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Abstract

High accuracy navigation in GPS-deprived uncertain environments is of prime importance to

various robotics applications. In such scenarios, it has been recently shown that online sensor

calibration and multi-robot collaboration, whereby robots make mutual observations of the en-

vironment or perform relative observations of each other, can significantly enhance navigation

accuracy. However, these approaches typically consider a passive setting, where robot actions

are externally determined. On the other hand, belief space planning (BSP) approaches account

for different sources of uncertainty, thus identifying actions that improve certain aspects in in-

ference, such as accuracy. Yet, existing BSP approaches typically do not consider sensor cali-

bration in the mentioned problem setting, nor a visual-inertial SLAM setup.

In this research, we contribute single-robot and multi-robot BSP approaches for active sen-

sor calibration considering a visual-inertial SLAM system. To that end, we maintain a belief

over both robot’s pose and sensor calibration, and reason how that belief would evolve for dif-

ferent actions while considering partially unknown and uncertain environments. In particular,

we leverage the recently developed concept of IMUpre-integration and develop appropriate fac-

tor graph formulation for future beliefs to facilitate computationally efficient inference within

BSP.

Another key aspect of our approach are indirect multi-robot observation updates given the

states of different robots are correlated. This concept allows for a subset of robots to carry on

their individual (possibly time-critical) tasks while preserving high accuracy estimation by rely-

ing on other expendable robots to make appropriate observations of the environment. We study

our approach in high-fidelity synthetic simulation and show the determined actions can lead to

significantly improved estimation accuracy.
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Chapter 1

Introduction

Autonomous navigation in unknown or uncertain environments has been extensively investi-

gated over the past two decades with numerous applications in robotics, including aerial GPS-

denied navigation, indoor navigation and autonomous driving. Highly accurate online naviga-

tion in these, and many other, applications is of prime importance. Modern navigation systems

no longer rely solely on inertial measurement units that are suspect to drift and on GPS that

may be unreliable or unavailable, but calculate the navigation solution by fusing measurements

captured by different on-board sensors (e.g. camera, laser sensors). When the environment is un-

known or uncertain, robot localization (and navigation) involves also mapping the environment,

a problem known in the navigation context as visual-inertial SLAM.

The corresponding inference problem involves tracking the probability density function (pdf)

over variables of interest given available information. These variables often include navigation

state, landmarks representing the mapped environment thus far and sensor calibration parame-

ters. The latter can represent extrinsic calibration, such as relative pose between different sen-

sors, and also intrinsic parameters such as IMU bias and camera focal length. While some cal-

ibration parameters can be recovered in an offline fashion, due to stochasticity, some sensors

(e.g. IMU) require also online calibration, without which navigation accuracy will be compro-

mised. Online IMUcalibration, however, is traditionally done consideringGPS availabilitywith

pre-defined trajectories (i.e. actions) that were specifically calculated for such a setting.

Yet, actual performance depends, among other factors, on robot actions - different robot ac-

tions can often result in different estimation accuracies, especially in lack of external information

(such as GPS). Thus, attaining high-accuracy navigation involves deep intertwining between in-

ference and planning, requiring the latter to account for different sources of uncertainty. The

corresponding planning approaches are known as belief space planning (BSP) methods, which

have received considerable attention in recent years in the context of autonomous navigation in

known, and more recently, unknown environments. However, existing BSP approaches typi-

cally do not consider sensor calibration aspects in the context of visual-inertial SLAM, while

hard-coded actions that were suitable for GPS setting may perform poorly in scenarios consid-

ered herein.

Moreover, we leverage recent work that addressed visual-inertial SLAMusing factor graphs
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and incremental smoothing [20], and use these techniques also within belief space planning. Fi-

nally, within this framework we extend the recently-developed concept of IMU pre-integration

[31], that was used thus far only for information fusion and visual-inertial SLAM [20], to BSP so

that longer planning horizons can be efficiently considered in presence of high-rate IMU mea-

surements.

In addition, an extension of the BSP problem to a multi-robot framework has been investi-

gated over the last few years. Collaboration between multiple robots can significantly improves

performance of both inference and planning phases. In particular, by sharing relevant informa-

tion between robots, estimation quality can substantially improve, while by appropriately coor-

dinating actions the robots can often finish a task in a shorter time. However, existingmulti-robot

BSP approaches consider that the cooperation between the robots is done by observing mutual

scenes (even at different times) or by observing the other robot. In addition, recent planning

approaches consider an objective function, used for calculating the optimal paths, where each

robot aims to improve its estimation accuracy only.

In this research we develop two main approaches: (a) single-robot BSP approach for active

sensor calibration and accurate autonomous navigation considering a visual-inertial SLAM set-

ting, and (b) extension of the single-robot BSP approach to a multi-robot framework for efficient

active cooperation between the robots.

The first approach is capable of calculating optimal actions for reducing estimation error

within inference, reducing estimation error growth rate via IMU sensor calibration, or a com-

bination of both. Additional typical costs in the objective function, such as reaching a goal and

control effort, are naturally supported as well.

The second approach further advances the state of the art by defining two collaborative

robots subgroups, the “strategic group” and the “expendable group”. The key idea is to have

robots from the “expendable robots” improve performance, in terms of estimation accuracy, of

robots from the “strategic group” while the latter execute time-critical missions. Robots from

the former group are envisioned to be cheap and therefore expandable, with their sole purpose to

boost the performance of the “strategic group”. In particular, the objective function for the “ex-

pendable group” aims to improve the “strategic group’s” estimation accuracy. This approach

leverages the concept of indirect multi-robot updates that we introduce herein, according to

which, in presence of prior correlation between states of different robots, an informative ob-

servation captured by one robot impacts also other robots that can be in different regions of the

environments. Leveraging this concept, the expandable robots in our multi-robot BSP approach

have enhanced flexibility to aid the strategic robots by traveling to areas where informative ob-

servations can (or likely to) be captured, without constraining the trajectories of the strategic

robots.

1.1 RelatedWork

Traditional inertial navigation systems are based on the strapdown mechanism [40, 8], in which

IMUmeasurements are integrated into a navigation solution. Typically, navigation aidingmeth-
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ods apply filtering approaches for fusingmeasurements from other available sensors with the in-

ertial solution. More recent approaches for information fusion in inertial navigation systems are

calculating the optimal solution based on a non-linear optimization involving all the unknown

variables (and using all the available measurements). These approaches, also directly related

to bundle adjustment (BA), are commonly used in the robotics community for solving the full

simultaneous localization and mapping (SLAM) problem (see e.g. [3, 7]). In particular, [7] rep-

resents the posterior probability density function (pdf) using the factor graph graphical model

[28], which naturally encodes the inherent sparsity of the underlying (square root) information

matrices. Kaess et al. [25, 24] develop incremental smoothing and mapping (iSAM) approaches

that, utilizing graphicalmodels, allow to efficiently update the posteriorwith each new incoming

measurement. Indelman et al. [18] introduced a related concept in the context of multi-robot col-

laborative navigation, however, considering the covariance form and not the information form

as in [25, 24].

While iSAM is a general approach for efficientmaximuma posteriori (MAP) inference given

available measurements, possibly from different sensors, recent work [19, 20] examined its spe-

cific use for inertial navigation systems in presence of high rate sensors such as IMU. The re-

cently developed concept of IMU pre-integration [31, 20, 9] allows to avoid the issue of adding

factor nodes to the graph at IMU rate, by summarizing consecutive IMUmeasurements, and in-

corporating into the factor graph only the summarized quantities while still supporting real time

performance (see [20] for details).

While the above approaches focus on inference (e.g. estimating robot poses) given actions,

different actions can lead to substantially different estimation performance, for example, in terms

of accuracy. The corresponding problem of finding an optimal action(s) is an instantiation of

a partially observable Markov decision process (POMDP) problem, which is computationally

intractable [34]. Numerous approaches that trade-off optimality with computational complexity

have been developed in recent years. These approaches are often known as belief space planning

(BSP). These approaches can be segmented into several categories: point-based value iteration

methods [29, 35], simulation based approaches [39, 41], sampling based approaches [12, 13, 38]

and direct trajectory optimization approaches [16, 17, 42].

Yet, only few BSP approaches consider sensor calibration aspects [43, 11, 33]. For example,

Hausman et al. [11] consider IMU calibration (in terms of bias), optimizing a nominal trajectory

for self-calibration. However, that approach assumesGPSavailability, in contrast to the problem

setup considered herein. Webb et al. [43] develop a method for active calibration of extrinsic

system parameters using continuous POMDP. Active calibration of extrinsic system parameters

(e.g. transformation between frames) is also considered in [33]. However, neither of these works

considers visual-inertial navigation systems, nor active calibration of intrinsic parameters such

as IMU bias in unknown GPS-deprived environment.

A multi-robot belief space framework has been also investigated in recent years. Devel-

oped approaches focus on different aspects, including multi-robot tracking, active SLAM and

autonomous navigation in unknown environments and informative planning (see e.g. [30, 2, 14,

13, 36, 21]). In particular, existing approaches [38, 5, 18] typically focus on the inference part, con-
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sidering robot actions to be determined externally. Active multi-robot approaches [4] typically

focus on the trade-off between exploring new regions and reducing uncertainty by re-observing

previously mapped areas. Recent works, [27, 13, 14, 21], consider the problem of collaborative

multi-robot BSP while operating in unknown environment. In particular, [13, 21] introduced

within the belief reasoning regarding future mutual observations of environments that are un-

known at planning time. However, these multi-robot BSP approaches consider that the coop-

eration between the robots is done by observing mutual scenes (even at different times) or by

observing the other robot. Additionally, these approaches typically consider an objective func-

tion where each robot aims to improve its own estimation accuracy. In contrast, we consider

an objective function for the “expendable group” that aims to improve the “strategic group’s”

estimation accuracy. In addition, we introduce a concept of indirect multi-robot updates, that in

presence of prior correlation between states of different robots, an informative observation cap-

tured by one robot impacts also other robots that can be in different regions of the environments.

1.2 Contributions

In this researchwedevelop aBSPapproach for active sensor calibration and accurate autonomous

navigation considering a visual-inertial SLAM setting. Our approach is capable of calculating

optimal actions for reducing estimation error within inference, reducing estimation error growth

rate via IMU sensor calibration, or a combination of both. Additional typical costs in the objec-

tive function, such as reaching a goal and control effort, are naturally supported as well.

We also contribute a collaborative multi-robot approach for expendable indirect multi-robot

cooperation given the states of different robots are correlated. This concept allows for a subset

of robots to carry on their individual (possibly time-critical) tasks while preserving high accu-

racy estimation by relying on other expendable robots to make appropriate observations of the

environment and indirectly update the other robots state estimation.

The combination of these two approaches improve the strategic robots performance, in terms

of reducing estimation error, error growth rate and time for reaching the goal, by relying on the

expendable robots that focus on updating the estimation accuracy of the former group.

