Cooperative Multi-Robot Belief Space Planning for Visual-Inertial Navigation and Online Sensor Calibration

Yair Ben Elisha

Under the supervision of Asst. Prof. Vadim Indelman

Graduate Seminar, July 2017

Autonomous Navigation and Perception Lab

- Introduction
- Related work
- Contribution
- Single Robot Approach
- Multi-robot Approach
- Conclusion

Introduction - Autonomous Navigation

Autonomous cars

Mines/Tunnels Exploration

Indoor Operation

Highly Accurate Navigation

Space Exploration

Sub-marine exploration

Introduction - SLAM & Planning

- Navigation and mapping in unknown, GPS-deprived, environment
- Key components for autonomous operation include:
 - Estimation and Perception Where am I? What is the environment?

Visual-Inertial Navigation and Online Sensor Calibration

- Simultaneous localization and mapping (SLAM)
- Planning What is the best action to do next?
 - Traditional planning approaches
 - Belief Space Planning (BSP)

Introduction - Autonomous Navigation

Camera offline calibration

Inertial Sensor Online calibration (pre-determined maneuvers)

Introduction - Scenario

Introduction - Scenario

- Aerial cooperative multi-robot
- Sensors:
 - Inertial Measurements Unit (IMU)
 - Monocular downward-looking camera
- Vision inertial navigation system (VINS)
- Partially unknown environment
- GPS-deprived environment
- Centralized architecture

Planning <u>optimal</u> trajectories for <u>cooperative</u> <u>robots</u> to achieve online <u>IMU calibration</u> and <u>accurate</u> navigation

Related Work

Online Calibration

- (V. Indelamn, 2012), (J. Maye, 2016)
- SLAM considering IMU and extrinsic parameters calibration
- Without planning

Belief Space Planning (BSP)

(V. Indelman, 2013), (G. A. Hollinger, 2014), (V. Indelman, 2015)

- Performance improvement in SLAM
- Not considering IMU measurements

Planning Considering Online Calibration

Extrinsic parameters calibration (transformation between frames)

(W. Achtelik, 2013), (D.J. Webb, 2014), (J. Maye, 2016)

IMU calibration assuming GPS availability

(K. Hausman, 2016)

Related Work

Multi-robot Belief Space Planning

- (A. Kim, 2014, IJRR) (V. Indelman, 2015, IJRR) (V. Indelman, 2015, ISRR)
- Operation in unknown environments
- Cooperation via mutual landmark observations or observing other robots

(V. Indelman, 2015, ISRR)

Contributions

- Incorporating online sensor calibration into belief space planning (BSP) for visual-inertial navigation systems
 - Allows to consider, within planning, reduction of navigation estimation uncertainty and reduction of the uncertainty evolution rate
- Approach for cooperative multi-robot BSP using future indirect constraints given past correlation between robots
 - Introduce concept of "expendable" robots used for updating other robots
- Incorporate recently developed concept of IMU pre-integration into BSP

Problem Formulation - Notations

Visual-Inertial Navigation and Online Sensor Calibration

Single Robot

Probabilistic Formulation - Inference

Joint probability distribution function (pdf)

$$p(x_i | x_{i-1}, c_{i-1}, z_{i-1}^{IMU})$$

Motion Model:

 $x_{i} \doteq \begin{bmatrix} p_{i} & v_{i} & q_{i} \end{bmatrix}$ $x_{i} = f\left(x_{i-1}, c_{i-1}, z_{i-1}^{IMU}\right) + w_{i-1}$ $C = M_{i} = M_{$

Gaussian Noise: $w_{i-1} \sim N(0, \Sigma_w)$

Strapdown Equations:

$$f\left(x_{i-1}, c_{i-1}, z_{i-1}^{IMU}\right) \propto \begin{cases} \dot{p}_{i} = v_{i} \\ \dot{v}_{i} = C^{T}\left(q_{i}\right)\left(a_{i}^{m} - b_{i} - n^{a}\right) - g \\ \dot{q}_{i} = \frac{1}{2}\Omega\left(\omega_{i}^{m} - d_{i} - n^{g}\right)q_{i} \end{cases}$$

Calibration Model:

 $c_{i} \doteq \begin{bmatrix} d_{i} & b_{i} \end{bmatrix}$ $c_{i} = g(c_{i-1}) + e_{i-1}$ Gaussian Noise: $e_{i-1} \sim N(0, \Sigma_{e})$

Random constant model:

$$c_i = c_{i-1} + e_{i-1}$$

Single Observation Model:

 $z_{i,j} = h(x_i, l_j) + v_i$ Gaussian Noise: $v_i \sim N(0, \Sigma_v)$ $h(x_i, l_j) - Pinhole$ Camera Model

