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Abstract

High accuracy navigation in GPS-deprived uncertain environments is of prime importance to
various robotics applications. In such scenarios, it has been recently shown that online sensor
calibration and multi-robot collaboration, whereby robots make mutual observations of the en-
vironment or perform relative observations of each other, can significantly enhance navigation
accuracy. However, these approaches typically consider a passive setting, where robot actions
are externally determined. On the other hand, belief space planning (BSP) approaches account
for different sources of uncertainty, thus identifying actions that improve certain aspects in in-
ference, such as accuracy. Yet, existing BSP approaches typically do not consider sensor cali-
bration in the mentioned problem setting, nor a visual-inertial SLAM setup.

In this research, we contribute single-robot and multi-robot BSP approaches for active sen-
sor calibration considering a visual-inertial SLAM system. To that end, we maintain a belief
over both robot’s pose and sensor calibration, and reason how that belief would evolve for dif-
ferent actions while considering partially unknown and uncertain environments. In particular,
we leverage the recently developed concept of IMU pre-integration and develop appropriate fac-
tor graph formulation for future beliefs to facilitate computationally efficient inference within
BSP.

Another key aspect of our approach are indirect multi-robot observation updates given the
states of different robots are correlated. This concept allows for a subset of robots to carry on
their individual (possibly time-critical) tasks while preserving high accuracy estimation by rely-
ing on other expendable robots to make appropriate observations of the environment. We study
our approach in high-fidelity synthetic simulation and show the determined actions can lead to

significantly improved estimation accuracy.
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Chapter 1

Introduction

Autonomous navigation in unknown or uncertain environments has been extensively investi-
gated over the past two decades with numerous applications in robotics, including aerial GPS-
denied navigation, indoor navigation and autonomous driving. Highly accurate online naviga-
tion in these, and many other, applications is of prime importance. Modern navigation systems
no longer rely solely on inertial measurement units that are suspect to drift and on GPS that
may be unreliable or unavailable, but calculate the navigation solution by fusing measurements
captured by different on-board sensors (e.g. camera, laser sensors). When the environment is un-
known or uncertain, robot localization (and navigation) involves also mapping the environment,
a problem known in the navigation context as visual-inertial SLAM.

The corresponding inference problem involves tracking the probability density function (pdf)
over variables of interest given available information. These variables often include navigation
state, landmarks representing the mapped environment thus far and sensor calibration parame-
ters. The latter can represent extrinsic calibration, such as relative pose between different sen-
sors, and also intrinsic parameters such as IMU bias and camera focal length. While some cal-
ibration parameters can be recovered in an offline fashion, due to stochasticity, some sensors
(e.g. IMU) require also online calibration, without which navigation accuracy will be compro-
mised. Online IMU calibration, however, is traditionally done considering GPS availability with
pre-defined trajectories (i.e. actions) that were specifically calculated for such a setting.

Yet, actual performance depends, among other factors, on robot actions - different robot ac-
tions can often result in different estimation accuracies, especially in lack of external information
(such as GPS). Thus, attaining high-accuracy navigation involves deep intertwining between in-
ference and planning, requiring the latter to account for different sources of uncertainty. The
corresponding planning approaches are known as belief space planning (BSP) methods, which
have received considerable attention in recent years in the context of autonomous navigation in
known, and more recently, unknown environments. However, existing BSP approaches typi-
cally do not consider sensor calibration aspects in the context of visual-inertial SLAM, while
hard-coded actions that were suitable for GPS setting may perform poorly in scenarios consid-
ered herein.

Moreover, we leverage recent work that addressed visual-inertial SLAM using factor graphs



and incremental smoothing [20], and use these techniques also within belief space planning. Fi-
nally, within this framework we extend the recently-developed concept of IMU pre-integration
[31], that was used thus far only for information fusion and visual-inertial SLAM [20], to BSP so
that longer planning horizons can be efficiently considered in presence of high-rate IMU mea-
surements.

In addition, an extension of the BSP problem to a multi-robot framework has been investi-
gated over the last few years. Collaboration between multiple robots can significantly improves
performance of both inference and planning phases. In particular, by sharing relevant informa-
tion between robots, estimation quality can substantially improve, while by appropriately coor-
dinating actions the robots can often finish a task in a shorter time. However, existing multi-robot
BSP approaches consider that the cooperation between the robots is done by observing mutual
scenes (even at different times) or by observing the other robot. In addition, recent planning
approaches consider an objective function, used for calculating the optimal paths, where each
robot aims to improve its estimation accuracy only.

In this research we develop two main approaches: (a) single-robot BSP approach for active
sensor calibration and accurate autonomous navigation considering a visual-inertial SLAM set-
ting, and (b) extension of the single-robot BSP approach to a multi-robot framework for efficient
active cooperation between the robots.

The first approach is capable of calculating optimal actions for reducing estimation error
within inference, reducing estimation error growth rate via IMU sensor calibration, or a com-
bination of both. Additional typical costs in the objective function, such as reaching a goal and
control effort, are naturally supported as well.

The second approach further advances the state of the art by defining two collaborative
robots subgroups, the “strategic group” and the “expendable group”. The key idea is to have
robots from the “expendable robots” improve performance, in terms of estimation accuracy, of
robots from the “strategic group” while the latter execute time-critical missions. Robots from
the former group are envisioned to be cheap and therefore expandable, with their sole purpose to
boost the performance of the “strategic group”. In particular, the objective function for the “ex-
pendable group” aims to improve the “strategic group’s” estimation accuracy. This approach
leverages the concept of indirect multi-robot updates that we introduce herein, according to
which, in presence of prior correlation between states of different robots, an informative ob-
servation captured by one robot impacts also other robots that can be in different regions of the
environments. Leveraging this concept, the expandable robots in our multi-robot BSP approach
have enhanced flexibility to aid the strategic robots by traveling to areas where informative ob-
servations can (or likely to) be captured, without constraining the trajectories of the strategic

robots.

1.1 Related Work

Traditional inertial navigation systems are based on the strapdown mechanism [40, 8], in which

IMU measurements are integrated into a navigation solution. Typically, navigation aiding meth-



ods apply filtering approaches for fusing measurements from other available sensors with the in-
ertial solution. More recent approaches for information fusion in inertial navigation systems are
calculating the optimal solution based on a non-linear optimization involving all the unknown
variables (and using all the available measurements). These approaches, also directly related
to bundle adjustment (BA), are commonly used in the robotics community for solving the full
simultaneous localization and mapping (SLAM) problem (see e.g. [3, 7). In particular, [7] rep-
resents the posterior probability density function (pdf) using the factor graph graphical model
[28], which naturally encodes the inherent sparsity of the underlying (square root) information
matrices. Kaess et al. [25, 24] develop incremental smoothing and mapping (iISAM) approaches
that, utilizing graphical models, allow to efficiently update the posterior with each new incoming
measurement. Indelman et al. (18] introduced a related concept in the context of multi-robot col-
laborative navigation, however, considering the covariance form and not the information form
as in [25, 24].

While iSAM is a general approach for efficient maximum a posteriori (MAP) inference given
available measurements, possibly from different sensors, recent work [19, 20] examined its spe-
cific use for inertial navigation systems in presence of high rate sensors such as IMU. The re-
cently developed concept of IMU pre-integration [31, 20, 9] allows to avoid the issue of adding
factor nodes to the graph at IMU rate, by summarizing consecutive IMU measurements, and in-
corporating into the factor graph only the summarized quantities while still supporting real time
performance (see [20] for details).

While the above approaches focus on inference (e.g. estimating robot poses) given actions,
different actions can lead to substantially different estimation performance, for example, in terms
of accuracy. The corresponding problem of finding an optimal action(s) is an instantiation of
a partially observable Markov decision process (POMDP) problem, which is computationally
intractable [34]. Numerous approaches that trade-off optimality with computational complexity
have been developed in recent years. These approaches are often known as belief space planning
(BSP). These approaches can be segmented into several categories: point-based value iteration
methods [29, 35], simulation based approaches [39, 41], sampling based approaches [12, 13, 38]
and direct trajectory optimization approaches [16, 17, 42].

