in Figure 1 and [5] for further
details.

Fig. 1: Factor graph representation of Eq. (15) using pre-integrated IMU factors both
for current time step (inference) and for future time steps (planning)

As seen in Figure 1, incorporating high-rate IMU mea-
surements involves adding an appropriate IMU factor and
variables at IMU rate. Instead, the concept of IMU pre-
integration, mentioned in Section III-B, allows to summarize
all consecutive IMU measurements between time instances ti
and tj (e.g. determined by camera rate) into a pre-integrated
delta 4xi→j , and to formulate an appropriate factor that
only involves variables from these two time instances. This
factor will be referred to as a pre-integrated IMU factor [15].
A single such factor, along with the variable xj , are then
added to the factor graph, instead of the numerous original
IMU factors and corresponding intermediate variables. See
illustration in Figure 1.

In this work, we use the principles of the pre-integrated
IMU factor also within the planning problem. Therefore,
future IMU measurements given control actions for L look
ahead steps, are pre-integrated and added as pre-integrated
IMU factor to the planning horizon factor graph.

IV. APPROACH

In this work we incorporate into belief space planning
sensors calibration aspects such that navigation accuracy



is significantly improved while using vision-aided inertial
navigation systems. Our approach extends the state of the
art by incorporating into the belief (1) sensor calibra-
tion model and incorporating into the objective function,
Jk (b (Θk+L) , Uk:k+L−1) a cost function that quantifies cal-
ibration quality, possibly in combination with pose uncer-
tainty reduction. We note that in lack of sources of absolute
information (such as reliable GPS or known 3D points), ac-
curate sensor calibration is of great importance for improving
navigation accuracy. This is particularly true in GPS-deprived
scenarios that involve segments of inertial navigation without
vision-aiding. Moreover, we specifically consider high-rate
IMU sensors and use the principle of the pre-integrated IMU
factor also within the planning problem to avoid performing
MAP inference (which required high computational power)
at IMU rate instead of the (much lower) camera rate.

Specifically, we consider the following objective function
over a planning horizon of L steps

Jk (b (Θk+L) , Uk:k+L−1)
.
=

L−1∑
l=0

E (cfl (b (Θk+l) , uk+l))

+E (cfL (b (Θk+L))) , (11)

where E is the expected value and cfl represents an immedi-
ate cost function and the expectation accounts for all possible
realizations of the (unknown) future sensor observations. The
optimal control is defined as

U?k:k+L−1 = arg min
Uk:k+L−1

Jk (b (Θk+L) , Uk:k+L−1) . (12)

One can identify best robot actions (or motion plans), among
those generated by existing motion planning approaches (e.g.
sampling based approaches), or resort to direct optimization
techniques to obtain locally optimal solutions in a timely
manner [12]. In this work, we focus on the first case.

A. Inference and Recursive Formulation of the Belief

The belief at the lth look ahead time is defined, similarly
to Eq. (1), as

b (Θk+l)
.
= p (Θk+l|Z0:k+l, U0:k+l−1) , (13)

where Z0:k+l and U0:k+l−1 represent, respectively, all the
measurements and controls up to (future) time tk+l, while
present time is tk.

Determining optimal actions according to Eq. (12) in-
volves evaluating the objective function Jk for different can-
didate actions Uk:k+L−1,given immediate costs cfl, that we
discuss in Section IV-C. This requires performing maximum
a posteriori inference over the belief (13) such that

b (Θk+l) = N
(
Θ?
k+l,Λ

−1
k+l

)
, (14)

where Θ?
k+l and Λk+l are the mean vector and information

matrix, respectively.
Remark: We note that Λk+l can be calculated even though

the actual values of future observations Zk+1:k+l are un-
known, while Θ?

k+l is determined solely by the motion model

by taking the common measurement likelihood assumption.
Further details are outside the scope of this paper and can
be found in [12].

The belief (13) can be recursively written as (see e.g. [10])

b (Θk+l) = ηb (Θk+l−1) p (xk+l|xk+l−1, uk+l−1, ck+l−1)

p (ck+l|ck+l−1) p
(
zk+l|Θo

k+l

)
, (15)

where η is a normalization constant and the other products
are the belief at the previous step, the motion model, the
calibration model and the observation model. Also, Θo

k+l ⊆
Θk+l are the involved random variables in the measure-
ment likelihood term p

(
zk+l|Θo

k+l

)
, which can be further

expanded in terms of individual measurements zk+l,j ∈ zk+l

representing observations of 3D points lj .
Similarly to Eq. (8), the measurement likelihood term can

be written as,

p
(
zk+l|Θo

k+l

)
=

∏
lj∈Θo

k+l

p (zk+l,j |xk+l, lj), (16)

where the product considers all the landmarks lj ∈ Lk
expected to be observed from a future viewpoint xk+l. In
general, these could be landmarks mapped by planning time
tk or a priori known landmarks that correspond to known
areas in the environment (if any).