General Observation Model:

$$p\left(z_{k} \mid \Theta_{k}^{o}\right) = \prod_{l_{j} \in \Theta_{k}^{o}} p\left(z_{k,j} \mid x_{k}, l_{j}\right)$$
$$\Theta_{k}^{o} \subseteq \Theta_{k} : \text{Landmarks observed from } \mathbf{x}_{k}$$

Factor Graph Representation

- Factorization of a joint pdf in terms of process and measurement models
 - Vertices represent the variables
 - Nodes represent constrains between variables, the factors
- Computationally efficient probabilistic inference

Belief Space Planning (BSP)

• The belief at the lth look ahead time is defined as:

$$b(\Theta_{k+l}) \doteq p(\Theta_{k+l} | Z_{0:k+l}, U_{0:k+l-1})$$

= $\eta b(\Theta_{k+l-1}) p(x_{k+l} | x_{k+l-1}, u_{k+l-1}, c_{k+l-1}) p(c_{k+l} | c_{k+l-1}) p(z_{k+l} | \Theta_{k+l}^{o})$

• Maximum a posteriori (MAP) inference: $b(\Theta_{k+l}) = \mathcal{N}(\Theta_{k+l}^{\star}, \Sigma_{k+l})$

Factor Graph - Pre-Integrated IMU Factors

• <u>Challenge</u>:

- High rate IMU measurements
- Updating the graph at high rate
- High complexity
- No real time performance in inference, limits planning horizon in BSP

Factor Graph - Pre-Integrated IMU Factors

• <u>Solution</u>:

- Integrate IMU measurements into a single factor
- Add corresponding factor at the frequency of other sensors (e.g. camera)
- Previous works use this concept within inference only
- Additionally use this concept within BSP to increase planning horizon

Active Online Calibration Approach

The objective function over a planning horizon of L steps:

$$J_{k}\left(b\left(\Theta_{k+L}\right), U_{k:k+L-1}\right) \doteq \sum_{l=0}^{L-1} \mathbb{E}\left(cf_{l}\left(b\left(\Theta_{k+l}\right), u_{k+l}\right)\right) + \mathbb{E}\left(cf_{L}\left(b\left(\Theta_{k+L}\right)\right)\right)$$

• Optimal control:

$$U_{k:k+L-1}^{\star} = \operatorname*{argmin}_{U_{k:k+L-1}} J_k \left(b \left(\Theta_{k+L} \right), U_{k:k+L-1} \right)$$

Choice of cost function

$$cf\left(b\left(\Theta_{k+l}\right), u_{k+l}\right) = \left\| X_{k+l}^{\star} - X^{Goal} \right\|_{M_{\Theta}} + \left\| \zeta\left(u_{k+l}\right) \right\|_{M_{u}} + tr\left(M_{\Sigma}\Sigma_{k+l}M_{\Sigma}^{T}\right) \right\|_{penalizes control actions} + tr\left(M_{\Sigma}\Sigma_{k+l}M_{\Sigma}^{T}\right) \\ = cf^{\Sigma}\left(M_{\Sigma}, \Sigma_{k+l}\right)$$

Calculating The Optimal Control

• Optimal control:

$$U_{k:k+L-1}^{\star} = \operatorname*{argmin}_{U_{k:k+L-1}} J_k \left(b \left(\Theta_{k+L} \right), U_{k:k+L-1} \right)$$

- Discrete Methods:
 - Choose best path from a set of candidate paths
 - Sampling methods (e.g. RRT or PRM)
- Continuous Methods:
 - Direct optimization or Gradient descent methods

Results - Assumptions

- Matlab simulation using GTSAM library
- Synthetic IMU measurements and camera observations
- Assuming data association is solved
- Assuming heading angle control only
- A priori-known regions with different uncertainty levels

IMU Calibration - Observability Aspects

 Theorem: Full observability requires the camera-IMU platform to undergo rotation about at <u>least two IMU axes</u> and acceleration along <u>two IMU axes</u>

[Achtelik13icra]

- <u>Conclusion</u>: Heading angle control is not sufficient for full IMU calibration
- <u>Alternatives</u>: Using a priori known regions with different levels of uncertainty to calibrate accelerometers only

Results - Influence of Known Regions

Results - Influence of Known Regions

Results - Scenario

- Environment
 - Randomly scattered unknown landmarks
 - Goal location within area without landmarks at all ("dark corridor")
 - A priori-known regions with different uncertainty levels
- Discrete method generate candidate paths
 - Shortest path to goal
 - Shortest paths to clusters of mapped/known landmarks