In addition, we leverage recentwork that addressed visual-inertial SLAMusing factor graphs

and incremental smoothing [20], and use these techniques also within belief space planning. Fi-

nally, within this framework we extend the recently-developed concept of IMU pre-integration

[31], that was used thus far only for information fusion and visual-inertial SLAM [20], to BSP so

that longer planning horizons can be efficiently considered in presence of high-rate IMU mea-

surements.
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Chapter 2

Background

2.1 Inertial Navigation

Inertial navigation is a dead reckoning system that computes the platform position, velocity and

attitude by integrating the linear acceleration and angular rate measured by the Inertial Mea-

surement Unit (IMU). Every dead reckoning system requires an initialization stage, the initial

navigation solution, that mostly achieved by an external source, such as a human interface, GPS

or a more accurate Inertial Navigation System (INS).

The inertial navigation is based on the high ratemeasurements from the IMU sensor, angular

rate measurements of the gyroscopes and linear acceleration measurements of the accelerome-

ters. The navigation solution (position, velocity and attitude) of the platform is calculated by

using the “Strapdown Equations”. The main principles for the definition of the strapdown equa-

tions are:

• Determination of the angular motion of a vehicle using gyroscopic sensors, from which

its attitude relative to a reference frame may be derived;

• Measure specific force using accelerometers;

• Resolve the specific force measurements into the reference frame using the knowledge of

attitude derived from the information provided by the gyroscopes;

• Evaluate the force resulting from the gravitational field - the gravitational attraction of the

Earth in the case of systems operating in the vicinity of the Earth;

• Integrate the resolved specific force measurements to obtain estimates of the velocity and

position of the vehicle.

Unfortunately, all the inertial sensors are subject to errors which limit the accuracy to which the

angle of rotation or applied accelerate can be measured. These errors are propagating through

time and can be modeled using a complex error model, usually provided by the sensor’s manu-

facturer. In this work we assume a simple IMU error estimation vector as,

cIMU =
[
dT bT

]T
(2.1)
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where b and d are the accelerometers and the gyroscopes errors respectively, usually referred to

as bias and drift.

More information about inertial navigation and technology can be found in [40].

2.2 Probabilistic Inference

Throughout this work, we use Bayesian inference to recover the posterior probability distribu-

tion function over variables of interest, such as robot poses, sensors calibration and landmark

locations, based on available information such as features from camera-captured images and

IMU measurements. In this section, however, we first provide the necessary background in

probabilistic inference considering the random variables X and Y.

The joint probability density function (pdf) of the variables X and Y is defined as p(x, y)

and, if the two variables are independent, is given by,

p(x, y) = p(x)p(y) (2.2)

Variables often carry information about other variables, in which case, using Bayes rule, this

conditional probability is written as,

p (x|y) = p (x, y)

p (y)
=

p (y|x) p (x)
p (y)

. (2.3)

In probabilistic robotics, Bayes rule allows to compute the conditional probability p(x|y),
called the posterior probability distribution, as a function of the inverse conditional probability

p(y|x) and the prior p(x). Using the fact that p(y) is being independent of x, it can be considered
as constant and thus, Eq. (2.3) can be written as,

p(x|y) = ηp(y|x)p(x) , η
.
= p(y)−1 (2.4)

Given the conditional probability, the calculation of the maximum a posteriori (MAP) esti-

mate x∗ is define as,

x∗ = argmax
x

p (x|y) (2.5)

For our case, it is convenient to assume that the joint pdf can be parametrized by a Gaussian

distribution

p (x|y) ∼ N
(
X̂,Λ

)
(2.6)

where Λ is the information matrix (inverse of the covariance matrix).

The maximum a posteriori (MAP) estimate ofX is then given by

X̂∗ = argmin
x

− log {p (x|y)} (2.7)

This optimization problem lies at the core of the inner inference layer of our planning ap-

10



proach. In principle, solving (2.7) involves iterative nonlinear optimization. A standard way to

solve the minimization problem is the Gauss-Newton method, where a single iteration involves

linearizing the above equation about the current estimate X̄k , calculating the delta vector∆Xk

and updating the estimate X̄k ← X̄k + ∆Xk . This process should be repeated until conver-

gence. See [7, 24, 16] for more information.

2.3 Factor Graph

Factor graphs are graphical models that are well suited to modeling complex estimation prob-

lems, such as Simultaneous Localization andMapping (SLAM) or Structure fromMotion (SFM)

[28, 7]. A factor graph is a bipartite graph, Gk = (Fk,Vk, Ek) with two types of nodes: factor

nodes fi ∈ Fk and variable nodes vj ∈ Vk ≡ Θk. Edges eij ∈ Ek can exist only between factor
nodes and variable nodes, and are present if and only if the factor fi involves a variable vj .

The variables nodes represent the unknown randomvariables, while edges represent the con-

strains between appropriate variables, constraints that correspond to motion and measurement

models and to prior knowledge. Each such constraint is called a factor. Each factor represents

an individual term in the factorization of a joint pdf p(Θ), and therefore one can write,

p (Θk) ∝
∏
i

fi
(
V ik
)
, (2.8)

where V ik represents an appropriate subset of variable nodes (V ik ⊆ Vk) involved in the factor fi,
such as motion models, measurement models and priors. See illustration in Figure 2.1 and [7] for

further details.

For a multi-robot scenario we can extend the factor graph definition in Eq. (2.8) to the fol-

lowing definition,

p (Θk) ∝
∏
r

∏
i

f r
i

(
Vr,ik

)
, (2.9)

where Vr,ik represents an appropriate subset of variable nodes (Vr,ik ⊆ V
r
k ) of robot r.

Figure 2.1: Example for a general factor graph for a problem with IMU and camera measure-
ments
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The factors fi represent error functions that should be minimized. The explicit expression

of such a function depends on the specific term in the factorization (2.8) that is represented by

the factor fi. Denoting this error function by err
(
V ik, zi

)
, the factor fi is defined as

fi
(
V ik
)
= d

(
err

(
V ik, zi

))
(2.10)

where the operator d(.) denotes a certain cost function. For Gaussian noise distributions, the

general factor fi (2.10) assumes the following form:

fi
(
V ik
)
= exp

(
−1

2

∥∥erri (V ik, zi)∥∥2Σi

)
, (2.11)

which defines the cost function d(.), and calculating the MAP estimate V∗k
.
= argmax

Vk

(Vk|Zk)

becomes equivalent to performing inference over the factor graph andminimizing the following

nonlinear least-squares function:

∑
i

∥∥erri (V ik, zi)∥∥2Σi
(2.12)

Here ∥a∥2Σi

.
= aTΣ−1a is the squaredMahalanobis distance andΣ is the covariance matrix.

While, in general, this can be an expensive operation, it has been shown in previous works

(see e.g. [20]) that using incremental smoothing, a recently developed approach [24] in the SLAM

community, the involved computational complexity is small and high-rate performance is pos-

sible in typical navigation applications.

2.4 Pre-Integrated IMU

Incorporating high-rate IMU measurements into the posterior, Eq. (2.4), and the underlying in-

ference, Eq. (2.5), which involves solving a nonlinear least squares (NLS) problem, does not

provide real time performance in general. To avoid doing so, we adopt a recently developed

concept of IMU pre-integration [31], and its application to sensor fusion in modern navigation

systems [20].

The key idea is to integrate consecutive IMU measurements
(
zIMU
i , . . . , zIMU

j

)
, between

two lower-frequencymeasurements from other sensors, such as cameras, obtained at some times

ti and tj , while expressing the resulting relative motion∆xi→j in the body frame of xi. Impor-

tantly, such a concept supports re-linearization, as part of the NLS iterative optimization, with-

out recalculating ∆xi→j [31, 20]. Moreover, real time performance can be achieved by using

intermediate∆i→t with t ≤ j.

We assume the starting pre-integration time is ti and use the notations∆pbii→j ,∆vbii→j , R
bi
bj

to represent the position, velocity and orientation components, respectively, calculated by prein-

tegrating the IMU measurements from time ti to some time tj . In order to avoid recalculating

these components when re-linearizing, Lupton and Sukkarieh [31] perform the integration in the

body frame of the starting pre-integration time ti, rather than in the global frame. The body

frame at ti is denoted by bi. Finally,Rb
a represents a rotation from system a to system b.
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Let∆xi→j
.
=
{
∆pbii→j ,∆vbii→j , R

bi
bj

}
.

Given the previous pre-integrated components, ∆pbii→j ,∆vbii→j , R
bi
bj
, with tj ≥ ti, and the

calibration parameters at the starting time ti, denoted by ci, the equations for adding a new IMU

measurement at time tj+1
.
= tj +∆t, comprising the specific force fj and the angular velocity

ωj , are given in the following equations,

∆pbii→j+1 = ∆pbii→j +∆vbii→j∆t

∆vbii→j+1 = ∆vbii→j +Rbi
bj
fi∆t

Rbi
bj+1

= Rbi
bj
Expmap (ωj) (2.13)

and we get∆xi→j+1
.
=
{
∆pbii→j+1,∆vbii→j+1, R

bi
bj+1

}
.

To summarize, we replace multiple IMU terms in the posterior, Eq. (2.4), between any two

time instances ti and tj with p (xj |xi,∆xi→j , ci).
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Chapter 3

Problem Formulation and Notations

Letxri =
[
pri vri qri

]
and cri =

[
dri bri

]
represent the navigation state vector and sensors

calibration state vector or robot r, respectively, at time ti. Here, pri , v
r
i and q

r
i are the position,

velocity and orientation (represented as a quaternion) of the body in the world frame and dri , b
r
i

are the gyroscope drift and accelerometers bias. Similarly we can add to the calibration state

vector of other sensors parameters, e.g. camera calibration parameters. Also denote by Lr
i the

perceived environment by that robot, e.g. in terms of 3D points, by time ti.

We define the joint state

Θr
k
.
= {Xr

k , C
r
k , L

r
k} (3.1)

whereXr
k

.
= {xr0, . . . , xrk} and Cr

k
.
= {cr0, . . . , crk} represent, respectively, navigation and cali-

bration states up to time tk.

Similarly we define Zr
0:k

.
= {zr0, . . . , zrk} and U r

0:k
.
= {ur0, . . . , urk}, where uri and zri rep-

resent control and obtained measurements of robot r at time ti. In the following, we shall use

the notation zr,IMU
i ∈ Zr

i to denote IMU measurements and zr,cam.
i ∈ Zr

i to denote camera

observations.

We consider now a group of R collaborating robots, and denote by Θk the corresponding

joint state

Θk
.
= Xk ∪ Ck ∪ Lk (3.2)

where Xk
.
= {Xr

k}
R
r=1 , Ck

.
= {Cr

k}
R
r=1 and Lk represents the perceived environment by

the entire group. Assuming a common reference frame between the robots is established, Lk

includes all the 3D points in Lr
k for each r, expressed in that reference frame.

Given these definitions, the probability density function (pdf) at time tk, also referred as the

belief, is given by

b (Θk)
.
= p (Θk|Z0:k, U0:k−1) ∝

R∏
r=1

p (Θr
k|Zr

0:k, U0:k−1) , (3.3)
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from which the maximum a posteriori estimate

Θ⋆ = argmax
Θk

b (Θk) , (3.4)

can be efficiently calculated while exploiting sparsity and re-using calculations (see e.g. [24]).