B. Incorporating (Pre-Integrated) IMU Measurements

Further, since we are focusing on active visual-
inertial SLAM, the motion model in Eq. (15) is actu-
ally represented by the nonlinear inertial equations and
IMU measurements, see Section III-A. Thus, the mo-
tion model term p (xk+l|xk+l−1, uk+l−1, ck+l−1) should be
replaced by the corresponding product of IMU models∏
i p
(
xi|xi−1, ci−1, z

IMU
i−1

)
, representing the expected IMU

measurements to be obtained between the time instances
tk+l−1 and tk+l given action uk+l−1, i.e. ti ∈ [tk+l−1, tk+l].

As in passive visual-inertial SLAM, this would in-
volve adding numerous factors and variables into the
factor graph and the underlying MAP inference (14),
thereby negatively impacting computational performance.
Instead, we propose to use the concept of IMU pre-
integration (Section III-B) and add a single probabilis-
tic term that represents the motion model between cam-
era times tk+l−1 and tk+l. In other words, the motion
model p (xk+l|xk+l−1, uk+l−1, ck+l−1) in Eq. (15) is re-
placed by p (xk+l|xk+l−1,∆xk+l−1→k+l, ck+l−1), where
∆xk+l−1→k+l is the relative motion computed via pre-
integrating (future) IMU measurements in the time frame
[tk+l−1, tk+l].

Note these measurements are a function of the consid-
ered actions via the nonlinear inertial navigation equations
(III-A). Although the actual values of these (future) IMU
observations are unknown, it is not required for calculating
the posterior information matrix.

C. Choice of Cost Functions

Thus far, we showed how to incorporate within a future
belief b (Θk+l) IMU measurements and sensor calibration



models (e.g. IMU bias) while considering general immediate
cost functions. In this section we focus on a specific family
of cost functions, cf , that utilize this new information within
planning, considering different types of planning objectives.
We define a general cost function [12]:

cf (b (Θk+l) , uk+l) =
∥∥EGk+lΘ

?
k+l −ΘG

∥∥
MΘ

+ ‖ζ (uk+l)‖Mu
+ tr

(
MΣΛ−1

k+lM
T
Σ

)︸ ︷︷ ︸
cfΣ(MΣ,Λ

−1
k+l)

, (17)

where MΣ, Mu and MΘ are given weight matrices that
can be adjusted online [11], [12], and ζ(u) is some known
function that, depending on the application, quantifies the
usage of control u. ΘG is a predefined goal and EGk+l is
a selection matrix, such that the matrix EGk+lΘ

?
k+l con-

tains a subset of states for which we want to impose a
goal. Similarly, the matrix MΣ in term cfΣ can be used
to choose the covariance of chosen states (position, pose,
calibration etc.) from the joint covariance Λ−1

k+l, i.e. consider
only uncertainty of these states. We can consider different
variations for the uncertainty cost term cfΣ, such as accurate
navigation or sensors self-calibration by using MΣ that
choose only the pose or calibration states, respectively. In
this work we consider the uncertainty cost term cfΣTO

that presents a ’trade-off’ between two planning objectives
(concurrent, or following each other): reaching a target with
minimum navigation errors (i.e. accurate navigation) and
calibrated sensors (i.e. self-calibration). The corresponding
cost function is defined as

cfΣTO .
= tr

(
MΣcΛ−1

k+lM
T
Σc

)
+ tr

(
MΣxΛ−1

k+lM
T
Σx

)
, (18)

where the terms penalize, respectively, pose uncertainty
and quantify calibration quality. However, given the fact that
there is a strong coupling between inertial sensors calibration
to the pose uncertainty and that the belief includes both
the pose and calibration states, the sensor calibration is
still accounted for even if the uncertainty cost is only over
position.

V. RESULTS

We study the proposed approach in simulation considering
autonomous navigation in partially known, uncertain, GPS-
deprived environments. In the considered scenario, an aerial
robot (e.g. quadrotor) has to autonomously navigate to a pre-
defined goal with minimum localization uncertainty while
utilizing limited prior information regarding the environ-
ment and using its onboard sensors. The latter include a
downward-facing monocular camera and an IMU.