Yet, only few BSP approaches consider sensor calibration aspects [43, 11, 33]. For example,
Hausman et al. [11] consider IMU calibration (in terms of bias), optimizing a nominal trajectory
for self-calibration. However, that approach assumes GPS availability, in contrast to the problem
setup considered herein. Webb et al. [43] develop a method for active calibration of extrinsic
system parameters using continuous POMDP. Active calibration of extrinsic system parameters
(e.g. transformation between frames) is also considered in [33]. However, neither of these works
considers visual-inertial navigation systems, nor active calibration of intrinsic parameters such
as IMU bias in unknown GPS-deprived environment.

A multi-robot belief space framework has been also investigated in recent years. Devel-
oped approaches focus on different aspects, including multi-robot tracking, active SLAM and
autonomous navigation in unknown environments and informative planning (see e.g. [30, 2, 14,

13, 36, 21)). In particular, existing approaches [38, 5, 18] typically focus on the inference part, con-



sidering robot actions to be determined externally. Active multi-robot approaches [4] typically
focus on the trade-off between exploring new regions and reducing uncertainty by re-observing
previously mapped areas. Recent works, [27, 13, 14, 21], consider the problem of collaborative
multi-robot BSP while operating in unknown environment. In particular, [13, 21] introduced
within the belief reasoning regarding future mutual observations of environments that are un-
known at planning time. However, these multi-robot BSP approaches consider that the coop-
eration between the robots is done by observing mutual scenes (even at different times) or by
observing the other robot. Additionally, these approaches typically consider an objective func-
tion where each robot aims to improve its own estimation accuracy. In contrast, we consider
an objective function for the “expendable group” that aims to improve the “strategic group’s”
estimation accuracy. In addition, we introduce a concept of indirect multi-robot updates, that in
presence of prior correlation between states of different robots, an informative observation cap-

tured by one robot impacts also other robots that can be in different regions of the environments.

1.2 Contributions

In this research we develop a BSP approach for active sensor calibration and accurate autonomous
navigation considering a visual-inertial SLAM setting. Our approach is capable of calculating
optimal actions for reducing estimation error within inference, reducing estimation error growth
rate via IMU sensor calibration, or a combination of both. Additional typical costs in the objec-
tive function, such as reaching a goal and control effort, are naturally supported as well.

We also contribute a collaborative multi-robot approach for expendable indirect multi-robot
cooperation given the states of different robots are correlated. This concept allows for a subset
of robots to carry on their individual (possibly time-critical) tasks while preserving high accu-
racy estimation by relying on other expendable robots to make appropriate observations of the
environment and indirectly update the other robots state estimation.

The combination of these two approaches improve the strategic robots performance, in terms
of reducing estimation error, error growth rate and time for reaching the goal, by relying on the
expendable robots that focus on updating the estimation accuracy of the former group.

In addition, we leverage recent work that addressed visual-inertial SLAM using factor graphs
and incremental smoothing [20], and use these techniques also within belief space planning. Fi-
nally, within this framework we extend the recently-developed concept of IMU pre-integration
[31], that was used thus far only for information fusion and visual-inertial SLAM [20], to BSP so
that longer planning horizons can be efficiently considered in presence of high-rate IMU mea-

surements.



Chapter 2

Background

2.1 [Inertial Navigation

Inertial navigation is a dead reckoning system that computes the platform position, velocity and
attitude by integrating the linear acceleration and angular rate measured by the Inertial Mea-
surement Unit (IMU). Every dead reckoning system requires an initialization stage, the initial
navigation solution, that mostly achieved by an external source, such as a human interface, GPS
or a more accurate Inertial Navigation System (INS).

The inertial navigation is based on the high rate measurements from the IMU sensor, angular
rate measurements of the gyroscopes and linear acceleration measurements of the accelerome-
ters. The navigation solution (position, velocity and attitude) of the platform is calculated by
using the “Strapdown Equations”. The main principles for the definition of the strapdown equa-

tions are:

* Determination of the angular motion of a vehicle using gyroscopic sensors, from which

its attitude relative to a reference frame may be derived;
* Measure specific force using accelerometers;

* Resolve the specific force measurements into the reference frame using the knowledge of

attitude derived from the information provided by the gyroscopes;

+ Evaluate the force resulting from the gravitational field - the gravitational attraction of the

Earth in the case of systems operating in the vicinity of the Earth;

+ Integrate the resolved specific force measurements to obtain estimates of the velocity and

position of the vehicle.

Unfortunately, all the inertial sensors are subject to errors which limit the accuracy to which the
angle of rotation or applied accelerate can be measured. These errors are propagating through
time and can be modeled using a complex error model, usually provided by the sensor’s manu-

facturer. In this work we assume a simple IMU error estimation vector as,

MU — [ ar T }T 2.1)



where b and d are the accelerometers and the gyroscopes errors respectively, usually referred to
as bias and drift.

More information about inertial navigation and technology can be found in [40].

2.2 Probabilistic Inference

Throughout this work, we use Bayesian inference to recover the posterior probability distribu-
tion function over variables of interest, such as robot poses, sensors calibration and landmark
locations, based on available information such as features from camera-captured images and
IMU measurements. In this section, however, we first provide the necessary background in
probabilistic inference considering the random variables X and Y.

The joint probability density function (pdf) of the variables X and Y is defined as p(x, y)

and, if the two variables are independent, is given by,

p(z,y) = p(x)p(y) (2.2)

Variables often carry information about other variables, in which case, using Bayes rule, this
conditional probability is written as,
p(z,y) _pylz)p(z)

p(zly) = 0w p) (2.3)

In probabilistic robotics, Bayes rule allows to compute the conditional probability p(x|y),
called the posterior probability distribution, as a function of the inverse conditional probability
p(y|x) and the prior p(z). Using the fact that p(y) is being independent of z, it can be considered
as constant and thus, Eq. (2.3) can be written as,

p(zly) = np(ylx)p(x) , n=ply)~" (2.4)

Given the conditional probability, the calculation of the maximum a posteriori (MAP) esti-
mate z* is define as,

x* = argmazxp (z|y) (2.5)
x

For our case, it is convenient to assume that the joint pdf can be parametrized by a Gaussian

distribution

p(zly) ~ N <XA) (2.6)

where A is the information matrix (inverse of the covariance matrix).

The maximum a posteriori (MAP) estimate of X is then given by

X* = argmin — log {p (z|y)} (2.7)

This optimization problem lies at the core of the inner inference layer of our planning ap-

10



proach. In principle, solving (2.7) involves iterative nonlinear optimization. A standard way to
solve the minimization problem is the Gauss-Newton method, where a single iteration involves
linearizing the above equation about the current estimate X}, , calculating the delta vector A X},
and updating the estimate X}, < X3 + AXj, . This process should be repeated until conver-

gence. See (7, 24, 16] for more information.

2.3 Factor Graph

Factor graphs are graphical models that are well suited to modeling complex estimation prob-
lems, such as Simultaneous Localization and Mapping (SLAM) or Structure from Motion (SFM)
[28, 7). A factor graph is a bipartite graph, G, = (Fy, Vi, &) with two types of nodes: factor
nodes f; € F}, and variable nodes v; € V;, = O. Edges e;; € &, can exist only between factor
nodes and variable nodes, and are present if and only if the factor f; involves a variable v;.

The variables nodes represent the unknown random variables, while edges represent the con-
strains between appropriate variables, constraints that correspond to motion and measurement
models and to prior knowledge. Each such constraint is called a factor. Each factor represents

an individual term in the factorization of a joint pdf p(©), and therefore one can write,

p(Ok) x Hf@- Vi), (2.8)

where V,i represents an appropriate subset of variable nodes (V,i C Vy) involved in the factor f;,
such as motion models, measurement models and priors. See illustration in Figure 2.1 and (7] for
further details.