The belief (3.3) can be explicitly written in terms of individual motion, calibration and ob-

servation models as (see e.g. [16, 13])

b (Θk) ∝
R∏

r=1

{
priorsr

k∏
i=1

p
(
xri |xri−1, c

r
i−1, z

r,IMU
i−1

)
· p
(
cri |cri−1

)
p (zr,cam.

i |Θr,o
i )

}
(3.5)

3.1 Motion Model

The probabilistic motion model, p
(
xri |xri−1, c

r
i−1, z

r,IMU
i−1

)
, is represented by the underlying

nonlinear inertial navigation equations and the captured IMU measurements zIMU

xri+1 = f
(
xri , c

r
i , z

r,IMU
i

)
+ wr

i , wr
i ∼ N (0,Σr

w) , (3.6)

where wr
i is an additive Gaussian noise with noise covariance matrix Σr

w, such that

p
(
xri |xri−1, c

r
i−1, z

r,IMU
i−1

)
∝ exp

[
−1

2
∥xri − f

(
xri−1, c

r
i−1, z

r,IMU
i−1

)
∥2Σr

w

]
(3.7)

.

The function f
(
xri , c

r
i , z

r,IMU
i

)
is governed by the common differential strapdown equa-

tions (see e.g. [8, 20]). Assuming some general frame a (such as inertial frame, tangent frame,

etc.) and denoting by b and i the body and inertial frames, the time derivative of the velocity v,

expressed in frame a, is given by

ṗa = va

v̇a = Ra
bf

b + ga − 2Ωa
iav

a −
(
Ωa

iaΩ
a
ia + Ω̇a

ia

)
pa

Ṙa
b = Ra

bΩ
b
ab

Ωa
ia = [ωa

ia]× , Ωb
ab =

[
ωb
]
×
, (3.8)

whereRa
b is the rotationmatrix transforming from body frame to frame a, f b is the specific force

measured by the accelerometers and pa is the position vector. The vector ga is the position-

dependent gravity acceleration.
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The matrixΩa
ia is defined as

Ωa
ia = [ωa

ia]×
.
=

 0 − (ωa
ia)3 (ωa

ia)2
(ωa

ia)3 0 − (ωa
ia)1

− (ωa
ia)2 (ωa

ia)1 0

 (3.9)

withωa
ia being the rotational rate of frameawith respect to the inertial frame i, expressed in frame

a, and [.]× is the skew-symmetric operator, defined for any two vectors q1 and q2 as [q1]×q2 =

q1 × q2.

Similarly,Ωb
ab =

[
ωb
]
× with ωb denoting the rotation rate measured by the gyroscopes.

The IMU measurements errors ∆f b and ∆ωb include both random walk processes terms,

ng and na, and instrumentation calibration factors, dgyro and bacc.. The instrument calibration

factors can be estimated and compensated as we show in our work. Given the measurements

f b
meas., ω

b
meas. and estimation of the calibration factors dgyro, bacc., the specific force and angu-

lar rate vectors for use in the navigation equations (3.8) are computed as

f b = f b
meas. − bacc. (3.10)

ωb = ωb
meas. − dgyro (3.11)

Observe that the true (noise free) acceleration and angular velocity of the robot are a function

of the controls uri ; hence, we refer to the above IMU model as motion model.

In our work, we adopt a simplified model, commonly used in robotics [20, 11], called sim-

ple Euler integration prediction function. We could use different numerical schemes, ranging

from a simple Euler integration to high-order Runge–Kutta integration, for solving these navi-

gation equations. However, the factor graph framework allows the adoption of a simple Euler

integration prediction function with an associated integration uncertainty.

3.2 Calibration Model

The IMUcalibration parameters represented by c = [bacc., dgyro] are used for correcting the IMU

measurement f b, ωb according to the assumed IMU error model. This model of IMU errors is

usually estimated in conjunction with the estimation of the navigation state.

In the general case, the time propagation of c can be described according to some non-linear

model of its own (e.g. random walk):

ċ = gc (c) (3.12)

The calibration model p
(
crk|crk−1

)
is assumed to be with additive Gaussian noise with the

process noise covariance matrix Σr
e, i.e.

cri+1 = g (cri ) + eri , eri ∼ N (0,Σr
e) , (3.13)
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In this work we assume a random constant model for the calibration model,

cri+1 = g (cri ) + eri = cri + eri (3.14)

If desired, more sophisticated schemes can be used as well.

3.3 Observation Model

The observation model p
(
zr,Lk |Θ

r,o
k

)
at any time tk can be written as

p
(
zr,cam.
k |Θr,o

k

)
=

∏
lj∈Θr,o

k

p
(
zr,cam.
k,j |xrk, lrj

)
, (3.15)

where Θr,o
k ⊆ Θr

k are the overall involved states, z
r
k,j is an (image) observation of landmark lj ,

and the product accounts for all landmark observations captured at time tk.

The observation model for each such observation is given by

zri,j = h (xri , lj) + vri , v
r
i ∼ N (0,Σr

v) , (3.16)

where vri is an additive Gaussian noise with noise covariance matrixΣr
v. Note that the landmark

lj can be either a randomvariable (SLAM framework) or a priori known (but uncertain) landmark

at planning time.
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Chapter 4

Approach

Our work can be divided into two separated approaches: single-robot and multi-robot. The

main principle for both of the approaches is to improve the navigation accuracy of vision-aided

inertial navigation systems using designated methods, such as active online sensors calibration

or special cooperation between several robots.

4.1 Single-robot Approach

In the single-robot approachwe incorporate into the belief space planning equations sensors cali-

bration aspects such that navigation accuracy is significantly improved while using vision-aided

inertial navigation systems. Our approach extends the state of the art by incorporating into the

belief (3.3) sensor calibration model and incorporating into the objective function, J (Uk:k+L−1)

a cost function that quantifies calibration quality, possibly in combination with pose uncertainty

reduction. Wenote that in lack of sources of absolute information (such as reliableGPSor known

3D points), accurate sensor calibration is of great importance for improving navigation accuracy.

This is particularly true in GPS-deprived scenarios that involve segments of inertial navigation

without vision-aiding. Moreover, we specifically consider high-rate IMU sensors and use the

principle of the pre-integrated IMU factor also within the planning problem to avoid perform-

ingMAP inference (which required high computational power) at IMU rate instead of the (much

lower) camera rate.

Specifically, we consider the following objective function over a planning horizon ofL steps

Jk (b (Θk+L) , Uk:k+L−1)
.
=

L∑
l=1

E (cfl (b (Θk+l) , uk+l−1)) , (4.1)

where cfl represents an immediate cost function and the expectation accounts for all possible

realizations of the (unknown) future sensor observations. The optimal control is defined as

U⋆
k:k+L−1 = argmin

Uk:k+L−1

Jk (b (Θk+L) , Uk:k+L−1) . (4.2)

One can identify best robot actions (or motion plans), among those generated by existing motion
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planning approaches (e.g. sampling based approaches), or resort to direct optimization tech-

niques to obtain locally optimal solutions in a timely manner [17].

4.1.1 Inference and Recursive Formulation of the Belief

The belief at the lth look ahead time is defined, similarly to Eq. (3.3), as

b (Θk+l)
.
= p (Θk+l|Z0:k+l, U0:k+l−1) , (4.3)

where Z0:k+l and U0:k+l−1 represent, respectively, all the measurements and controls up to (fu-

ture) time tk+l, while present time is tk.

Determining optimal actions according toEq. (4.2) involves evaluating the objective function

Jk for different candidate actionsUk:k+L−1,given immediate costs cfl, thatwe discuss in Section

. This requires performing maximum a posteriori inference over the belief (4.3) such that

b (Θk+l) = N
(
Θ⋆

k+l,Λ
−1
k+l

)
, (4.4)

whereΘ⋆
k+l and Λk+l are the mean vector and information matrix, respectively.

Remark: We note thatΛk+l can be calculated even though the actual values of future obser-

vations Zk+1:k+l are unknown, whileΘ⋆
k+l is determined solely by the motion model by taking

the common measurement likelihood assumption. Further details are outside the scope of this

paper and can be found in [17].

The belief (4.3) can be recursively written as (see e.g. [13])

b (Θk+l) = ηb (Θk+l−1) p (xk+l|xk+l−1, uk+l−1, ck+l−1)

p (ck+l|ck+l−1) p
(
zk+l|Θo

k+l

)
, (4.5)

where η is a normalization constant and the other products are the belief at the previous step,

the motion model, the calibration model and the observation model. Also, Θo
k+l ⊆ Θk+l are

the involved random variables in the measurement likelihood term p
(
zk+l|Θo

k+l

)
, which can be

further expanded in terms of individual measurements zk+l,j ∈ zk+l representing observations

of 3D points lj .

Similarly to Eq. (3.15), the measurement likelihood term can be written as,

p
(
zk+l|Θo

k+l

)
=

∏
lj∈Θo

k+l

p (zk+l,j |xk+l, lj), (4.6)

where the product considers all the landmarks lj ∈ Lk expected to be observed from a future

viewpoint xk+l. In general, these could be landmarks mapped by planning time tk or a priori

known landmarks that correspond to known areas in the environment (if any).
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4.1.2 Incorporating (Pre-Integrated) IMUMeasurements

Further, since we are focusing on active visual-inertial SLAM, the motion model in Eq. (4.5) is

actually represented by the nonlinear inertial equations and IMUmeasurements, see Section 3.1.

Thus, the motion model term p (xk+l|xk+l−1, uk+l−1, ck+l−1) should be replaced by the corre-

sponding product of IMU models
∏

i p
(
xi|xi−1, ci−1, z

IMU
i−1

)
, representing the expected IMU

measurements to be obtained between the time instances tk+l−1 and tk+l given action uk+l−1,

i.e. ti ∈ [tk+l−1, tk+l].

As in passive visual-inertial SLAM, this would involve adding numerous factors and vari-

ables into the factor graph and the underlyingMAP inference (4.4), thereby negatively impacting

computational performance. Instead, we propose to use the concept of IMU pre-integration (see

Section 2.4 for more details) and add a single probabilistic term that represents the motion model

between camera times tk+l−1 and tk+l. In otherwords, themotionmodelp (xk+l|xk+l−1, uk+l−1, ck+l−1)

in Eq. (4.5) is replaced by p (xk+l|xk+l−1,∆xk+l−1→k+l, ck+l−1), where ∆xk+l−1→k+l is the

relativemotion computed via pre-integrating (future) IMUmeasurements in the time frame [tk+l−1, tk+l].

Note these measurements are a function of the considered actions via the nonlinear inertial

navigation equations (3.1). Although the actual values of these (future) IMU observations are

unknown, it is not required for calculating the posterior information matrix.

4.1.3 Choice of Cost Functions

Thus far, we showed how to incorporate within a future belief b (Θk+l) IMUmeasurements and

sensor calibration models (e.g. IMU bias) while considering general immediate cost functions.