The environment comprises randomly scattered landmarks
and an area without landmarks at all, where the goal is
located (see Figure 3). Such a scenario was designed to high-
light the importance of incorporating online sensor calibra-
tion aspects within planning, as in the area surrounding the
goal no landmark observations can be obtained and inertial
navigation is required; for example, this could model a dark
or texture-less area. Navigation estimation error at the goal

thus depends on IMU sensor calibration, in addition to the
solution accuracy provided by visual SLAM while landmark
observations are available. Clearly, navigation accuracy at
the goal is expected to differ significantly for poorly- and
well-calibrated IMU sensors.

For simplicity we assume the robot can only control
its heading angle while keeping the velocity constant. The
control effort, ζ(u) in Eq. (17), is therefore defined as
the change in the heading angle. Such a setting induces
single-axis maneuvers which are insufficient to yield a fully
observable system with the considered visual-inertial SLAM
framework [1], [22]; in particular, biases of accelerometer
sensors cannot be calibrated in all axes.

For this reason, we consider some regions in the envi-
ronment (in terms of landmarks within those regions) are a
priori known to the robot with different levels of uncertainty
(ranging between 10−5 and 10 meters) and can be used for
updating the robot’s belief. As will be seen, regions that are
known with high-accuracy can be used for accelerometer
sensor calibration and for position updates, while those with
lower level of accuracy (10 meters) can only be used for
position updates. See Figure 2 and supplementary material1

[2] for further details. No other information is initially
available, and thus the robot has to map the environment
while navigating through it, i.e. perform SLAM, and consider
appropriate aspects within the planning phase.

Given robot’s trajectory from the planning phase, our
simulation generates synthetic IMU measurements and cam-
era observations, which are used to formulate appropriate
pre-integrated IMU and projection factors, as described in
Section III-B. Image observations are corrupted by zero-
mean Gaussian noise with standard deviation of 0.5 pixels,
and only landmarks within 200 meters from the sensors
are observed. A basic IMU calibration model is consid-
ered, comprising accelerometers bias and gyroscopes drift
of 10mg bias and 10 ◦/hr drift, respectively. Our Matlab
implementation uses GTSAM library [4] for computationally
efficient inference.

For the planning phase, at each planning time, we generate
a set of candidate paths given the belief from inference,
and choose the best path by calculating belief evolution and
evaluating the objective function (11) for each candidate
path. More specifically, similarly to [18], the landmarks
seen thus far are first clustered, and then a shortest path
is calculated to each cluster’s center. These, together with
the shortest path to the goal constitute the mentioned set of
candidate paths. Belief evolution along each candidate path is
performed by first simulating IMU and camera observations
along the path, constructing an appropriate factor graph and
recovering the posterior uncertainty via MAP inference.

A. Compared Approaches

We compare our approach, denoted as ’BSP-Calib’,
with two other methods: ’BSP’ (previous approaches, [12])
and ’Shortest-Path’. The objective function in all the

1https://goo.gl/JTwGvT

https://goo.gl/JTwGvT


(a) (b)

Fig. 2: Results from basic study on known regions influence (described in more detailed
in the supplementary material). The position covariance (a) and the accelerometers
calibration covariance (b) are for the same scenario (map and trajectory) using different
uncertainty levels of priori known regions

three methods can be described via Eq. (17) with weights
appropriately adapted on the fly, as discussed below.

The BSP method does not incorporate sensor calibra-
tion states within the belief, which therefore describes at
time k the joint pdf over past and current robot poses
Xk and mapped landmark Lk. Belief evolution along a
given candidate trajectory thus considers perfectly cali-
brated sensors, both within inference and planning. In this
method, similarly to [12], we balance between position
uncertainty reduction versus goal achievement by defining
a soft bound tr

(
MΣxΛ−1

k+lM
T
Σx

)
≤ βx, and set the weights

MΘ = αxk and MΣx

.
=
√

1− αxkM̄Σx
, where αxk

.
= 1 −

tr(MΣxΛ−1
k+lM

T
Σx)

βx ∈ [0, 1] and M̄Σx
is a selection matrix that

extracts the appropriate position covariance from Λ−1
k+l. See

[12] for further details.
In our approach, the BSP-Calib method, we consider

a modification of the above to account also for the sensor
calibration uncertainty while setting the weights. Specifically,
we consider a soft bound βc on sensor calibration uncertainty
(accelerometer biases in our case), and let αck

.
= 1 −

tr(MΣcΛ−1
k+lM

T
Σc)