For a multi-robot scenario we can extend the factor graph definition in Eq. (2.8) to the fol-

lowing definition,

p(Ok) x HHff (V;Z’i) , (2.9)

where V,Z’i represents an appropriate subset of variable nodes (V;’i C V;) of robot r.

frion

Figure 2.1: Example for a general factor graph for a problem with IMU and camera measure-
ments

11



The factors f; represent error functions that should be minimized. The explicit expression
of such a function depends on the specific term in the factorization (2.8) that is represented by

the factor f;. Denoting this error function by err (V,i, zi) , the factor f; is defined as

fi (Vfc) =d (err (V,i, zi)) (2.10)

where the operator d(.) denotes a certain cost function. For Gaussian noise distributions, the

general factor f; (2.10) assumes the following form:

fi (V,Z) = exp <—; Herri (V,i, zi) H2EZ> , (2.11)

which defines the cost function d(.), and calculating the MAP estimate V; = arg%ax(vk | Z1)
k

becomes equivalent to performing inference over the factor graph and minimizing the following

nonlinear least-squares function:

Z lerri (Vi =) s, (2.12)

Here ||aHQEZ = oY~ 'a is the squared Mahalanobis distance and ¥ is the covariance matrix.
While, in general, this can be an expensive operation, it has been shown in previous works
(see e.g. [20)) that using incremental smoothing, a recently developed approach [24] in the SLAM
community, the involved computational complexity is small and high-rate performance is pos-

sible in typical navigation applications.
2.4 Pre-Integrated IMU

Incorporating high-rate IMU measurements into the posterior, Eq. (2.4), and the underlying in-
ference, Eq. (2.5), which involves solving a nonlinear least squares (NLS) problem, does not
provide real time performance in general. To avoid doing so, we adopt a recently developed
concept of IMU pre-integration [31], and its application to sensor fusion in modern navigation
systems [20].

The key idea is to integrate consecutive IMU measurements (z{ MU zjl M U), between
two lower-frequency measurements from other sensors, such as cameras, obtained at some times
t; and ¢, while expressing the resulting relative motion Ax;_, ; in the body frame of x;. Impor-
tantly, such a concept supports re-linearization, as part of the NLS iterative optimization, with-
out recalculating Axz;_,; [31, 20]. Moreover, real time performance can be achieved by using
intermediate A; _,; with ¢ < j.

We assume the starting pre-integration time is ¢; and use the notations Ap?; i Avﬁ’i) > RZ;_
to represent the position, velocity and orientation components, respectively, calculated by prein-
tegrating the IMU measurements from time ¢; to some time ¢;. In order to avoid recalculating
these components when re-linearizing, Lupton and Sukkarieh [31] perform the integration in the
body frame of the starting pre-integration time ¢;, rather than in the global frame. The body

frame at t; is denoted by b;. Finally, R® represents a rotation from system a to system b.
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Let Az, = {Apﬁ?;j, Al RY: }

i—7
Given the previous pre-integrated components, Ap?; i Avf"_) i RZ;, with ¢; > t;, and the
calibration parameters at the starting time ¢;, denoted by ¢;, the equations for adding a new IMU
measurement at time ¢;1 = ¢; + At, comprising the specific force f; and the angular velocity

wj, are given in the following equations,

b; _ b; b;
APHJ'H = Aij + A”H]At

Avilyip = Avly + By fidt
by by
Ry, = Ry Expmap (w;) (2.13)

. b; b; b;
and we get Az ;41 = {Api—>j+17 Avi_>j+1, Rle }
To summarize, we replace multiple IMU terms in the posterior, Eq. (2.4), between any two

time instances t; and ¢; with p (x|, Azi_j, ¢;).
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Chapter 3

Problem Formulation and Notations

Letz] = { P vl g } andc] = { d; bf ] represent the navigation state vector and sensors
calibration state vector or robot r, respectively, at time ¢;. Here, p;, v} and g; are the position,
velocity and orientation (represented as a quaternion) of the body in the world frame and d, b}
are the gyroscope drift and accelerometers bias. Similarly we can add to the calibration state
vector of other sensors parameters, e.g. camera calibration parameters. Also denote by L] the

perceived environment by that robot, e.g. in terms of 3D points, by time ¢;.

We define the joint state

k= {X%, Cr, Ly} (3.1)
where X7 = {x{,...,z7.} and C] = {c, ..., c}. } represent, respectively, navigation and cali-
k 0 k k 0 ks T€P Y y g
bration states up to time #.
Similarly we define Z,, = {z{,...,2;} and U}, = {ug, ..., u;}, where v} and 2] rep-

resent control and obtained measurements of robot r at time ¢;. In the following, we shall use
rIMU

i

r,cam.

the notation z € Zj to denote IMU measurements and z; € Z; to denote camera

observations.

We consider now a group of R collaborating robots, and denote by Oy, the corresponding
joint state

O, =X, UC, UL, (3.2)

where X, = {X ,:/,'}le , Cp = {C,:;}f:l and Ly, represents the perceived environment by

the entire group. Assuming a common reference frame between the robots is established, Ly

includes all the 3D points in L;, for each r, expressed in that reference frame.
Given these definitions, the probability density function (pdf) at time ¢, also referred as the

belief, is given by

R
b(Ok) = p (Ol Zok, Uok—1) [ [ » (O Zgs» Uoik—1) (3.3)

r=1
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from which the maximum a posteriori estimate

©0* = argmax b (Oy), (3.4)
Ok

can be efficiently calculated while exploiting sparsity and re-using calculations (see e.g. [24]).

The belief (3.3) can be explicitly written in terms of individual motion, calibration and ob-
servation models as (see e.g. [16, 13])

R k
b(Or) x[] {pm‘ors’" II» (a: |2}y, )1, sz{”U) p(cflei_y) p <z§”’“m'e;"°>} (3.5

r=1 =1

3.1 Motion Model

The probabilistic motion model, p ( =¥ |z!_,,cl_ 727,_IMU , 1s represented by the underlyin
p p{z; G171 p Y ymg

(2
nonlinear inertial navigation equations and the captured IMU measurements z/ MV

ol = f (x’f & z’."vfMU) Yl wl ~N(0,5), (3.6)

1771

where w; is an additive Gaussian noise with noise covariance matrix X7, such that
(.7 T rIMU 1 r r r rIMUY |12
P (xi’wz'qaciqazi—l ) X exp [—2”331' —f (95171701717%—1 ) ”E{U] (3.7)

The function f (x’i”, Lzl ’IMU) is governed by the common differential strapdown equa-
tions (see e.g. [8, 20]). Assuming some general frame a (such as inertial frame, tangent frame,
etc.) and denoting by b and i the body and inertial frames, the time derivative of the velocity v,

expressed in frame a, is given by

-a a

pro=w
2-}& = Rgfb + ga - Qquava - (“Qiaa“oiaa + ‘Q;Za) pa
R¢ = Ry,
28 = Wil Ay=ut] (.9

ia
X

where R} is the rotation matrix transforming from body frame to frame a, f b is the specific force
measured by the accelerometers and p“ is the position vector. The vector g% is the position-

dependent gravity acceleration.
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The matrix (2], is defined as

0 - (wzaa)?, (w'?a>2
Qi = wialx = | (wiy)3 0 — (W) (3.9)
- (wga)2 (w;lla)l 0

withwy, being the rotational rate of frame a with respect to the inertial frame 7, expressed in frame
a, and [.]« is the skew-symmetric operator, defined for any two vectors ¢; and ¢2 as [g1]xq2 =
q1 X q2.

Similarly, £2°, = [w"] withw® denoting the rotation rate measured by the gyroscopes.

The IMU measurements errors A f and Aw® include both random walk processes terms,
nY and n®, and instrumentation calibration factors, dgy, and bg... The instrument calibration
factors can be estimated and compensated as we show in our work. Given the measurements
F cas.> Woens. and estimation of the calibration factors dgyroy bace., the specific force and angu-

lar rate vectors for use in the navigation equations (3.8) are computed as
fb = fgwas_ — bace. (3.10)

b

W= WZ@eas. - dgyro (3.11)

Observe that the true (noise free) acceleration and angular velocity of the robot are a function
of the controls u}; hence, we refer to the above IMU model as motion model.

In our work, we adopt a simplified model, commonly used in robotics [20, 11], called sim-
ple Euler integration prediction function. We could use different numerical schemes, ranging
from a simple Euler integration to high-order Runge—Kutta integration, for solving these navi-
gation equations. However, the factor graph framework allows the adoption of a simple Euler

integration prediction function with an associated integration uncertainty.

3.2 Calibration Model

The IMU calibration parameters represented by ¢ = [bgcc., dgyro) are used for correcting the IMU
measurement f°, w® according to the assumed IMU error model. This model of IMU errors is
usually estimated in conjunction with the estimation of the navigation state.

In the general case, the time propagation of ¢ can be described according to some non-linear

model of its own (e.g. random walk):

¢ = ge(c) (3.12)

The calibration model p (02 \c};_l) is assumed to be with additive Gaussian noise with the
process noise covariance matrix >, i.e.
7

i1 =g(c)+ef, ef ~N(0,%7), (3.13)
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In this work we assume a random constant model for the calibration model,

ci1=g(c)+e =c;+ef (3.14)

If desired, more sophisticated schemes can be used as well.