Results - Compared Approaches

- Approach 1 'BSP-Calib' (our approach)
 - Incorporate sensor calibration states within the belief
 - "Trade-off" uncertainty cost function

$$cf^{\Sigma^{TO}} \doteq tr\left(M_{\Sigma_{c}}\Sigma_{k+l}M_{\Sigma_{c}}^{T}\right) + tr\left(M_{\Sigma_{x}}\Sigma_{k+l}M_{\Sigma_{x}}^{T}\right)$$

- Approach 2 'BSP'
 - Does not incorporate sensor calibration states within the belief
- Approach 3 'Shortest-Path'
 - Uncertainty cost function set to zero

Results - Compared Approaches (Trajectories)

Results - Performance comparison

Accel. Calibration Covariance

Results - Performance comparison

Up Till Now

- Online active self-calibration of IMU in GPS-deprived environment using BSP
- Improved navigation accuracy
- Incorporated IMU pre-integration concept within BSP for longer planning horizons

Multi-robot

Introduction and Intuition

- Cooperative multi-robot:
 - Robust and faster exploration/mapping
 - Higher accuracy in a multi robot collaborative framework

Cooperation via

observing other robots

Indirect Update - Concept

Cooperation via observing other robots

Cooperation via observing same landmark

Given correlation, <u>all</u> robots are updated when a <u>single</u> robot observes a (known) landmark

Given correlation, <u>all</u> robots are updated when a <u>single</u> robot observes a (known) landmark

- Relaxing previous cooperation constraints
- Requires initial/past correlation between robots
- Given prior correlation, informative observation made by one robot, impacts also the states of other robots

Note: Study of correlation decay with time or sensitivity to correlation magnitude - not part of this work

Indirect Update - Theoretical Aspects

- Study case:
 - Two robots, r_1 and r_2 , starting with some initial correlation
 - r₁ observes a prioiri known landmark
 - r₂ does not make any observations
- Definition of covariance matrix Σ or the information matrix I

$$I \doteq R^T R, \Sigma = I^{-1} \doteq \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

• R - The square root information matrix

Indirect Update - Theoretical Aspects

Indirect Update - Theoretical Aspects

• Calculation of Σ_{22}

$$\Sigma_{22}^{k} = (r_{22})^{-2} = \frac{(r_{11}^{k})^{2}}{(r_{22}^{k-1})^{2} (r_{11}^{k})^{2} + (-a_{1}r_{12}^{k-1})^{2}}$$

Indirect Update - Study Case

Examined Trajectories:

Position Accuracy (errors and covariance):

MR Belief Definition

• The belief of R robots is defined as:

$$b(\Theta_{k}) \propto \prod_{r=1}^{R} \left\{ priors^{r} \prod_{i=1}^{k} p(x_{i}^{r} \mid x_{i-1}^{r}, c_{i-1}^{r}, z_{i-1}^{r, IMU}) \cdot p(c_{i}^{r} \mid c_{i-1}^{r}) p(Z_{i}^{r, cam.} \mid \Theta_{i}^{r, o}) \right\}$$

• Extendable to BSP for the lth look ahead time

Active Indirect Update Approach

General objective function

$$J_{k}\left(b\left(\Theta_{k+L}\right), U_{k:k+L-1}\right) \doteq \sum_{l=0}^{L-1} \mathbb{E}\left(cf_{l}\left(b\left(\Theta_{k+l}\right), u_{k+l}\right)\right) + \mathbb{E}\left(cf_{L}\left(b\left(\Theta_{k+L}\right)\right)\right)$$
$$cf \doteq \left\{cf^{i}\right\}_{i=1}^{R}$$

Cost function

$$cf^{i} = \left\| \zeta \left(u_{k+l} \right) \right\|_{M_{u}} + \sum_{r=1}^{R} \left\{ \left\| X_{k+l}^{\star} - X^{Goal^{r}} \right\|_{M_{\Theta}^{r}} + cf^{\Sigma^{r}} \left(M_{\Sigma}^{r}, \Sigma_{k+l}^{r} \right) \right\}$$

Results - Scenario and Assumptions

- Simulation same as single robot
- Partial unknown environment
 - Mostly unknown environment
 - A priori-known regions with different uncertainty levels
- Discrete method PRM
- Re-planning every 8 steps
- Initial Correlation is created by observing same landmark

Results - Trajectories

Results - Performance

$$cf_l^1 = \left\| E_{k+l}^{G^1} \Theta_{k+l}^{\star} - \Theta^{G^1} \right\|_{M_{\Theta}^1}$$

Position Covariance & Error

Accel. Calibration Covariance

, $cf_l^2 = cf^{\Sigma^1}(M_{\Sigma}^2, \Sigma_{k+l}^1)$

Conclusions

- Online self-calibration of IMU in GPS-deprived environment using BSP for improving navigation accuracy
- Cooperative multi-robot using indirect updates within BSP

Thank You