βc ∈ [0, 1] and MΣc

.
=
√

1− αckM̄Σc
, where

M̄Σc
is defined similarly to M̄Σx

. Since we now have two
online-calculated parameters αxk and αck, we set MΘ =
min (αxk, α

c
k), and MΣx

.
=
√
αck (1− αxk)M̄Σx

. The intuition
here is as follows: as we approach any of the soft bounds βx

or βc, i.e. αx → 0 or αc → 0, the goal attainment term is
disabled to allow for active sensor calibration or position
uncertainty reduction. However, since the environment is
unknown and may include areas without landmarks (texture-
less or dark areas) that require inertial navigation, we priori-
tize sensor calibration over reduction in position uncertainty,
since this would yield slower uncertainty evolution. One
can observe that when the sensor is sufficiently calibrated
with respect to βc, the method will aim to actively reduce
position uncertainty in case αxk → 0, or invest efforts in goal
attainment. In our implementation we use βx = 1502m2

and βc = 2 mg. Clearly, properly balancing the weights
in a multi-objective function can be delicate and better
approaches could exist. Further investigation of these aspects
is left to future research.

In the Shortest-Path method we simply set all the
weight matrices to zero except of MΘ. This method will
therefore choose the shortest path to the goal without con-
sidering uncertainty aspects.

B. Simulation Results

The comparison between the three methods is presented
in the following figures. The robot’s trajectories are shown
in Figure 3, where the cyan square is a known region
with uncertainty of 10−5m, and the green square is a
known region with uncertainty of 10m. The green square
located closer to start and goal locations. The unknown
landmarks in the environment are the blue dots and the
observed landmarks along the path are shown with ’+’ on
them. Performance comparison between the three methods in
terms of estimation uncertainty (position and accelerometers
calibration) and paths length is presented in Figure 4. The
presented results are the SLAM results given the chosen path
in each method.

One can see in the results that our approach,
’BSP-Calib’, yields better performance, in terms of posi-
tion uncertainty, despite the fact that it is the longest path to
the goal. In our approach the planning chooses to go through
the known region with the lower uncertainty (cyan region) in
order to calibrate the robot’s accelerometers and then proceed
to the goal. On the other hand, the ’BSP’ method does
not consider the calibration state in the belief, and therefore
chooses a shorter path that reduces the pose uncertainty by
reaching the closer known region but with higher uncertainty
(green region).

We note that actual performance in inference, in terms
of covariance uncertainty upon reaching the goal, may be
actually different than the one which was calculated within
planning. While the latter only considers already-mapped
(or known) landmarks and dead reckoning otherwise, the
inference process updates the belief based on incoming
sensor observations also of new landmarks. It is thus con-
ceptually possible that the path determined by our approach,
’BSP-Calib’, will yield in inference inferior results
to ’BSP’ performance or ’Shortest-Path’ methods.
This, for example, could be the case in an environment
full with (unknown) landmarks. One possible direction to
approach this gap of belief evolution in planning and infer-
ence is to consider within planning some statistics regarding
landmark distribution. This direction is left to future research.

VI. CONCLUSIONS

We presented a BSP approach for active sensor calibra-
tion of a visual-inertial SLAM setup. Our BSP framework,
where the belief accounts for the uncertainty in robot’s IMU
calibration and pose, allows the robot to select the best path
that improve its state estimation. We showed performance
comparison of our approach in relation to previous works
for the scenario of partially unknown and uncertain environ-
ments comprising randomly scattered landmarks (including
a priori known regions with different levels of uncertainty)
and an area without landmarks at all. A key question that
will be addressed in future research is how to incorporate
such a concept within multi-robot belief space planning
such that one robot can assist other robots to attain better
navigation performance while autonomously navigating to
different goals.



(a) (b) (c)
Fig. 3: The robot’s trajectories for the three methods: (a) ’BSP’, (b) ’BSP-Calib’ (our approach) and (c) ’Shortest-Path’, where the cyan square is a known region
with uncertainty of 10−5m, and the green square is a known region with uncertainty of 10m. The unknown landmarks in the environment are the blue dots and the observed
landmarks along the path are shown with + on them.

(a) (b)
Fig. 4: Performance comparison in terms of estimation uncertainty: (a) position
covariance and (b) accelerometers calibration covariance. Calibration performance is
not shown for ‘BSP’ as in this approach sensor calibration is not part of the belief, and
is not considered in objective function. One can see that our approach, ’BSP-Calib’,
yields better performance despite the fact that it is the longest path to the goal.
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