3.3 Observation Model

The observation model p (zzL |@Z’o) at any time t, can be written as

D (Zz,cam.|@2,o) - H P (zzjamm;’ l;) , (3.15)
l; E@;’O
where ©,° C O], are the overall involved states, z], j is an (image) observation of landmark [;,
and the product accounts for all landmark observations captured at time .
The observation model for each such observation is given by
zi ;= h(xi,l;) + v, vi ~N(0,37), (3.16)
where v] is an additive Gaussian noise with noise covariance matrix ;.. Note that the landmark

l; can be either arandom variable (SLAM framework) or a priori known (but uncertain) landmark

at planning time.
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Chapter 4

Approach

Our work can be divided into two separated approaches: single-robot and multi-robot. The
main principle for both of the approaches is to improve the navigation accuracy of vision-aided
inertial navigation systems using designated methods, such as active online sensors calibration

or special cooperation between several robots.

4.1 Single-robot Approach

In the single-robot approach we incorporate into the belief space planning equations sensors cali-
bration aspects such that navigation accuracy is significantly improved while using vision-aided
inertial navigation systems. Our approach extends the state of the art by incorporating into the
belief (3.3) sensor calibration model and incorporating into the objective function, J (Ug.x41,—1)
a cost function that quantifies calibration quality, possibly in combination with pose uncertainty
reduction. We note that in lack of sources of absolute information (such as reliable GPS or known
3D points), accurate sensor calibration is of great importance for improving navigation accuracy.
This is particularly true in GPS-deprived scenarios that involve segments of inertial navigation
without vision-aiding. Moreover, we specifically consider high-rate IMU sensors and use the
principle of the pre-integrated IMU factor also within the planning problem to avoid perform-
ing MAP inference (which required high computational power) at IMU rate instead of the (much
lower) camera rate.

Specifically, we consider the following objective function over a planning horizon of L steps

L

Jk (0 (Ok+r) , Upek—1) = Z E (cf; (b(Ors1), uryi—1)), @.1)
=1

where ¢ f; represents an immediate cost function and the expectation accounts for all possible

realizations of the (unknown) future sensor observations. The optimal control is defined as

Upipr—1 = argmin Ji (b (O41) , Ugkrn-1) - 4.2)
Uk:k+1—1

One can identify best robot actions (or motion plans), among those generated by existing motion

19



planning approaches (e.g. sampling based approaches), or resort to direct optimization tech-
niques to obtain locally optimal solutions in a timely manner [17].

4.1.1 Inference and Recursive Formulation of the Belief

The belief at the I*" look ahead time is defined, similarly to Eq. (3.3), as

b(Ok+1) = p(OrtlZok+1, Uokti-1) (4.3)

where Zg.,4; and Up.,4;—1 represent, respectively, all the measurements and controls up to (fu-

ture) time ¢, while present time is ¢

Determining optimal actions according to Eq. (4.2) involves evaluating the objective function
Jy. for different candidate actions Uy,..4 1, —1,given immediate costs ¢ f;, that we discuss in Section

. This requires performing maximum a posteriori inference over the belief (4.3) such that
b(Okti1) = N( Z_H, A,;i ) , (4.4)

where O ; and Ay, are the mean vector and information matrix, respectively.

Remark: We note that Ay ; can be calculated even though the actual values of future obser-
vations Zj 1.+ are unknown, while ©F_; is determined solely by the motion model by taking
the common measurement likelihood assumption. Further details are outside the scope of this
paper and can be found in [17].

The belief (4.3) can be recursively written as (see e.g. [13])

b(Okt1) = 10 (Okti—1) P (Thtt|Tht1—15 Ukt1—15 Chti—1)

P (Crrilrrio1) P (24110741) (4.5)

where 7 is a normalization constant and the other products are the belief at the previous step,
the motion model, the calibration model and the observation model. Also, ©7_; C Oy are
the involved random variables in the measurement likelihood term p (zk+ 1197 n l) , which can be
further expanded in terms of individual measurements zj1; ; € 2, representing observations
of 3D points /;.

Similarly to Eq. (3.15), the measurement likelihood term can be written as,

p(zel®0) = [ pGrerglors ), (4.6)

Li€9% 4,

where the product considers all the landmarks /; € Ly expected to be observed from a future
viewpoint ;. In general, these could be landmarks mapped by planning time ¢, or a priori

known landmarks that correspond to known areas in the environment (if any).
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4.1.2 Incorporating (Pre-Integrated) IMU Measurements

Further, since we are focusing on active visual-inertial SLAM, the motion model in Eq. (4.5) is
actually represented by the nonlinear inertial equations and IMU measurements, see Section 3.1.
Thus, the motion model term p (x4 |Tg+i—1, Ukti—1, Ck+i—1) should be replaced by the corre-
sponding product of IMU models Hz P (acZ |zi_1,cie1, z{ %U), representing the expected IMU
measurements to be obtained between the time instances t;4;—1 and tx; given action ugy;—1,
ie ti € [trgi—1,trst].
As in passive visual-inertial SLAM, this would involve adding numerous factors and vari-
ables into the factor graph and the underlying MAP inference (4.4), thereby negatively impacting
computational performance. Instead, we propose to use the concept of IMU pre-integration (see
Section 2.4 for more details) and add a single probabilistic term that represents the motion model
between camera times t4;—1 and ¢x;. Inother words, the motionmodel p (xg+i|Tk41—1, Uk+1—1, Cht1—1)
in Eq. (4.5) is replaced by p (xg+¢|Tkr1—1, ATkti-1—k+1, Chti—1), Where Axgy—1x4 is the
relative motion computed via pre-integrating (future) IMU measurements in the time frame [t 41— 1, tx1i]-
Note these measurements are a function of the considered actions via the nonlinear inertial
navigation equations (3.1). Although the actual values of these (future) IMU observations are

unknown, it is not required for calculating the posterior information matrix.

4.1.3 Choice of Cost Functions

Thus far, we showed how to incorporate within a future belief b (©;) IMU measurements and
sensor calibration models (e.g. IMU bias) while considering general immediate cost functions.
In this section we focus on a specific family of cost functions, c f, that utilize this new information
within planning, considering different types of planning objectives. We define a general cost

function [17]:

cf (0(Ors) s unst) = || EF Ok = Oy + 1€ (uri) ag, + tr (MeAp [ MS), .

=ef?(MsAy)

where My, M,, and Mg are given weight matrices that can be adjusted online [16, 17], and
¢(u) is some known function that, depending on the application, quantifies the usage of con-
trol u. ©F is a predefined goal and E,?H is a selection matrix, such that the matrix E,?H Tl
contains a subset of states for which we want to impose a goal. Similarly, the matrix My, in

term cf> can be used to choose the covariance of chosen states (position, pose, calibration etc.)
-1
k1

different variations for the uncertainty cost term cf>, such as accurate navigation or sensors self-

from the joint covariance A i.e. consider only uncertainty of these states. We can consider
calibration by using My, that choose only the pose or calibration states, respectively. In this work
we consider the uncertainty cost term cf =" that presents a ’trade-off” between two planning
objectives (concurrent, or following each other): reaching a target with minimum navigation er-

rors (i.e. accurate navigation) and calibrated sensors (i.e. self-calibration). The corresponding
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cost function is defined as

»TOo

of* 7 =tr (Mg AL M) + tr (Ms, AL M) (4.8)

where the terms penalize, respectively, pose uncertainty and quantify calibration quality.
However, given the fact that there is a strong coupling between inertial sensors calibration to
the pose uncertainty and that the belief includes both the pose and calibration states, the sensor

calibration is still accounted for even if the uncertainty cost is only over position.

4.2 Multi-Robot Approach

Collaboration between robots can significantly improve performance of both inference and plan-
ning phases. In particular, by sharing relevant information between robots, navigation accuracy
can substantially improves, while by appropriately coordinating actions the robots can often fin-
ish a task in a shorter time. Previous works present active collaboration multi-robot approaches
where the robots cooperate only while being in the same region (observing same scene or each
other) and planning that aims to reduce the estimation uncertainty of each robot. Our research
further advances the state of the art by defining two collaborative robot subgroups, the “strategic
group” and the “expendable group”.

