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•Navigation and mapping in unknown, GPS-deprived, 

environment 

•Key components for autonomous operation include:

▪ Estimation and Perception – Where am I? What is the environment?

• Simultaneous localization and mapping (SLAM)

▪ Planning – What is the best action to do next?

• Traditional planning approaches

• Belief Space Planning (BSP)

Perception

Planning

Estimation‘Passive’

‘Active’
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• Aerial cooperative multi-robot

• Sensors: 

▪ Inertial Measurements Unit (IMU) 

▪ Monocular downward-looking camera

• Vision inertial navigation system (VINS)

• Partially unknown environment

• GPS-deprived environment

• Centralized architecture

Planning optimal trajectories for cooperative 

robots to achieve online IMU calibration and 

accurate navigation



• Online Calibration

(V. Indelamn, 2012), (J. Maye, 2016)

▪ SLAM considering IMU and extrinsic parameters calibration

▪ Without planning

• Belief Space Planning (BSP)

(V. Indelman, 2013), (G. A. Hollinger, 2014) , (V. Indelman, 2015)

▪ Performance improvement in SLAM

▪ Not considering IMU measurements

• Planning Considering Online Calibration

▪ Extrinsic parameters calibration (transformation between frames) 

(W. Achtelik, 2013), (D.J. Webb, 2014), (J. Maye, 2016)

▪ IMU calibration assuming GPS availability

(K. Hausman, 2016)



• Multi-robot Belief Space Planning 

(A. Kim, 2014, IJRR) (V. Indelman, 2015, IJRR) (V. Indelman, 2015, ISRR)

▪ Operation in unknown environments 

▪ Cooperation via mutual landmark observations or observing other robots

(V. Indelman, 2015, ISRR)



• Incorporating online sensor calibration into belief space planning 

(BSP) for visual-inertial navigation systems

▪ Allows to consider, within planning, reduction of navigation estimation 

uncertainty and reduction of the uncertainty evolution rate

• Approach for cooperative multi-robot BSP using future indirect 

constraints given past correlation between robots

▪ Introduce concept of “expendable” robots used for updating other robots

• Incorporate recently developed concept of IMU pre-integration into BSP
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• Joint probability distribution function (pdf)
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Motion Model:

Strapdown Equations:     
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Calibration Model:

Random constant model:
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Single Observation Model:

General Observation Model:
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Landmarks observed from xk
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• Factorization of a joint pdf in terms 

of process and measurement models

▪ Vertices represent the variables

▪ Nodes represent constrains between 

variables, the factors

• Computationally efficient 

probabilistic inference



• The belief at the lth look ahead time is defined as:

•Maximum a posteriori (MAP) inference:
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•Challenge:

▪ High rate IMU measurements

▪ Updating the graph at high rate

▪ High complexity

▪ No real time performance in inference, limits planning horizon in BSP



•Solution: 

▪ Integrate IMU measurements into a single factor

▪ Add corresponding factor at the frequency of other sensors (e.g. 

camera)

▪ Previous works use this concept within inference only

▪ Additionally use this concept within BSP to increase planning horizon

[T. Lupton, 2012]

[V. Indelman, 2013]



• The objective function over a planning horizon of L steps:

•Optimal control:

• Choice of cost function
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•Optimal control:

• Discrete Methods:

▪ Choose best path from a set of candidate paths

▪ Sampling methods (e.g. RRT or PRM)

• Continuous Methods:

▪ Direct optimization or Gradient descent methods 
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•Matlab simulation using GTSAM library

• Synthetic IMU measurements and camera observations 

• Assuming data association is solved

• Assuming heading angle control only

• A priori-known regions with different uncertainty levels



• Theorem: Full observability requires the camera-IMU 

platform to undergo rotation about at least two IMU axes

and acceleration along two IMU axes 

• Conclusion: Heading angle control is not sufficient for full 

IMU calibration

• Alternatives: Using a priori known regions with different 

levels of uncertainty to calibrate accelerometers only

[Achtelik13icra]
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• Environment

▪ Randomly scattered unknown landmarks

▪ Goal location within area without landmarks at all  (“dark corridor”)

▪ A priori-known regions with different uncertainty levels

• Discrete method – generate candidate paths

▪ Shortest path to goal

▪ Shortest paths to clusters of mapped/known landmarks



• Approach 1 – ‘BSP-Calib’ (our approach)

▪ Incorporate sensor calibration states within the belief

▪ “Trade-off” uncertainty cost function

• Approach 2 – ‘BSP’

▪ Does not incorporate sensor calibration states within the belief

• Approach 3 – ‘Shortest-Path’

▪ Uncertainty cost function set to zero
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Uncertainty = 10m Uncertainty = 1e-5m - Covariance



Accel. Calibration Covariance
Known Region



28.5

21.1

Position Covariance
“Dark Corridor”



•Online active self-calibration of IMU in GPS-deprived 

environment using BSP

• Improved navigation accuracy

• Incorporated IMU pre-integration concept within BSP for 

longer planning horizons





• Cooperative multi-robot:

▪ Robust and faster exploration/mapping

▪ Higher accuracy in a multi robot collaborative framework 

Cooperation via mutual

landmark observations
Cooperation via 

observing other robots



Cooperation via 

observing same landmark

Cooperation via 

observing other robots

Indirect cooperation 

given past correlation

Given correlation, 

all robots are updated when a 

single robot observes a (known) 

landmark 



• Relaxing previous cooperation constraints

• Requires initial/past correlation between robots

•Given prior correlation, informative observation made by one 

robot, impacts also the states of other robots

Note: Study of correlation decay with time or sensitivity to correlation 

magnitude – not part of this work

Given correlation, 

all robots are updated when a single robot 

observes a (known) landmark 



• Study case:

▪ Two robots, r1 and r2 , starting with some initial correlation 

▪ r1 observes a prioiri known landmark

▪ r2 does not make any observations

• Definition of covariance matrix Σ or the information matrix I 

• R - The square root information matrix 
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• r1 observes the known region at tk
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• Calculation of Σ22
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•Examined Trajectories:

“Shortest-Path” “Future-Correlation”“Higher-Correlation”

Low Prior Correlation High Prior Correlation No Prior Correlation



•Position Accuracy (errors and covariance):

“Shortest-Path” “Future-Correlation”“Higher-Correlation”



• The belief of R robots is defined as:

• Extendable to BSP for the lth look ahead time
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•General objective function

• Cost function
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• Simulation – same as single robot

• Partial unknown environment

▪ Mostly unknown environment

▪ A priori-known regions with different uncertainty levels

• Discrete method – PRM

• Re-planning every 8 steps

• Initial Correlation is created by observing same landmark
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Uncertainty = 1e-5m - Covariance



Accel. Calibration CovariancePosition Covariance & Error
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•Online self-calibration of IMU in GPS-deprived 

environment using BSP for improving navigation accuracy

•Cooperative multi-robot using indirect updates within BSP