In this sectionwe focus on a specific family of cost functions, cf , that utilize this new information

within planning, considering different types of planning objectives. We define a general cost

function [17]:

cf (b (Θk+l) , uk+l) =
∥∥EG

k+lΘ
⋆
k+l −ΘG

∥∥
MΘ

+ ∥ζ (uk+l)∥Mu
+ tr

(
MΣΛ

−1
k+lM

T
Σ

)︸ ︷︷ ︸
.
=cfΣ(MΣ,Λ

−1
k+l)

, (4.7)

whereMΣ,Mu andMΘ are given weight matrices that can be adjusted online [16, 17], and

ζ(u) is some known function that, depending on the application, quantifies the usage of con-

trol u. ΘG is a predefined goal and EG
k+l is a selection matrix, such that the matrix EG

k+lΘ
⋆
k+l

contains a subset of states for which we want to impose a goal. Similarly, the matrix MΣ in

term cfΣ can be used to choose the covariance of chosen states (position, pose, calibration etc.)

from the joint covariance Λ−1
k+l, i.e. consider only uncertainty of these states. We can consider

different variations for the uncertainty cost term cfΣ, such as accurate navigation or sensors self-

calibration by usingMΣ that choose only the pose or calibration states, respectively. In thiswork

we consider the uncertainty cost term cfΣTO
that presents a ’trade-off’ between two planning

objectives (concurrent, or following each other): reaching a target with minimum navigation er-

rors (i.e. accurate navigation) and calibrated sensors (i.e. self-calibration). The corresponding
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cost function is defined as

cfΣTO .
= tr

(
MΣcΛ

−1
k+lM

T
Σc

)
+ tr

(
MΣxΛ

−1
k+lM

T
Σx

)
, (4.8)

where the terms penalize, respectively, pose uncertainty and quantify calibration quality.

However, given the fact that there is a strong coupling between inertial sensors calibration to

the pose uncertainty and that the belief includes both the pose and calibration states, the sensor

calibration is still accounted for even if the uncertainty cost is only over position.

4.2 Multi-Robot Approach

Collaboration between robots can significantly improve performance of both inference and plan-

ning phases. In particular, by sharing relevant information between robots, navigation accuracy

can substantially improves, while by appropriately coordinating actions the robots can often fin-

ish a task in a shorter time. Previous works present active collaboration multi-robot approaches

where the robots cooperate only while being in the same region (observing same scene or each

other) and planning that aims to reduce the estimation uncertainty of each robot. Our research

further advances the state of the art by defining two collaborative robot subgroups, the “strategic

group” and the “expendable group”.

The key idea is to have robots from the “expendable robots” improve performance, in terms

of estimation accuracy, of robots from the “strategic group” while the latter execute time-critical

missions. Robots from the former group are envisioned to be cheap and therefore expandable,

with their sole purpose to boost the performance of the “strategic group”. Along this concept,

whichwe refer to as “Expendable Cooperation”, we also introduce the notion of indirect updates

between different robots. The basic idea is to exploit prior correlation between states of different

robots such that observation made by one robot (from the “expendable group”) impacts another

robot (from “strategic group”). Indirect updates thus allow multi-robot cooperative estimation

even when the robots operate in separate regions of the environment, allowing robots from the

“strategic group” to carry on their time-critical missions, while the “expendable group” robots

are taskedwith reducing the estimation uncertainty of the former group. We define and elaborate

on these innovative concepts in the following sections.

4.2.1 Multi-Robot Notations

In this section we briefly recall the relevant notations and definitions from Section 3. We define

the joint state

Θr
k
.
= {Xr

k , C
r
k , L

r
k} , (4.9)

whereXr
k

.
= {xr0, . . . , xrk} and Cr

k
.
= {cr0, . . . , crk} represent, respectively, navigation and cali-

bration states of robot r up to time tk.

Similarly, we define Zr
0:k

.
= {zr0, . . . , zrk} and U r

0:k
.
= {ur0, . . . , urk}, where uri and zri rep-

resent control and obtained measurements of robot r at time ti. In the following, we shall use
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the notation zr,IMU
i ∈ Zr

i to denote IMU measurements and zr,cam.
i ∈ Zr

i to denote camera

observations.

We consider now a group of R collaborating robots, and denote by Θk the corresponding

joint state

Θk
.
= Xk ∪ Ck ∪ Lk (4.10)

where Xk
.
= {Xr

k}
R
r=1, Ck

.
= {Cr

k}
R
r=1 and Lk represents the perceived environment by the

entire group.

Given these definitions, the multi-robot’s belief at time tk, is given by [13, 21]

b (Θk)
.
=p (Θk|Z0:k, U0:k−1) (4.11)

where U0:k−1
.
=
{
U r
0:k−1

}R
r=1

and Z0:k
.
= {Zr

0:k}
R
r=1.

The explicit definition of the belief and the extension to the belief at the lth look ahead time

are presented in detail in Section 4.2.3.

4.2.2 Expendable Cooperation

Multi-robot belief space planning can be framed as finding the optimal control U⋆
k:k+L−1 =

argmin
U

J (Uk:k+L−1) given a general objective function

Jk (b (Θk+L) , Uk:k+L−1)
.
=

L∑
l=1

E (cfl (b (Θk+l) , uk+l−1)) , (4.12)

where the costs can in general involve the belief over the entire joint state of all robots, i.e. the

belief for the lth look ahead step, b (Θk+l).

A common instantiation of this general formulation is where the cost of each robot involves

only its own belief from appropriate future time (see e.g. [13, 21, 37]),

Jk (b (Θk+L) , Uk:k+L−1) = E

[
L∑
l=1

R∑
r=1

cf r
l

(
b
(
Θr

k+l

)
, urk+l−1

)]
(4.13)

where b
(
Θr

k+l

)
=

∫
¬Θr

k+l

b (Θk+l).

Such a form, supports collaborative active state estimation, where each robot aims to im-

prove its estimation accuracy while considering additional terms in cfl, if exist. This formu-

lation is beneficial in order to improve the estimation accuracy in a collaborative multi-robot

setting where reducing the uncertainty of all robots is of interest (see e.g. [13, 21, 37]).

In contrast, we consider an alternative formulation addressing amulti-objective settingwhere

a pre-defined subset of robots (denoted as “strategic group”) is to reach a goal in minimum time

and uncertainty, while the remaining robots (denoted as “expendable group”) are solely entrusted

in improving the performance of the former subgroup of robots. Intuitively, we envision robots

from the “extendable group” to be cheap and affordable robots that one could spare, and we ad-

23



vocate to appropriately use these robots to boost the estimation accuracy of the “strategic group”

robots, which are envisioned to be expensive. In particular, such a concept enables the strategic

robots to focus mainly on their time-critical tasks (e.g. reaching a goal in minimal time), while

relying on the expendable robots to maximally reduce estimation uncertainty of the former.

Specifically, instead of (4.13), we consider the following definition of the cost function cfl

from Eq. (4.12):

cfl
.
=

∑
rA∈RA

cf rA

l

(
b
(
ΘrA

k+l

)
, ur

A

k+l−1

)
+

∑
rB∈RB

cf rB

l

(
b
(
ΘRA

k+l

)
, uR

A

k+l−1

)
(4.14)

whereRA andRB denote the “strategic group” and the “expendable group”, respectively. Sim-

ilarly, cf rA

l and cf rB

l are the cost functions for the robots in the “strategic group” and the “ex-

pendable group”, respectively. Also, ΘRA

k+l and u
RA

k+l−1 are, respectively, the joint state and the

control at time tk+l−1 for all the robots in the “strategic group”, RA. Compared to the corre-

sponding cost formulation in (4.13), where the cost of each robot involves a belief over its own

state, our formulation devotes all the resources of the expendable group to aid the strategic group.

For example, for two robots (RA =
{
rA
}
, RB =

{
rB
}
), the above cost function reduces

to,

cfl = cf rA

l

(
b
(
ΘrA

k+l

)
, ur

A

k+l−1

)
+ cf rB

l

(
b
(
ΘrA

k+l

)
, ur

A

k+l−1

)
(4.15)

where rA is the “strategic robot” and rB is the “expendable robot”.

Note that both cost functions, cf rA

l and cf rB

l , include a belief over the state of the strategic

group, which is rA in this case. For instance, rB can aim to minimize uncertainty of rA and not

its own uncertainty. Typically, our approach improves the performance of the strategic robots,

however there are few specific scenarios that we can get identical results by using the previous

approach. A detailed analysis for a family of cost functions and the connection between the

objective functions of the two methods, i.e. Eq. (4.13) and (4.14), is discussed in Section 5.2.2.

To summarize this section, the proposed concept supports collaborative active state estima-

tion with expendable robots that aim to improve estimation accuracy of strategic robots. This

concept enables the strategic robots to focus on their main task, e.g. reaching some goal, while

their navigation accuracy is taking care by other robots. In addition, we can use this concept also

to calibrate the strategic robots via expendable robots.

In the next section we discuss a key aspect in this concept - how the expendable robots can

indeed be used to reduce the estimation uncertainty of the strategic robots.

4.2.3 Multi-Robot Belief Propagation and Indirect Cooperation

Collaboration multi-robot can be achieved by using several cooperation methods. Until our re-

search, these methods [27, 13, 21] can be divided into two categories: cooperation via observing
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other robots or cooperation via observing mutual landmark (see graphical illustration on Figure

4.1 (a) and (b)). In other words, as shown in the figures, these cooperation methods require direct

connection between the robot. Specifically, method (b) is more flexible than method (a) because

it enables observing mutual landmarks at different times. In our research we want to increase

the contribution of the “expendable group” concept, and relax the cooperation requirement for

a direct connection between the robots (even for method (b)), by enabling indirect observation

updates given the states of different robots are correlated (see graphical illustration on Figure 4.1

(c)). More specifically, Figure 4.1 (c) shows that when robot r1 observes a previously mapped

landmark l1, the estimation update for robot r1 impacts the state estimation of robot r2 due to

the initial correlation between them. This indirect concept means that given prior correlation,

informative observation made by one robot, impacts also the states of other robots.

(a) (b) (c)

Figure 4.1: Factor graphs illustrations for multi-robot cooperation concepts. (a) Cooperation
via observing other robots; (b) Cooperation via observing same landmark; (c) Indirect cooper-
ation given past correlation . While (a) and (b) are direct cooperation concepts requiring direct
connection between robots, (c) is the indirect cooperation concept given past correlation

In the following subsections, we present a theoretical analysis that demonstrates the indirect

cooperation concept, and then elaborate on a multi-robot belief that includes all the described

ingredients.

Theoretical Analysis

We present a simple theoretical analysis to demonstrate the indirect update concept. We assume

a simple case of two robots, r1 and r2, starting with some initial correlation (e.g. mutual obser-

vation or prior knowledge). We will assume that robot r1 observes an a priori known region and

the other robot does not make any observation. Our goal is to show that, in presence of prior

correlation, the covariance of r2 will be updated as a result of an informative observation made

by r1, despite the fact that r2 did not make any observations.