The key idea is to have robots from the “expendable robots” improve performance, in terms
of estimation accuracy, of robots from the “strategic group” while the latter execute time-critical
missions. Robots from the former group are envisioned to be cheap and therefore expandable,
with their sole purpose to boost the performance of the “strategic group”. Along this concept,
which we refer to as “Expendable Cooperation”, we also introduce the notion of indirect updates
between different robots. The basic idea is to exploit prior correlation between states of different
robots such that observation made by one robot (from the “expendable group”) impacts another
robot (from “strategic group”). Indirect updates thus allow multi-robot cooperative estimation
even when the robots operate in separate regions of the environment, allowing robots from the
“strategic group” to carry on their time-critical missions, while the “expendable group” robots
are tasked with reducing the estimation uncertainty of the former group. We define and elaborate

on these innovative concepts in the following sections.

4.2.1 Multi-Robot Notations

In this section we briefly recall the relevant notations and definitions from Section 3. We define

the joint state

7]; = {X]:;,C]:, Z}a (4.9)
where X| = {x,...,2}} and C} = {cf, ..., c}.} represent, respectively, navigation and cali-
bration states of robot 7 up to time .

Similarly, we define 7§, = {2(,...,2.} and U}, = {ug, ..., u}}, where u} and 2] rep-

resent control and obtained measurements of robot r at time ¢;. In the following, we shall use

22



r, I MU

%

the notation z € Z! to denote IMU measurements and z, """ € Z! to denote camera
observations.

We consider now a group of R collaborating robots, and denote by Oy, the corresponding
joint state

Or =X, UCLU L (4.10)

where X}, = {X£}§:1r Cy = {C’};}f:l and Ly, represents the perceived environment by the
entire group.

Given these definitions, the multi-robot’s belief at time ¢, is given by [13, 21]
b(Ok) =p (Ok| Zo:k, Uo:k—1) (4.11)

. R .
where Upy.p,_1 = {ngk,fl }r:1 and Zg., = {Zgik}f:]_'
The explicit definition of the belief and the extension to the belief at the /" look ahead time

are presented in detail in Section 4.2.3.

4.2.2 Expendable Cooperation

Multi-robot belief space planning can be framed as finding the optimal control Uj,; ., | =

argmin J (Ug.k+1—1) given a general objective function
U

L

Ti (0 (Oryr) , Ukkyr1) = D E(cfi (b(Osa) s uryi1)) (4.12)
=1

where the costs can in general involve the belief over the entire joint state of all robots, i.e. the
belief for the /th look ahead step, b (O4;).
A common instantiation of this general formulation is where the cost of each robot involves

only its own belief from appropriate future time (see e.g. [13, 21, 37]),

L R
Te (0 (Ok4r) Ukksr—1) =E | D> eff (b(Ofya) s thsir) @.13)
=1 r=1

where b (07,,) = [ b(Or).

=

k+1
Such a form, supports collaborative active state estimation, where each robot aims to im-

prove its estimation accuracy while considering additional terms in cfj, if exist. This formu-
lation is beneficial in order to improve the estimation accuracy in a collaborative multi-robot
setting where reducing the uncertainty of all robots is of interest (see e.g. [13, 21, 37]).

In contrast, we consider an alternative formulation addressing a multi-objective setting where
a pre-defined subset of robots (denoted as “strategic group”) is to reach a goal in minimum time
and uncertainty, while the remaining robots (denoted as “expendable group™) are solely entrusted
in improving the performance of the former subgroup of robots. Intuitively, we envision robots

from the “extendable group” to be cheap and affordable robots that one could spare, and we ad-
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vocate to appropriately use these robots to boost the estimation accuracy of the “strategic group”
robots, which are envisioned to be expensive. In particular, such a concept enables the strategic
robots to focus mainly on their time-critical tasks (e.g. reaching a goal in minimal time), while
relying on the expendable robots to maximally reduce estimation uncertainty of the former.

Specifically, instead of (4.13), we consider the following definition of the cost function cf;
from Eq. (4.12):

ch= Y efl” (b (9211) 7UZiZ—1> + Yy cfl” (b <(9ka1> kale-1> (4.14)

rAcRA rBeRB

where R4 and R? denote the “strategic group” and the “expendable group”, respectively. Sim-
ilarly, ¢ f[A and c f[’B are the cost functions for the robots in the “strategic group” and the “ex-
pendable group”, respectively. Also, @,ffl and ukRj:lfl are, respectively, the joint state and the
control at time ¢;,_;_; for all the robots in the “strategic group”, R*. Compared to the corre-
sponding cost formulation in (4.13), where the cost of each robot involves a belief over its own
state, our formulation devotes all the resources of the expendable group to aid the strategic group.

For example, for two robots (R4 = {TA}, RE = { rB }), the above cost function reduces

to,

A A A B A A
cfi=cf/ (b (92“) ; U2+l—1) +cff (b (@ZJA) ) U};Hfl) (4.15)
where 4 is the “strategic robot” and - is the “expendable robot”.
Note that both cost functions, ¢ f[A and cf] B, include a belief over the state of the strategic

B ¢can aim to minimize uncertainty of 7 and not

group, which is 7 in this case. For instance, r
its own uncertainty. Typically, our approach improves the performance of the strategic robots,
however there are few specific scenarios that we can get identical results by using the previous
approach. A detailed analysis for a family of cost functions and the connection between the
objective functions of the two methods, i.e. Eq. (4.13) and (4.14), is discussed in Section 5.2.2.

To summarize this section, the proposed concept supports collaborative active state estima-
tion with expendable robots that aim to improve estimation accuracy of strategic robots. This
concept enables the strategic robots to focus on their main task, e.g. reaching some goal, while
their navigation accuracy is taking care by other robots. In addition, we can use this concept also
to calibrate the strategic robots via expendable robots.

In the next section we discuss a key aspect in this concept - how the expendable robots can

indeed be used to reduce the estimation uncertainty of the strategic robots.

4.2.3 Multi-Robot Belief Propagation and Indirect Cooperation

Collaboration multi-robot can be achieved by using several cooperation methods. Until our re-

search, these methods [27, 13, 21] can be divided into two categories: cooperation via observing
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other robots or cooperation via observing mutual landmark (see graphical illustration on Figure
4.1 (a) and (b)). In other words, as shown in the figures, these cooperation methods require direct
connection between the robot. Specifically, method (b) is more flexible than method (a) because
it enables observing mutual landmarks at different times. In our research we want to increase
the contribution of the “expendable group” concept, and relax the cooperation requirement for
a direct connection between the robots (even for method (b)), by enabling indirect observation
updates given the states of different robots are correlated (see graphical illustration on Figure 4.1
(c)). More specifically, Figure 4.1 (c) shows that when robot r; observes a previously mapped
landmark /1, the estimation update for robot r; impacts the state estimation of robot r due to
the initial correlation between them. This indirect concept means that given prior correlation,

informative observation made by one robot, impacts also the states of other robots.

(a) (b ()

Figure 4.1: Factor graphs illustrations for multi-robot cooperation concepts. (a) Cooperation
via observing other robots; (b) Cooperation via observing same landmark; (c) Indirect cooper-
ation given past correlation . While (a) and (b) are direct cooperation concepts requiring direct
connection between robots, (c) is the indirect cooperation concept given past correlation

In the following subsections, we present a theoretical analysis that demonstrates the indirect
cooperation concept, and then elaborate on a multi-robot belief that includes all the described

ingredients.

Theoretical Analysis

We present a simple theoretical analysis to demonstrate the indirect update concept. We assume
a simple case of two robots, 71 and 73, starting with some initial correlation (e.g. mutual obser-
vation or prior knowledge). We will assume that robot ; observes an a priori known region and
the other robot does not make any observation. Our goal is to show that, in presence of prior
correlation, the covariance of r will be updated as a result of an informative observation made
by r1, despite the fact that 7o did not make any observations.

Let 3 and I represent the joint prior covariance and information matrix, respectively:

Y11 X2

I=ATA=R'R , 2 =1"1=
o1 2o

, (4.16)

where A is the Jacobian matrix and R is the square root information matrix. The matrix R can
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be calculated from the information matrix using Cholesky factorization.
For the simple case of our analysis the form of matrix R is defined as shown in figure 7.1,

where the columns and rows represent the robots and 715 represent the correlation between them.

Figure 4.2: The square root information matrix R for the simple case of two robots

The Jacobian matrix A, is the Jacobian over the observation model z = h (z) + v and it is

calculated by,

A=Vxh(X)=1|a ... an (4.17)

where n is the number of robots.
For our case, only robot r; observe a landmark, so at the observation time the Jacobian matrix

is,

A= { a 0 ] (4.18)

To calculate R we need to update the matrix R¥~! with the Jacobian A*, as shown in Figure
7.2.

-1

a 0

Figure 4.3: The matrix at time t;, after adding the Jacobian A*. This matrix is updated using
Given Rotation in order to calculate the a posteriori information matrix R”

This update can be efficiently performed using Givens Rotations (See the Appendix for more

details) that are used to nullify all entries of A* and appropriately updating the entries of R*~1
(see Figure 7.2), yielding the a posteriori information matrix R*,

RF =

k k
11 Ti2 ]

k
0 73
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In our case a is a very accurate measurement due to the a priori known region observation. We
want to show that this measurement impact also robot o estimation and covariance, i.e. 5,
will be updated although robot 72 did not measured anything.

In order to calculate the matrices R* and £* from { RE=T Ak }T we used relations de-
scribed in the literature [10, 22, 15] get the following expression for 2152 (See the Appendix (Sec-
tion 7) for the full proof),

k\2
koo (1) (4.19)

T () ) ()

It is shown in Eq. (7.9) that in the case without correlation between the robots, i.e. T]f; L= 0, the

covariance matrix is not updated
k k1) 2
2y = (7"22 )
On the other hand, with a correlation between the robots and observation made by robot 71, the
covariance of robot 9 is updated - the stronger the initial correlation, the stronger the impact.
To conclude this section, we present a novel approach for indirect collaborative state esti-

mation with expendable robots that can improves significantly the performance of the strategic
robots in terms of navigation accuracy, calibration quality and overall path length/time.

Belief Space Planning Formulation

In this section we will present how all the multi-robot concepts we presented in the previous
sections are integrated into the multi-robot belief space planning formulation.
The belief presented in Eq. (4.11) can be explicitly written in terms of individual motion,

calibration and observation models as,

R k
b(©r) =] {priorsr [P (hlah i, chvoupy) p (chlci i) p (ZZ’C“’”'\GZ’O)} (4.20)

r=1 i=1

where p (:1;2]3:2_1, Ch_1> uz_l) is the motion model, p (cﬂcz_l) is the calibration model and

p (2™ |©}°)is the observation model. Also, ©;° C ©f, are the involved random variables
in the measurement likelihood term p (27" |©}°), which can be further expanded in terms of
r,cam. r,cam.

individual measurements z,”;" € z; representing observations of 3D points ;.
Similarly to the single-robot definitions, the belief at the [*" look ahead step can be written

recursively as follow (see e.g. [13, 21]),

R

b(Or41) = 10 (Oks1-1) [ [ P (whsalthi1s i1 thsi1) P (Chpileinit) p (25517 1057))
r=1

(4.21)
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where 7) is a normalization constant.

. . T,Cam | 7,0
We now focus on the measurement likelihood term p (zk R (CINe

observations of the environment (represented e.g. by 3D points). However, now, these are future

) that represents sensor

observations of the environment to be made according to robot 1’s planned motion. As shown

in [13, 21] this term can be explicitly written as,

r,cam|\r,0 o ricam| )
p(szrl |®k+l) = H p<zk+l,j ‘karl?lJ)
le@;C’il
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where lfeg represents all the landmarks in the a priori known regions with uncertainty level

/
represented by the prior p (lfeg ) and &7, ., ; refers to a relative pose constraint calculated

/

T T
from raw measurements z;, 4 and z;, e
7,0

k+l1
including those 3D points that are actually visible from z7 ;. The second product represents

The first product represents observations of previously mapped 3D points [; € Lj with©

observations of landmarks within the a priori known regions that are actually visible from z;__ ;.
The last product represents future multi-robot constraints that correspond to different robots,
and r’, mutually observing unknown scenes from different viewpoints.

Note, that all the three products do not always exist. The first two products exist when [; €
©) 7, and ! JR “ € @7, exist. The last product exists only in the case where the robots are close
enough to each other (defined by specific distance threshold).

This definition of the belief at the /" look ahead step, includes the three cooperation method
described before, the direct and the indirect (see Figure 4.1). The direct methods (a) and (b) are
described by the last product in Eq. (4.22), while for method (a), robots see each other, the future
times are equal, i.e. [ = j. The indirect method (c) is described by the first and the second prod-
ucts in Eq. (4.22) in addition to the correlation between the robots encoded in the term b (©.;—1)

in Eq. (4.21).
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Chapter 5

Results

We study our proposed approaches in simulation considering autonomous navigation in partially
unknown, uncertain, GPS-deprived environments. In the considered scenarios, an aerial robot
(e.g. quadrotor) has to autonomously navigate to a pre-defined goals with minimum localization
uncertainty while utilizing limited prior information regarding the environment and using its
onboard sensors. The latter include a downward-facing monocular camera and an IMU.

Given a robot’s trajectory, our simulation generates synthetic IMU measurements and cam-
era observations, which are used to formulate appropriate pre-integrated IMU and projection
factors, as described in Section 3. Image observations are corrupted by zero-mean Gaussian
noise with standard deviation of 0.5 pixels. A simple IMU calibration model is considered, com-
prising accelerometers bias and gyroscopes drift of 10 mg bias and 10 °/hr drift, respectively.

Our Matlab implementation uses GTSAM library [6] for computationally efficient inference.

5.1 Single-Robot Results

We demonstrate our single-robot approach in comparison to other methods presented in previous
works. We consider a scenario with environment comprises randomly scattered landmarks and
an area without landmarks at all, where the goal is located (see Figure 5.6). Such a scenario was
designed to highlight the importance of incorporating online sensor calibration aspects within
planning, as in the area surrounding the goal no landmark observations can be obtained and iner-
tial navigation is required; for example, this could model a dark or texture-less area. Navigation
estimation error at the goal thus depends on IMU sensor calibration, in addition to the solution
accuracy provided by visual SLAM while landmark observations are available. Clearly, naviga-
tion accuracy at the goal is expected to differ significantly for poorly- and well-calibrated IMU
Sensors.

For simplicity we assume the robot can only control its heading angle while keeping the ve-
locity constant. The control effort, (u) in Eq. (4.7), is therefore defined as the change in the
heading angle. Such a setting induces single-axis maneuvers which are insufficient to yield a
fully observable system with the considered visual-inertial SLAM framework [1, 32]; in partic-

ular, biases of accelerometer sensors cannot be calibrated in all axes.
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For this reason, we consider some regions in the environment (in terms of landmarks within
those regions) are a priori known to the robot with different levels of uncertainty (ranging be-
tween 10~° and 10 meters) and can be used for updating the robot’s belief. As will be seen in
Section 5.1.1, regions that are known with high-accuracy can be used for accelerometer sensor
calibration and for position updates, while those with lower level of accuracy (10 meters) can
only be used for position updates. No other information is initially available, and thus the robot
has to map the environment while navigating through it, i.e. perform SLAM, and consider ap-

propriate aspects within the planning phase.

This section in organized as follows, first we demonstrate (using passive simulation) the
influence of known regions over the robot’s performance, then we present results from a simple
case of active online calibration only and in the last two sections we demonstrate our approach

contribution comparing to previous works.

5.1.1 Known Regions Influence - Study Case

We examine the influence of different uncertainty levels of priori known regions on the naviga-
tion and calibration performance. We simulate the same predefined trajectory considering iden-
tical environment in terms of landmarks, while changing only the uncertainty levels of landmarks

within the a priori known region (green square). The results are presented in Figures 5.1-5.3.
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Figure 5.1: Straight forward trajectory with known region (green square). The unknown land-
marks in the environment are the blue dots and the observed landmarks are shown with + on
them.
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Figure 5.2: Position covariance results using different uncertainty levels of priori known regions
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Figure 5.3: Calibration performance using different uncertainty levels of priori known regions,
(a) Accelerometers calibration covariance results and (b) Gyroscopes calibration covariance re-
sults

It is shown that it is possible to calibrate only the IMU’s accelerometers using known region

with very small uncertainty.