Let Σ and I represent the joint prior covariance and information matrix, respectively:

I
.
= ATA = RTR , Σ = I−1 .

=

[
Σ11 Σ12

Σ21 Σ22

]
, (4.16)

where A is the Jacobian matrix and R is the square root information matrix. The matrix R can
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be calculated from the information matrix using Cholesky factorization.

For the simple case of our analysis the form of matrix R is defined as shown in figure 7.1,

where the columns and rows represent the robots and r12 represent the correlation between them.

Figure 4.2: The square root information matrixR for the simple case of two robots

The Jacobian matrix A, is the Jacobian over the observation model z = h (x) + v and it is

calculated by,

A
.
= ∇X (h (X)) =

[
a1 . . . an

]
(4.17)

where n is the number of robots.

For our case, only robot r1 observe a landmark, so at the observation time the Jacobianmatrix

is,

A =
[
a1 0

]
(4.18)

To calculateRk we need to update thematrixRk−1with the JacobianAk, as shown in Figure

7.2.

Figure 4.3: The matrix at time tk after adding the Jacobian Ak. This matrix is updated using
Given Rotation in order to calculate the a posteriori information matrixRk

This update can be efficiently performed usingGivens Rotations (See theAppendix formore

details) that are used to nullify all entries of Ak and appropriately updating the entries of Rk−1

(see Figure 7.2), yielding the a posteriori information matrixRk,

Rk =

[
rk11 rk12
0 rk22

]
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In our case a1 is a very accurate measurement due to the a priori known region observation. We

want to show that this measurement impact also robot r2 estimation and covariance, i.e. Σk
22

will be updated although robot r2 did not measured anything.

In order to calculate the matrices Rk and Σk from
[
Rk−1 Ak

]T
we used relations de-

scribed in the literature [10, 22, 15] get the following expression forΣk
22 (See the Appendix (Sec-

tion 7) for the full proof),

Σk
22 =

(
rk11
)2(

rk−1
22

)2 (
rk11
)2

+
(
−a(0)1 rk−1

12

)2 (4.19)

It is shown in Eq. (7.9) that in the case without correlation between the robots, i.e. rk−1
12 = 0, the

covariance matrix is not updated

Σk
22 =

(
rk−1
22

)−2

On the other hand, with a correlation between the robots and observation made by robot r1, the

covariance of robot r2 is updated - the stronger the initial correlation, the stronger the impact.

To conclude this section, we present a novel approach for indirect collaborative state esti-

mation with expendable robots that can improves significantly the performance of the strategic

robots in terms of navigation accuracy, calibration quality and overall path length/time.

Belief Space Planning Formulation

In this section we will present how all the multi-robot concepts we presented in the previous

sections are integrated into the multi-robot belief space planning formulation.

The belief presented in Eq. (4.11) can be explicitly written in terms of individual motion,

calibration and observation models as,

b (Θk) =
R∏

r=1

{
priorsr

k∏
i=1

p
(
xrk|xrk−1, c

r
k−1, u

r
k−1

)
p
(
crk|crk−1

)
p
(
zr,cam.
k |Θr,o

k

)}
(4.20)

where p
(
xrk|xrk−1, c

r
k−1, u

r
k−1

)
is the motion model, p

(
crk|crk−1

)
is the calibration model and

p
(
zr,cam.
k |Θr,o

k

)
is the observation model. Also, Θr,o

k ⊆ Θr
k are the involved random variables

in the measurement likelihood term p
(
zr,cam.
k |Θr,o

k

)
, which can be further expanded in terms of

individual measurements zr,cam.
k,j ∈ zr,cam.

k representing observations of 3D points lj .

Similarly to the single-robot definitions, the belief at the lth look ahead step can be written

recursively as follow (see e.g. [13, 21]),

b (Θk+l) = ηb (Θk+l−1)
R∏

r=1

p
(
xrk+l|xrk+l−1, c

r
k+l−1, u

r
k+l−1

)
p
(
crk+l|crk+l−1

)
p
(
zr,camk+l |Θ

r,o
k+l

)
(4.21)
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where η is a normalization constant.

We now focus on the measurement likelihood term p
(
zr,camk+l |Θ

r,o
k+l

)
that represents sensor

observations of the environment (represented e.g. by 3D points). However, now, these are future

observations of the environment to be made according to robot r’s planned motion. As shown

in [13, 21] this term can be explicitly written as,

p
(
zr,camk+l |Θ

r,o
k+l

)
=

∏
lj∈Θr,o

k+l

p
(
zr,camk+l,j |x

r
k+l, lj

)
·

∏
lReg
j ∈Θr,o

k+l

p
(
lReg
j

)
· p
(
zr,camk+l,j |x

r
k+l, l

Reg
j

)
·
∏
j

p
(
ξr,r

′

k+l,k+j |x
r
k+l, x

r′
k+j

)
(4.22)

where lReg
j represents all the landmarks in the a priori known regions with uncertainty level

represented by the prior p
(
lReg
j

)
and ξr,r

′

k+l,k+j refers to a relative pose constraint calculated

from raw measurements zrk+l and z
r′
k+j .

The first product represents observations of previouslymapped 3D points lj ∈ Lk withΘ
r,o
k+l

including those 3D points that are actually visible from xrk+l. The second product represents

observations of landmarks within the a priori known regions that are actually visible from xrk+l.

The last product represents future multi-robot constraints that correspond to different robots, r

and r′, mutually observing unknown scenes from different viewpoints.

Note, that all the three products do not always exist. The first two products exist when lj ∈
Θr,o

k+l and l
Reg
j ∈ Θr,o

k+l exist. The last product exists only in the case where the robots are close

enough to each other (defined by specific distance threshold).

This definition of the belief at the lth look ahead step, includes the three cooperation method

described before, the direct and the indirect (see Figure 4.1). The direct methods (a) and (b) are

described by the last product in Eq. (4.22), while for method (a), robots see each other, the future

times are equal, i.e. l = j. The indirect method (c) is described by the first and the second prod-

ucts in Eq. (4.22) in addition to the correlation between the robots encoded in the term b (Θk+l−1)

in Eq. (4.21).
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Chapter 5

Results

Westudy our proposed approaches in simulation considering autonomous navigation in partially

unknown, uncertain, GPS-deprived environments. In the considered scenarios, an aerial robot

(e.g. quadrotor) has to autonomously navigate to a pre-defined goals with minimum localization

uncertainty while utilizing limited prior information regarding the environment and using its

onboard sensors. The latter include a downward-facing monocular camera and an IMU.

Given a robot’s trajectory, our simulation generates synthetic IMUmeasurements and cam-

era observations, which are used to formulate appropriate pre-integrated IMU and projection

factors, as described in Section 3. Image observations are corrupted by zero-mean Gaussian

noise with standard deviation of 0.5 pixels. A simple IMU calibrationmodel is considered, com-

prising accelerometers bias and gyroscopes drift of 10mg bias and 10 ◦/hr drift, respectively.

Our Matlab implementation uses GTSAM library [6] for computationally efficient inference.

5.1 Single-Robot Results

Wedemonstrate our single-robot approach in comparison to othermethods presented in previous

works. We consider a scenario with environment comprises randomly scattered landmarks and

an area without landmarks at all, where the goal is located (see Figure 5.6). Such a scenario was

designed to highlight the importance of incorporating online sensor calibration aspects within

planning, as in the area surrounding the goal no landmark observations can be obtained and iner-

tial navigation is required; for example, this could model a dark or texture-less area. Navigation

estimation error at the goal thus depends on IMU sensor calibration, in addition to the solution

accuracy provided by visual SLAMwhile landmark observations are available. Clearly, naviga-

tion accuracy at the goal is expected to differ significantly for poorly- and well-calibrated IMU

sensors.

For simplicity we assume the robot can only control its heading angle while keeping the ve-

locity constant. The control effort, ζ(u) in Eq. (4.7), is therefore defined as the change in the

heading angle. Such a setting induces single-axis maneuvers which are insufficient to yield a

fully observable system with the considered visual-inertial SLAM framework [1, 32]; in partic-

ular, biases of accelerometer sensors cannot be calibrated in all axes.
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For this reason, we consider some regions in the environment (in terms of landmarks within

those regions) are a priori known to the robot with different levels of uncertainty (ranging be-

tween 10−5 and 10 meters) and can be used for updating the robot’s belief. As will be seen in

Section 5.1.1, regions that are known with high-accuracy can be used for accelerometer sensor

calibration and for position updates, while those with lower level of accuracy (10 meters) can

only be used for position updates. No other information is initially available, and thus the robot

has to map the environment while navigating through it, i.e. perform SLAM, and consider ap-

propriate aspects within the planning phase.

This section in organized as follows, first we demonstrate (using passive simulation) the

influence of known regions over the robot’s performance, then we present results from a simple

case of active online calibration only and in the last two sections we demonstrate our approach

contribution comparing to previous works.

5.1.1 Known Regions Influence - Study Case

We examine the influence of different uncertainty levels of priori known regions on the naviga-

tion and calibration performance. We simulate the same predefined trajectory considering iden-

tical environment in terms of landmarks, while changing only the uncertainty levels of landmarks

within the a priori known region (green square). The results are presented in Figures 5.1-5.3.
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Figure 5.1: Straight forward trajectory with known region (green square). The unknown land-
marks in the environment are the blue dots and the observed landmarks are shown with + on
them.
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Figure 5.2: Position covariance results using different uncertainty levels of priori known regions

(a) (b)

Figure 5.3: Calibration performance using different uncertainty levels of priori known regions,
(a) Accelerometers calibration covariance results and (b) Gyroscopes calibration covariance re-
sults

It is shown that it is possible to calibrate only the IMU’s accelerometers using known region

with very small uncertainty.

5.1.2 Active Online Sensors Calibration Results

In this section we present the influence on sensors calibration and navigation uncertainty by

using ’reaching-goal’ scenario comparing to ’online-calibration’ scenario. These two scenarios

are identical in terms of sensors parameters and environment (landmarks, known region and goal)

and the only difference between them are the weight matrices, MΘ and MΣ, in Eq. (4.7). For

’reaching-goal’ case, the weight matrix MΣ in Eq. (4.7) is set to zero, meaning that the robot

should plan for the shortest path to goal. For ’online-calibration’ case, the weight matrixMΣx is

set to zero and the weight matricesMΘ,MΣc are adjustable in time according to the calibration

level of the robot.

We use a gradient descent method for optimizing the outer layer and Gauss-Newton for cal-

culating inference of the belief. And we define the initial trajectory as five steps (∼ 200m) of

straight forward that don’t pass through the known region.
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The comparison between the two scenarios is presented in the following figures. The robot’s

trajectories are shown in Figure 5.4, where the green square is a known region with uncertainty

of 10−5m. The unknown landmarks in the environment are the blue dots and the observed land-

marks along the path are shown with ’+’ on them. Performance comparison between the two

methods in term of estimation uncertainty (position and accelerometers calibration) is presented

in Figure 5.5. The presented results are the SLAM results given the chosen path in each method.