5.1.2 Active Online Sensors Calibration Results

In this section we present the influence on sensors calibration and navigation uncertainty by
using ’reaching-goal’ scenario comparing to ’online-calibration’ scenario. These two scenarios
are identical in terms of sensors parameters and environment (landmarks, known region and goal)
and the only difference between them are the weight matrices, Mg and My, in Eq. (4.7). For
’reaching-goal’ case, the weight matrix My in Eq. (4.7) is set to zero, meaning that the robot
should plan for the shortest path to goal. For *online-calibration’ case, the weight matrix My, is
set to zero and the weight matrices Mg, My, are adjustable in time according to the calibration
level of the robot.

We use a gradient descent method for optimizing the outer layer and Gauss-Newton for cal-
culating inference of the belief. And we define the initial trajectory as five steps (~ 200m) of

straight forward that don’t pass through the known region.

31



The comparison between the two scenarios is presented in the following figures. The robot’s
trajectories are shown in Figure 5.4, where the green square is a known region with uncertainty
of 10~%m. The unknown landmarks in the environment are the blue dots and the observed land-
marks along the path are shown with ’+’ on them. Performance comparison between the two
methods in term of estimation uncertainty (position and accelerometers calibration) is presented

in Figure 5.5. The presented results are the SLAM results given the chosen path in each method.
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Figure 5.4: Simulation trajectories with known region (green square) using (a) ’reaching-goal’
scenario or (b) ’online-calibration’ scenario. The unknown landmarks in the environment are
the blue dots and the observed landmarks are shown with + on them. These two scenarios are
identical in terms of sensors parameters and environment (landmarks, known region and goal).

It is shown that the planning in our approach takes into account the known regions in the
environment in order to keep the accelerometer’s calibration minimum as possible. In addition,

the known region drastically affects the navigation accuracy as shown in Figure 5.5.

5.1.3 Compared Approaches

We compare our approach, denoted as 'BSP-Calib’, with two other methods: 'BSP’ (previous
approaches, [17, 16]) and ’Shortest-Path’. The objective function in all the three methods can be
described via Eq. (4.7) with weights appropriately adapted on the fly, as discussed below.

The BSP method does not incorporate sensor calibration states within the belief, which
therefore describes at time k the joint pdf over past and current robot poses X and mapped
landmark L. Belief evolution along a given candidate trajectory thus considers perfectly cal-
ibrated sensors, both within inference and planning. In this method, similarly to [17], we bal-
ance between position uncertainty reduction versus goal achievement by defining a soft bound

tr (Ms, A}, ME ) < %, and set the weights Mo = of and My, = /T — af My, where

tr(Ms, Ay ME
B

af =1-— byt ;) € [0, 1] and My, is a selection matrix that extracts the appropriate
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Figure 5.5: Performance comparison in terms of estimation uncertainty: (a) position covariance
and error and (b) accelerometers calibration covariance.

position covariance from A,;i ;- See [17] for further details.

In our approach, the BSP-Calib method, we consider a modification of the above to ac-
count also for the sensor calibration uncertainty while setting the weights. Specifically, we
consider a soft bound 8¢ on sensor calibration uncertainty (accelerometer biases in our case),
and let af = 1 — ”(ME";% € [0,1] and My, = /1 —afMs,, where My, is de-
fined similarly to My, . Since we now have two online-calculated parameters o and af,, we set
Me = min (af, af), and My, = \/af, (1 — ai)Mgz. The intuition here is as follows: as we
approach any of the soft bounds 3% or 5, i.e. & — 0 or a® — 0, the goal attainment term is
disabled to allow for active sensor calibration or position uncertainty reduction. However, since
the environment is unknown and may include areas without landmarks (texture-less or dark ar-
eas) that require inertial navigation, we prioritize sensor calibration over reduction in position
uncertainty, since this would yield slower uncertainty evolution. One can observe that when the
sensor is sufficiently calibrated with respect to ¢, the method will aim to actively reduce posi-
tion uncertainty in case o — 0, or invest efforts in goal attainment. In our implementation we
use 8% = 150%> m? and ¢ = 2 mg. Clearly, properly balancing the weights in a multi-objective
function can be delicate and better approaches could exist. Further investigation of these aspects
is left to future research.

In the Shortest-Path method we simply set all the weight matrices to zero except of Mg.
This method will therefore choose the shortest path to the goal without considering uncertainty

aspects.

5.1.4 Simulation Results

The comparison between the three methods is presented in the following figures. The robot’s
trajectories are shown in Figure 5.6, where the cyan square is a known region with uncertainty of

10~%m, and the green square is a known region with uncertainty of 10m. The green square lo-
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cated closer to start and goal locations. The unknown landmarks in the environment are the blue
dots and the observed landmarks along the path are shown with ’+* on them. Performance com-
parison between the three methods in terms of estimation uncertainty (position and accelerome-
ters calibration) and paths length is presented in Figure 5.7. The presented results are the SLAM
results given the chosen path in each method.
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Figure 5.6: The robot’s trajectories for the three methods: (a) '‘BSP, (b) 'BSP-Calib’ (our ap-
proach) and (c) 'Shortest-Path’, where the cyan square is a known region with uncertainty of
10~°m, and the green square is a known region with uncertainty of 10m. The unknown land-
marks in the environment are the blue dots and the observed landmarks along the path are shown
with + on them.
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Figure 5.7: Performance comparison in terms of estimation uncertainty: (a) position covariance
and (b) accelerometers calibration covariance. Calibration performance is not shown for ‘BSP’
as in this approach sensor calibration is not part of the belief, and is not considered in objective
function. One can see that our approach, '‘BSP-Caliby, yields better performance despite the fact
that it is the longest path to the goal.

One can see in the results that our approach, '‘BSP-Caliby, yields better performance, in terms
of position uncertainty, despite the fact that it is the longest path to the goal. In our approach the
planning chooses to go through the known region with the lower uncertainty (cyan region) in
order to calibrate the robot’s accelerometers and then proceed to the goal. On the other hand,

the 'BSP’ method does not consider the calibration state in the belief, and therefore chooses
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a shorter path that reduces the pose uncertainty by reaching the closer known region but with
higher uncertainty (green region).

We note that actual performance in inference, in terms of covariance uncertainty upon reach-
ing the goal, may be actually different than the one which was calculated within planning. While
the latter only considers already-mapped (or known) landmarks and dead reckoning otherwise,
the inference process updates the belief based on incoming sensor observations also of new land-
marks. It is thus conceptually possible that the path determined by our approach, '‘BSP-Calibr,
will yield in inference inferior results to "BSP’ performance or ‘Shortest-Path’ methods. This,
for example, could be the case in an environment full with (unknown) landmarks. One possible
direction to approach this gap of belief evolution in planning and inference is to consider within

planning some statistics regarding landmark distribution. This direction is left to future research.
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5.2 Multi-Robot Results

In this study we consider a scenario with unknown environment comprising randomly scattered
landmarks, an a priori known region and a goal located in a specific point (see Figure 5.11). We
consider 2 aerial robots equipped with a downward-facing monocular camera and an IMU and
assume the sensors for both robots are of identical quality. A probabilistic roadmap (PRM) [26]
is used to discretize the (partially unknown) environment. Given a PRM, candidate paths are
generated for each robot. The objective function, for each of the compared methods, is then
evaluated for all combinations of candidate paths of both robots, and the optimal combination is
then chosen.

This section is organized as follows. First, we provide a case study for indirect cooperation
(see Section 5.2.1) in order to demonstrate the advantages of this concept. Then, in Sections 5.2.2
and 5.2.3 we demonstrate our multi-robot approach, denoted as ’Expendable-MR’, which uses
the cost function (4.14) and leverages indirect multi-robot updates. In these sections we also com-
pare our approach to an alternative recent multi-robot BSP approach (13, 21]. The performance
analysis in this section is in terms of position accuracy and path length.

Our multi-robot approach naturally applies also to active sensor calibration that was dis-
cussed in the single-robot case. However, while in our multi-robot simulation the belief in-
cludes sensor calibration variables, in this section we do not include in the objective function

corresponding calibration costs.

5.2.1 Indirect Cooperation - Case Study

We evaluate the concept of indirect cooperation, as defined in Section 4.2.3 in a basic study,
studying its feasibility in different scenarios. In all cases, we consider two robots operating
in an unknown environment represented in landmarks and a priori known region. The a priori
known region is used for more efficient indirectly update the strategic robot due to the significant
influence on the expendable robot.

In this study we focus on the impact of indirect cooperation on the performance of both of
the robots, in terms of estimation uncertainty; hence, the robot trajectories in this section are
pre-defined and no planning is involved.