(a) (b)

Figure 5.4: Simulation trajectories with known region (green square) using (a) ’reaching-goal’
scenario or (b) ’online-calibration’ scenario. The unknown landmarks in the environment are
the blue dots and the observed landmarks are shown with + on them. These two scenarios are
identical in terms of sensors parameters and environment (landmarks, known region and goal).

It is shown that the planning in our approach takes into account the known regions in the

environment in order to keep the accelerometer’s calibration minimum as possible. In addition,

the known region drastically affects the navigation accuracy as shown in Figure 5.5.

5.1.3 Compared Approaches

We compare our approach, denoted as 'BSP-Calib’, with two other methods: 'BSP' (previous

approaches, [17, 16]) and ’Shortest-Path’. The objective function in all the three methods can be

described via Eq. (4.7) with weights appropriately adapted on the fly, as discussed below.

The BSP method does not incorporate sensor calibration states within the belief, which

therefore describes at time k the joint pdf over past and current robot poses Xk and mapped

landmark Lk. Belief evolution along a given candidate trajectory thus considers perfectly cal-

ibrated sensors, both within inference and planning. In this method, similarly to [17], we bal-

ance between position uncertainty reduction versus goal achievement by defining a soft bound

tr
(
MΣxΛ

−1
k+lM

T
Σx

)
≤ βx, and set the weights MΘ = αx

k and MΣx

.
=
√
1− αx

kM̄Σx , where

αx
k

.
= 1− tr(MΣxΛ

−1
k+lM

T
Σx)

βx ∈ [0, 1] and M̄Σx is a selection matrix that extracts the appropriate
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(a) (b)

Figure 5.5: Performance comparison in terms of estimation uncertainty: (a) position covariance
and error and (b) accelerometers calibration covariance.

position covariance from Λ−1
k+l. See [17] for further details.

In our approach, the BSP-Calib method, we consider a modification of the above to ac-

count also for the sensor calibration uncertainty while setting the weights. Specifically, we

consider a soft bound βc on sensor calibration uncertainty (accelerometer biases in our case),

and let αc
k

.
= 1 − tr(MΣcΛ

−1
k+lM

T
Σc)

βc ∈ [0, 1] and MΣc

.
=
√
1− αc

kM̄Σc , where M̄Σc is de-

fined similarly to M̄Σx . Since we now have two online-calculated parameters αx
k and α

c
k, we set

MΘ = min (αx
k, α

c
k), andMΣx

.
=
√
αc
k

(
1− αx

k

)
M̄Σx . The intuition here is as follows: as we

approach any of the soft bounds βx or βc, i.e. αx → 0 or αc → 0, the goal attainment term is

disabled to allow for active sensor calibration or position uncertainty reduction. However, since

the environment is unknown and may include areas without landmarks (texture-less or dark ar-

eas) that require inertial navigation, we prioritize sensor calibration over reduction in position

uncertainty, since this would yield slower uncertainty evolution. One can observe that when the

sensor is sufficiently calibrated with respect to βc, the method will aim to actively reduce posi-

tion uncertainty in case αx
k → 0, or invest efforts in goal attainment. In our implementation we

use βx = 1502m2 and βc = 2mg. Clearly, properly balancing the weights in a multi-objective

function can be delicate and better approaches could exist. Further investigation of these aspects

is left to future research.

In the Shortest-Path method we simply set all the weight matrices to zero except of MΘ.

This method will therefore choose the shortest path to the goal without considering uncertainty

aspects.

5.1.4 Simulation Results

The comparison between the three methods is presented in the following figures. The robot’s

trajectories are shown in Figure 5.6, where the cyan square is a known region with uncertainty of

10−5m, and the green square is a known region with uncertainty of 10m. The green square lo-
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cated closer to start and goal locations. The unknown landmarks in the environment are the blue

dots and the observed landmarks along the path are shown with ’+’ on them. Performance com-

parison between the three methods in terms of estimation uncertainty (position and accelerome-

ters calibration) and paths length is presented in Figure 5.7. The presented results are the SLAM

results given the chosen path in each method.

(a) (b) (c)

Figure 5.6: The robot’s trajectories for the three methods: (a) 'BSP', (b) 'BSP-Calib' (our ap-
proach) and (c) 'Shortest-Path', where the cyan square is a known region with uncertainty of
10−5m, and the green square is a known region with uncertainty of 10m. The unknown land-
marks in the environment are the blue dots and the observed landmarks along the path are shown
with + on them.

(a) (b)

Figure 5.7: Performance comparison in terms of estimation uncertainty: (a) position covariance
and (b) accelerometers calibration covariance. Calibration performance is not shown for ‘BSP’
as in this approach sensor calibration is not part of the belief, and is not considered in objective
function. One can see that our approach, 'BSP-Calib', yields better performance despite the fact
that it is the longest path to the goal.

One can see in the results that our approach, 'BSP-Calib', yields better performance, in terms

of position uncertainty, despite the fact that it is the longest path to the goal. In our approach the

planning chooses to go through the known region with the lower uncertainty (cyan region) in

order to calibrate the robot’s accelerometers and then proceed to the goal. On the other hand,

the 'BSP' method does not consider the calibration state in the belief, and therefore chooses
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a shorter path that reduces the pose uncertainty by reaching the closer known region but with

higher uncertainty (green region).

We note that actual performance in inference, in terms of covariance uncertainty upon reach-

ing the goal, may be actually different than the onewhichwas calculated within planning. While

the latter only considers already-mapped (or known) landmarks and dead reckoning otherwise,

the inference process updates the belief based on incoming sensor observations also of new land-

marks. It is thus conceptually possible that the path determined by our approach, 'BSP-Calib',

will yield in inference inferior results to 'BSP' performance or 'Shortest-Path’ methods. This,

for example, could be the case in an environment full with (unknown) landmarks. One possible

direction to approach this gap of belief evolution in planning and inference is to consider within

planning some statistics regarding landmark distribution. This direction is left to future research.
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5.2 Multi-Robot Results

In this study we consider a scenario with unknown environment comprising randomly scattered

landmarks, an a priori known region and a goal located in a specific point (see Figure 5.11). We

consider 2 aerial robots equipped with a downward-facing monocular camera and an IMU and

assume the sensors for both robots are of identical quality. A probabilistic roadmap (PRM) [26]

is used to discretize the (partially unknown) environment. Given a PRM, candidate paths are

generated for each robot. The objective function, for each of the compared methods, is then

evaluated for all combinations of candidate paths of both robots, and the optimal combination is

then chosen.

This section is organized as follows. First, we provide a case study for indirect cooperation

(see Section 5.2.1) in order to demonstrate the advantages of this concept. Then, in Sections 5.2.2

and 5.2.3 we demonstrate our multi-robot approach, denoted as ’Expendable-MR’, which uses

the cost function (4.14) and leverages indirectmulti-robot updates. In these sectionswe also com-

pare our approach to an alternative recent multi-robot BSP approach [13, 21]. The performance

analysis in this section is in terms of position accuracy and path length.

Our multi-robot approach naturally applies also to active sensor calibration that was dis-

cussed in the single-robot case. However, while in our multi-robot simulation the belief in-

cludes sensor calibration variables, in this section we do not include in the objective function

corresponding calibration costs.

5.2.1 Indirect Cooperation - Case Study

We evaluate the concept of indirect cooperation, as defined in Section 4.2.3 in a basic study,

studying its feasibility in different scenarios. In all cases, we consider two robots operating

in an unknown environment represented in landmarks and a priori known region. The a priori

known region is used formore efficient indirectly update the strategic robot due to the significant

influence on the expendable robot.

In this study we focus on the impact of indirect cooperation on the performance of both of

the robots, in terms of estimation uncertainty; hence, the robot trajectories in this section are

pre-defined and no planning is involved.

We consider the following three scenarios, denoted as 'Shortest-Path', 'Highest-Correlation'

and 'Common-Cooperation', as shown in Figure 5.8. In that figure, the cyan square is the known

region, the green dots represent the unknown landmarks and the ellipses along the robots’ tra-

jectories represent the position covariance. All the scenarios assume that the trajectory for the

strategic robot, r1, is te shortest path to the goal, while the trajectory of the expendable robot r2
changes for each scenario, but always goes through the known region.

Specifically, in 'Shortest-Path' scenario, r2 goes directly to the known region. In this sce-

nario represents the shortest path for updating the strategic robot usually on account of low corre-

lation at update time between the states of robots r1 and r2. The 'Highest-Correlation' scenario

represents the path that gives the highest correlation at update time usually on account of update

time. Finally, the 'Common-Cooperation' scenario represents the common multi-robot coop-
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eration method which assumes the robots observe a mutual scene (even at different times) and

does not rely on prior correlation between the robots at all. We present the robots performance

in term of position accuracy (error and uncertainty).

(a) (b) (c)

Figure 5.8: Robots’ trajectories for the three scenarios: (a) 'Shortest-Path' where r2 go directly
to the known region in order to update r1 at the shortest time, (b) 'Highest-Correlation' where r2
go to the known region at the last time it can in order to achieve the highest correlation at update
time and (c) 'Common-Cooperation' where r2 observes a mutual scene after it passed through
the known region. In all the graphs the cyan square represents the known region, the green
dots represent the unknown landmarks and the ellipses along the robot’s trajectories represent
position covariance. In all cases, robot r1 goes straight to goal, while robot r2 goes through the
known region.

The performance results for the three scenario are presented in Figure 5.9, where the strategic

robot (r1) is represented with red color and the expendable robot (r2) with the green color. The

shown results were generated by performing a Monte-Carlo simulation with 50 runs for each

scenario. The plots show for each scenario the standard deviation (STD) over the runs results for

the norm position error.

(a) (b) (c)

Figure 5.9: Performance comparison in terms of position estimation uncertainty and error: (a)
'Shortest-Path', (b) 'Highest-Correlation' and (c) 'Common-Cooperation'. Robot r1 is the strate-
gic robot (represented by red color); robot r2 is the expendable robot (represented by green color).
In scenarios (a) and (b) one can see that the state estimation of robot r1 is indirectly updated when
robot r2 observes the known region. One can see the advantage of using the indirect cooperation
concept (scenarios (a) and (b)) in terms of robot r′1s update time compared to scenario (c).
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One can see in Figure 5.9(a) and 5.9(b) that, given initial correlation between the states of

both robots, the state estimation of robot r1 is indirectly updated when robot r2 observes the

known region, despite the fact that r1 is located in a different region and does not make any

accurate observations on its own. Also, the results reflect the advantage using the indirect co-

operation concept in terms of robot r′1s update time, 12sec in Figure 5.9(a) compared to 15sec in

Figure 5.9(c). To summarize this section, the indirect cooperation approach relaxes the cooper-

ation requirement for observing mutual scene (5.9(c)) and enables the robots more flexibility in

cooperation.

5.2.2 Expendable Cooperation - Compared Approaches

After demonstrating the advantages of the indirect cooperation concept we now proceeding to

the results for the multi-robot expendable cooperation approach as described in Section 4.2.2.

We compare our approach, denoted as 'Expendable-MR’, with the previous approaches method

(see e.g. [13, 21]), denoted as 'BSP-MR'. For each method we considered two scenarios: (i) the

entire environment is scatteredwith landmarks and (ii) the goal is locatedwithin a regionwithout

landmarks at all.

Themain objective for all themethods is that at least one (pre-defined) robot reaches the goal

inminimum time and navigation error. In particular, in our approach only r1 aims the goal while

r2 aims to reduce estimation uncertainty of r1, while in BSP-MR both of the robots aim to reach

the goal while minimizing their own uncertainty.

The general objective function for the two methods is given by Eqs. (4.13) and (4.15). In our

simulation we considered the following specific costs for the two methods.

In our approach, the Expendable-MR method, we define robot r1 as the strategic robot and

robot r2 as the expendable robot. For this method we use the following cost function,

cfExp−MR
l = cf r1

l + cf r2
l

cf r1
l = M r1

Θ pathlenr1

cf r2
l = M r1

Σx
tr (Σk+L) (5.1)

where, pathlenr1represents the path length of r1 and M r1
Θ the weight matrix that sets the im-

portance on this term. The matrix M r1
Σx

is used to choose the position covariance of robot r′1s

from the joint covariance Σk+L and determine the importance of it. The meaning of these cost

functions is that r1 plans to reach the goal with the shortest path while r2 plans an optimal tra-

jectory for reducing r′1s position uncertainty using the expendable indirect cooperation concept

we described in Section 4.2. In our simulation, robot r′2s stopping condition is when the position

uncertainty of robot r1 is reduced below some threshold, i.e. r2 stops after reaching the known

region that indirectly updated robot r′1s position state estimation.
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In BSP-MR method, the objective function is as defined in Eq. (4.13), where each robot

“cares” about its own state estimation. For this reason we define a similar cost function for both

robots as follows,

cfBSP−MR
l = cf r1

l + cf r2
l

cf r1
l = M r1

Θ pathlenr1 +M r1
Σx

tr (Σk+L)

cf r2
l = M r2

Θ pathlenr2 +M r2
Σx

tr (Σk+L) (5.2)

The meaning of these cost functions is that each robot balances between reaching the goal with

the shortest path while reducing its position uncertainty. In particular, as opposed to our ap-

proach, where only one robot has to reach the goal, here, both of the robots are tasked to reach

the goal.

We observe that while the formulation (5.2) of BSP-MR method is common in literature and

generally considered with non-zero weights, it can be reduced to the objective of our approach,

i.e. Eq. (5.1), by setting M r2
Θ = M r2

Σx
= 0. As we shall see in the sequel, by assigning r2

the role of an expendable robot, whose sole purpose is to aid r1, and maintaining a joint multi-

robot belief, which facilitates indirect multi-robot updates in presence of prior correlation, our

approach is capable to improve the performance of robot r1.

5.2.3 Expendable Cooperation - Simulation Results

We used a probabilistic roadmap (PRM) [26] to discretize the (partially unknown) environment

and generate candidate paths over the roadmap. Figure 5.10 shows the considered scenarios for

the two robots and the generated 20 candidate paths for each robot, 10 paths directly to the goal

and 10 paths to the goal through the known region. The robots start near each other so there is

a correlation between them from the beginning due to mutual landmark observation and a prior

over the initial pose. Robot r1 is represented with red color and robot r2 is represented with

green color.

Given the candidate paths, we calculate the optimal paths combination by using the objective

functions defined in Eq. (5.1) and (5.2). The comparison between the two methods for each

scenario is presented in the following figures. Note that the figure shows multi-robot SLAM

results, i.e. the robots execute the optimal paths as determined by each of the methods, capture

new sensor observations and use the latter to infer the posterior multi-robot belief. The robots’

trajectories are shown in Figure 5.11, where the green square is a known region with uncertainty

of 10−5m and the unknown landmarks in the environment are the blue dots.
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Figure 5.10: The environment discretization using probabilistic roadmap (PRM). The circles
are the sampling points and the connections between the circles are the vertices that represent
possible future robot locations. The generated candidate paths for the robots are the red (r1) and
green (r2) trajectories.

(a) (b)

(c) (d)

Figure 5.11: The robot’s trajectories for the two methods considering the two scenar-
ios: (a) 'Expendable-MR' with “full environment”, (b) 'BSP-MR' with “full environment”,
(c)'Expendable-MR' with “dark-corridor environment” and (b) 'BSP-MR' with “dark-corridor
environment”. Where the green square is a known region with uncertainty of 10−5m and the
unknown landmarks in the environment are the blue dots. Robot r1 is the strategic robot pre-
sented with red trajectory and robot r2 is the expendable robot presented with green trajectory.
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One can see that in the 'BSP-MR' method all the robots choose trajectories to the goal that

pass through the known region. In contrast, in our approach, only the expendable robot plans to

reach the known region and the strategic robot plans the shortest path to the goal while relying

on the expendable robot to reduce its estimation uncertainty.

(a) (b)

(c) (d)

Figure 5.12: Performance comparison in terms of position estimation uncertainty and error for
the two methods considering the two scenarios: (a) 'Expendable-MR' with “full environment”,
(b) 'BSP-MR' with “full environment”, (c)'Expendable-MR' with “dark-corridor environment”
and (b) 'BSP-MR' with “dark-corridor environment”. Robot r1 is the strategic robot presented
with red lines and robot r2 is the expendable robot presented with green lines. The covariance
is presented with the dashed line and the error with the solid line. See text for details.

Performance comparison between the two methods for each scenario in terms of position

estimation uncertainty and path lengths is presented in Figure 5.12 and summarized in Figure

5.13. One can observe that our approach, 'Expendable-MR' (Figures 5.12(a) and 5.12(c)), always

yields better performance in terms of trajectory length of the strategic robot r1, while keeping

similar levels of accuracy compared to the 'BSP-MR' method. In particular, path length of robot

r1 is ~1.1km in our approach compared to ~2km for the 'BSP-MR' method. On the other hand,

in terms of r1 position uncertainty at the goal, the performance is scenario-dependent. For the
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“full environment” scenario (Figures 5.12(a) and 5.12(b)), the 'BSP-MR' method yields slightly

better performance (difference of ~5m between the covariances), probably due the continuous

cooperation between the robots from the known region till they reach the goal. However, for the

“dark-corridor environment” (Figures 5.12(c) and 5.12(d)), our approach yields significantly bet-

ter performance (difference of ~20m between the covariances) for the same reason, i.e. for the

'BSP-MR' method, the robots stop the cooperation when entering the “dark-corridor” and the

long path cause a bigger uncertainty drift. To summarize, in both scenarios, our approach yields

enhanced performance of robot r1, in terms of path length (short path to goal), while the expend-

able robot r2 manages to reduce the uncertainty of r1 to attain high accuracy upon reaching the

goal.

(a) (b)

Figure 5.13: Comparison summery for the four simulation runs. Robot r′1s (a) path length and
(b) position covariance comparison. One can see that our approach always yield better results
in term of path length. On the other hand, in term of navigation accuracy the performance is
depend on the scenario, for example in a case with region without landmark our case probably
will yield better results (also related to the path length).
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Chapter 6

Conclusions

We addressed the problem of high-accuracy navigation for vision-aided inertial navigation sys-

tems considering both single and multi-robot frameworks and a GPS-deprived environment.

Especially, we addressed two problems related to belief space planning in partially unknown

environment, the first for single-robot framework and the second for collaborative multi-robot

framework.

For the single-robot case, we presented an approach for active inertial sensor calibration for

visual-inertial SLAM setup. This approach advances the state of the art in belief space planning

by incorporating within the belief and objective function also the IMU calibration state estima-

tion. By appropriately modifying the objective function, our approach is capable of calculating

optimal actions for reducing estimation error within inference, reducing estimation error growth

rate via IMU sensor calibration, or a combination of both.

The multi-robot framework builds upon the single-robot approach and introduces the con-

cept of expendable indirect multi-robot cooperation. This approach further advances the state of

the art by defining two collaborative robot subgroups, the “strategic group” and the “expendable

group”. The key idea is to have robots from the “expendable robots” improve performance, in

terms of estimation accuracy, of robots from the “strategic group” while the latter execute time-

critical missions. This approach is based on indirect cooperation concept, that enables one robot

updating the other robots that can be in different regions of the environments.

We examined the performance of our approach in simulation, considering as application

autonomous navigation to pre-defined goals within partial unknown environment. Simulation

results demonstrate estimation performance is significantly improved as a consequence of incor-

porating calibration aspects within the belief or objective function and by using the expendable

indirect cooperation concept.

As for future work, we plan to further investigate the expendable multi-robot cost function

contributions and its connection to the general and common definitions. In addition, a concept

for optimal adjustment of the weight matrices in the objective function. is a possible direction

for increasing the navigation accuracy.
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Chapter 7

Appendix - Indirect Cooperation

Theoretical Analysis

We present a simple theoretically analyze for demonstrate the indirect update concept. We as-

sume simple case of two robots, r1 and r2, starting with some initial correlation (e.g. mutual

observation or prior knowledge). We will assume that robot r1 observes an a prioiri known re-

gion and the other robot doesn’t make any observation. Our hypothesis is that the covariance

matrix of r2 will be updated by the observation of the a prioiri known region by r1 due to the

initial correlation.

Let Σ represents the covariance matrix of the problem. The covariance matrix Σ or the

information matrix I , are defined as

I
.
= ATA = RTR , Σ = I−1 .

=

[
Σ11 Σ12

Σ21 Σ22

]
(7.1)

Where A is the Jacobian matrix and R is the square root information matrix. The matrix R can

be calculated from the information matrix using Cholesky factorization.

Althoughwe could have shown the following analysis via Kalman Filter in covariance form,

we conduct the analysis in information form, specifically considering the square root informa-

tion matrixR, because we use iSAM that use the information form [25, 23]. The usage of iSAM

ismore convenient inmany aspects such as sparsity conservation, additive calculation andmore.

The matrix R, after marginalization previous states as shown in the following equation, is

an upper triangular shape.

p
(
xri |xri−1, u

r
i−1

)
=

∫
p
(
xri |xr1:i−1, u

r
i−1

)
dxr1:i−2 (7.2)

For the simple case of our analysis its form is defined as shown in figure 7.1, where the

columns and rows represent the robots and r12 represent the correlation between them.

The Jacobian matrix A, is the Jacobian over the observation model z = h (x) + v and it is

calculated by,
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Figure 7.1: The square root information matrixR for the simple case of two robots

A
.
= ∇X (h (X)) =

[
a1 . . . an

]
(7.3)

where n is the number of robots. For our case, only robot r1 observe a landmark, so in the

observation time the Jacobian matrix is,

A =
[
a1 0

]
(7.4)

For our case wewill examine thematrixR in two times: (a) Themoment when the constraint

between the robots was created, t0, and (b) the moment when robot r1 observed the oracle, tk.

To calculate Rk we need to update the matrix Rk−1 with the Jacobian Ak, as shown in Figure

7.2.

Figure 7.2: The matrix at time tk after adding the Jacobian Ak. This matrix is updated using
Given Rotation in order to calculate the a posteriori information matrixRk

This update can be efficiently performed using Givens Rotations that are used to nullify

all entries of Ak and appropriately updating the entries of Rk−1 (see Figure 7.2), yielding the a

posteriori information matrixRk,

Rk =

[
rk11 rk12
0 rk22

]
In our case a1 is a very accurate measurement due to the a priori known region observation. We

want to show that this measurement impact also robot r2 estimation and covariance, i.e. Σk
22

will be updated although robot r2 did not measured anything.
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To calculateRk from
[
Rk−1 Ak

]T
we can use the relations in [15]

(
rkii

)2
=

(
rk−1
ii

)2
+
(
a
(i−1)
i

)2
(7.5)

a
(i)
j =

−a(i−1)
i rk−1

ij + rk−1
ii a

(i−1)
j

rkii
(7.6)

Using these relations in our case we get

(
rk22

)2
=

(
rk−1
22

)2
+

(
−a(0)1 rk−1

12 + rk−1
11 a

(0)
2

)2
(
rk−1
11

)2
+
(
a
(0)
1

)2 (7.7)

To calculate the covariancematrix of each robot at time tk,Σk
ii, we can use the relations in [10, 22]

usingR = (rij)

Σll =
1

rll

 1

rll
−

n∑
j=l+1, rlj ̸=0

rljΣ
jl



Σil =
1

rii

− l∑
j=i+1, rij ̸=0

rijΣ
jl −

n∑
j=l+1, rij ̸=0

rijΣ
lj


for l = n, . . . , 1 and i = l − 1, . . . , 1.

Generally in our case for moment tj

Σ11 =
1

(r11)
2

(
1 +

(r12)
2

(r22)
2

)
Σ12 = − r12

r11 (r22)
2

Σ22 = (r22)
−2 (7.8)

Using Eq. (7.7) in Eq. (7.8) we get

Σk
22 =

1(
rk−1
22

)2
+

(
−a

(0)
1 rk−1

12 +rk−1
11 a

(0)
2

)2

(rk−1
11 )

2
+
(
a
(0)
1

)2

=

(
rk11
)2(

rk−1
22

)2 (
rk11
)2

+
(
−a(0)1 rk−1

12

)2 (7.9)

It is shown in Eq. (7.9) that in the case without correlation between the robots, i.e. rk−1
12 = 0, the

covariance matrix is not updated

Σk
22 =

(
rk−1
22

)−2

On the other hand, with a correlation between the robots and observation made by robot r1, the

covariance of robot r2 is updated - the stronger the initial correlation, the stronger the impact.
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הקטנת לפי האופטימליים המסלולים את מחשבת המטרה פונקציית בנוסף, הסנסורים. כיול איברי את

בסיטואציה במיוחד יעילה זה שיטה שניהם. של שילוב או השגיאות התפתחות קצב הקטנת המיקום, שגיאת

הינו הניווט בו חשוך, מסדרון או לבן קיר כדוגמת למצלמה, עניין” ”נקודות ללא איזור בסביבה קיים בו

חשוב יותר הינו טובה אינרציאליים סנסורים כיול רמת עם זה לאיזור כניסה כזה, במקרה בלבד. אינרציאלי

הפלטפורמה. מיקום על נמוך וודאות אי עם כניסה מאשר

הפלטפורמות של הניווט דיוקי של בהיבטים המערכת ביצועי את כמשפר הוכח פלטפורמות בין פעולה שיתוף

קבוצות תתי שתי הגדרת ע”י יותר יעיל פעולה לשיתוף גישה פיתחנו זו בעבודה הסביבה. מיפוי זמן או

ביעדים ממוקדת האסטרטגית הקבוצה המסייעת”. ו”הקבוצה האסטרטגית” ”הקבוצה - פלטפורמות של

דיוקי על בשמירה המסייעת בקבוצה ונעזרת הסיום, לנקודת מינימלי בזמן הגעה כדוגמת שלה, העיקריים

פלטפורמות בין עקיף” פיתוחשיטהל”עדכון ע”י פעולהזהמתאפשר שיתוף המיקוםהגבוהיםהנדרשיםממנה.

עדכון של בהיבטים פלטפורמות, בין פעולה שיתוף מאפשרים אנו כלומר, הפלטפורמות. בין קורלציה בהינתן

פונקציות מגדירים אנו בפרט, שונים. איזורים בשני נמצאים הרובוטים בו במקרה גם המצב, משתני שערוך

לעבודות בדומה מטרה, פונקציית מגדירים אנו האסטרטגית” ה”קבוצה עבור קבוצה. תת לכל שונות מטרה

מגדירים אנו המסייעת” ה”קבוצה עבור אך זו. קבוצה של המצב משתני שערוך את הכוללת קודמות,

פונקציית שבפועל יוצא כך האסטרטגית”. ה”קבוצה של המצב משתני שערוך את הכוללת מטרה פונקציית

עבור לדוגמה, האסטרטגית”. ה”קבוצה של בביצועים ”מטפלת” הפלטפורמות על עבור האחודה המטרה

של איבר רק כוללת האסטרטגית הפלטפורמה של המטרה פונקציית פלטפורמות, שתי של הפשוט המקרה

כוללת המסייעת הפלטפורמה של המטרה פונקציית ואילו ליעד, ביותר קצר מסלול או ליעד מהירה הגעה

האסטרטגית. הפלטפורמה של כיול) או מיקום (לדוגמה, המצב משתני שערוך של הוודאות אי הקטנת

IMU ו- מצלמה מדידות המייצרת סינטטית סימולציה ע”י שלנו בגישות בשימוש היתרון את מציגים אנו

שיפור והציגו בתחום ביותר העדכניות לגישות הושוו שפיתחנו הגישות תוצאות בסימולציה סינטטיים.

באזור ביצועים הסיום, לנקודת ההגעה זמן במיקום, הוודאות אי כדוגמת: רבים באספקטים משמעותי

ועוד. חשוך”) (”מסדרון בלבד אינרציאלי ניווט המאפשר

ii



תקציר

ידועה סנסוריםבסביבה של אקטיבי לכיול הסתברותי מרחב תכנון גישהחדשהשל מפתחים אנחנו זו בעבודה

ממוחשבת ראייה נעזרת אינרציאלית ניווט במערכות המצוידות פלטפורמות מרובת מערכת עבור חלקית,

שערוך בעיות שתי לפתור צורך יש ידועה, לא בסביבה רובוטים של בניווט השנייה. עם אחת פעולה ומשתפות

הפתרון ולכן בשניה אחת תלויות אלו שערוך בעיות הסביבה. ומיפוי הרובוט של המיקום שיערוך אחת: בבת

מיקום של האפשר) (ככל מדויקת ידיעה מצריך הרובוט מיקום שערוך כלומר, זמנית. בו שתיהן עבור הוא

ידועה זו בעיה הרובוט. מיקום של מדויקת ידיעה מצריך במפה העצמים של מדויק ומיפוי במפה, העצמים

.(SLAM) Simultaneous Localization and Mapping כ-

הצמתים במודל הבעיה. את למדל כדי Graph) (Factor פקטורים” ”גרף הנקרא גרפי במודל משתמשים אנו

או הקשתות בסביבה. העצמים ומיקום הרובוט מיקום למשל בבעיה, האקראיים הנעלמים את מסמלים

הפלטפורמה של התנועה מודל לדוגמה, הללו. אקראיים נעלמים בין האילוצים את מסמלים הפקטורים

של המיקום בין מקשר המצלמה של החיזוי מודל דומה, ובצורה הבא למיקום הנוכחי המיקום בין מקשר

זה. ממיקום שמופו בסביבה לעצמים הפלטפורמה

סנסורים של טיסה, כדי תוך אקטיבי, כיול מציגה הראשונה הגישה גישות. שתי מציגים אנו זו בעבודה

הגישה ממוחשבת. ראייה נעזרת אינרציאלית ניווט במערכת המצוידת בודדת פלטפורמה עבור אינרציאליים

עבורמערכתמרובתפלטפורמות יותר יעיל פעולה ומציגהשיטהלשיתוף מרחיבהאתהגישההראשונה השניה,

הגישותהמרחב שבשתי הינו זו בעבודה העיקריים החידושים אחד המערכת. גבוהיםשל ניווט ביצועי להשגת

הנעלמים את גם מכיל הרובוט, של האקראיים הנעלמים עבור הסתברותי הפילוג ,(Belief) ההסתברותי

ע”י אקטיבי מסלולים תכנון על מבוססות הגישות שתי האינרציאליים. הסנסורים כיול של האקראיים

פלטפורמה. לכל האופטימלי המסלול מחושב פיה על מטרה פונקציית הגדרת

(Pre- אינרציאלית” מדידה מערכת מדידות ”איחוד הנקראת לאחרונה שפותחה שיטה הרחבנו זה בעבודה

בו למצב מענה לתת באה זו שיטה המסלולים). תכנון (לטובת עתידיים זמנים עבור גם IMU) Integrated

זה דבר המדידות. הגעת בקצב בעיה גרף את לעדכן שנדרש כך IMU, כדוגמת גבוה, בתדר מדידות קיימות

עשויה זו מגבלה התכנון אופק עבור בנוסף, אמת. זמן ביצועי מאפשר לא ולרוב גבוה חישובי כוח מצריך

אחודה אחת למדידה מדידות מספר איחוד הינו זו בשיטה העיקרון האפשרי. התכנון אופק את להקטין

תכנון ואופק אמת זמן ביצועי מאפשרת זו שיטה במערכת). האיטי הסנסור של המדידה תדר לפי (בד”כ

גבוהות. חישוב ביכולות צורך ללא גבוה בתדר IMU מדידות עבור ארוך

יכולת הינו הזמן, עם הסוחפים אינרציאליים סנסורים ובפרט סנסורים, של טיסה כדי תוך אקטיבי כיול

בעבודה הסופי. הניווט דיוק על וכן המערכת של השגיאות התפתחות קצב על ישירות המשפיעה משמעותית

הסביבה), ומיפוי הפלטפורמה ומהירות (מיקום הסטנדרטיים למשתנים בנוסף כוללים, המצב משתני זו
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- בטכניון וחלל אווירונאוטיקה להנדסת מהפקולטה אינדלמן ואדים פרופ”מ של בהנחייתו בוצע המחקר

לישראל טכנולוגי מכון

תודות

המחקר שלבי בכל וההכוונה העזרה ההנחיה, על אינדלמן ואדים לפרופ’ הרבה תודתי את להביע ברצוני

המפורטים. וההסברים המתמדת הדחיפה על תודה השני. והתואר

מורן לאשתי מיוחדת תודה הדרך. כל לאורך והסבלנות העידוד על לכם מודה אני הנפלאה, למשפחתי

מוגבלת. הבלתי התמיכה על
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