We consider the following three scenarios, denoted as 'Shortest-Path’, "Highest-Correlation’
and '‘Common-Cooperation’, as shown in Figure 5.8. In that figure, the cyan square is the known
region, the green dots represent the unknown landmarks and the ellipses along the robots’ tra-
jectories represent the position covariance. All the scenarios assume that the trajectory for the
strategic robot, 1, is te shortest path to the goal, while the trajectory of the expendable robot 79
changes for each scenario, but always goes through the known region.

Specifically, in ’Shortest-Path’ scenario, ry goes directly to the known region. In this sce-
nario represents the shortest path for updating the strategic robot usually on account of low corre-
lation at update time between the states of robots r; and 3. The 'Highest-Correlation’ scenario
represents the path that gives the highest correlation at update time usually on account of update

time. Finally, the "Common-Cooperation’ scenario represents the common multi-robot coop-
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eration method which assumes the robots observe a mutual scene (even at different times) and

does not rely on prior correlation between the robots at all. We present the robots performance
in term of position accuracy (error and uncertainty).
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Figure 5.8: Robots’ trajectories for the three scenarios: (a) ‘Shortest-Path’ where 72 go directly
to the known region in order to update r; at the shortest time, (b) "Highest-Correlation’ where 9
go to the known region at the last time it can in order to achieve the highest correlation at update
time and (c) '"Common-Cooperation’ where 2 observes a mutual scene after it passed through
the known region. In all the graphs the cyan square represents the known region, the green
dots represent the unknown landmarks and the ellipses along the robot’s trajectories represent

position covariance. In all cases, robot 1 goes straight to goal, while robot ro goes through the
known region.

The performance results for the three scenario are presented in Figure 5.9, where the strategic
robot (r1) is represented with red color and the expendable robot (r9) with the green color. The
shown results were generated by performing a Monte-Carlo simulation with 50 runs for each

scenario. The plots show for each scenario the standard deviation (STD) over the runs results for
the norm position error.
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Figure 5.9: Performance comparison in terms of position estimation uncertainty and error: (a)
'Shortest-Pathy, (b) "Highest-Correlation’ and (c) 'Common-Cooperation’. Robot r; is the strate-
gic robot (represented by red color); robot 75 is the expendable robot (represented by green color).
In scenarios (a) and (b) one can see that the state estimation of robot r; is indirectly updated when
robot r» observes the known region. One can see the advantage of using the indirect cooperation
concept (scenarios (a) and (b)) in terms of robot 7] s update time compared to scenario (c).
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One can see in Figure 5.9(a) and 5.9(b) that, given initial correlation between the states of
both robots, the state estimation of robot 7 is indirectly updated when robot r observes the
known region, despite the fact that r; is located in a different region and does not make any
accurate observations on its own. Also, the results reflect the advantage using the indirect co-
operation concept in terms of robot 7 s update time, 12sec in Figure 5.9(a) compared to 15sec in
Figure 5.9(c). To summarize this section, the indirect cooperation approach relaxes the cooper-
ation requirement for observing mutual scene (5.9(c)) and enables the robots more flexibility in

cooperation.

5.2.2 Expendable Cooperation - Compared Approaches

After demonstrating the advantages of the indirect cooperation concept we now proceeding to
the results for the multi-robot expendable cooperation approach as described in Section 4.2.2.
We compare our approach, denoted as 'Expendable-MR’, with the previous approaches method
(see e.g. [13, 21]), denoted as 'BSP-MR’. For each method we considered two scenarios: (i) the
entire environment is scattered with landmarks and (ii) the goal is located within a region without
landmarks at all.

The main objective for all the methods is that at least one (pre-defined) robot reaches the goal
in minimum time and navigation error. In particular, in our approach only r; aims the goal while
ro aims to reduce estimation uncertainty of 1, while in BSP-MR both of the robots aim to reach
the goal while minimizing their own uncertainty.

The general objective function for the two methods is given by Eqgs. (4.13) and (4.15). In our
simulation we considered the following specific costs for the two methods.

In our approach, the Expendable-MR method, we define robot r; as the strategic robot and
robot 79 as the expendable robot. For this method we use the following cost function,

¢ lEa:p—MR = e l'rl +CflT2
cfit = Mg pathlen™
c ZTQ = Mgth (Zk+L) (5.1)

where, pathlen represents the path length of 7y and M the weight matrix that sets the im-
portance on this term. The matrix Mglz is used to choose the position covariance of robot 7 s
from the joint covariance ¥ ;, and determine the importance of it. The meaning of these cost
functions is that 71 plans to reach the goal with the shortest path while o plans an optimal tra-
jectory for reducing 7} s position uncertainty using the expendable indirect cooperation concept
we described in Section 4.2. In our simulation, robot % s stopping condition is when the position
uncertainty of robot r is reduced below some threshold, i.e. 7o stops after reaching the known

region that indirectly updated robot 7| s position state estimation.

38



In BSP-MR method, the objective function is as defined in Eq. (4.13), where each robot
“cares” about its own state estimation. For this reason we define a similar cost function for both

robots as follows,

Cf[BSP*MR = ¢ ;“1 _|_Cfl1”2
cfit = Mg pathlen™ + Mg tr (Sgyp)
cfi* = Mgpathlen™ + M2 tr (Sgyp) (5.2)

The meaning of these cost functions is that each robot balances between reaching the goal with
the shortest path while reducing its position uncertainty. In particular, as opposed to our ap-
proach, where only one robot has to reach the goal, here, both of the robots are tasked to reach

the goal.

We observe that while the formulation (5.2) of BSP-MR method is common in literature and
generally considered with non-zero weights, it can be reduced to the objective of our approach,
i.e. Eq. (5.1), by setting Mg> = Mg = 0. As we shall see in the sequel, by assigning 3
the role of an expendable robot, whose sole purpose is to aid r;, and maintaining a joint multi-
robot belief, which facilitates indirect multi-robot updates in presence of prior correlation, our

approach is capable to improve the performance of robot 7.

5.2.3 [Expendable Cooperation - Simulation Results

We used a probabilistic roadmap (PRM) [26] to discretize the (partially unknown) environment
and generate candidate paths over the roadmap. Figure 5.10 shows the considered scenarios for
the two robots and the generated 20 candidate paths for each robot, 10 paths directly to the goal
and 10 paths to the goal through the known region. The robots start near each other so there is
a correlation between them from the beginning due to mutual landmark observation and a prior
over the initial pose. Robot r; is represented with red color and robot r is represented with

green color.

Given the candidate paths, we calculate the optimal paths combination by using the objective
functions defined in Eq. (5.1) and (5.2). The comparison between the two methods for each
scenario is presented in the following figures. Note that the figure shows multi-robot SLAM
results, i.e. the robots execute the optimal paths as determined by each of the methods, capture
new sensor observations and use the latter to infer the posterior multi-robot belief. The robots’
trajectories are shown in Figure 5.11, where the green square is a known region with uncertainty
of 10~5m and the unknown landmarks in the environment are the blue dots.
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Figure 5.10: The environment discretization using probabilistic roadmap (PRM). The circles
are the sampling points and the connections between the circles are the vertices that represent
possible future robot locations. The generated candidate paths for the robots are the red (r1) and

green (ro) trajectories.
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Figure 5.11: The robot’s trajectories for the two methods considering the two scenar-

ios: (a) ‘Expendable-MR’ with “full environment”, (b) 'BSP-MR’ with “full environment”,
(cyExpendable-MR’ with “dark-corridor environment” and (b) '"BSP-MR’ with “dark-corridor
environment”. Where the green square is a known region with uncertainty of 10~°m and the
unknown landmarks in the environment are the blue dots. Robot r is the strategic robot pre-
sented with red trajectory and robot 9 is the ef‘lgendable robot presented with green trajectory.



One can see that in the '/BSP-MR’ method all the robots choose trajectories to the goal that
pass through the known region. In contrast, in our approach, only the expendable robot plans to
reach the known region and the strategic robot plans the shortest path to the goal while relying
on the expendable robot to reduce its estimation uncertainty.
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Figure 5.12: Performance comparison in terms of position estimation uncertainty and error for
the two methods considering the two scenarios: (a) 'Expendable-MR’ with “full environment”,
(b) 'BSP-MR’ with “full environment”, (c)’Expendable-MR’ with “dark-corridor environment”
and (b) 'BSP-MR’ with “dark-corridor environment”. Robot r is the strategic robot presented
with red lines and robot 75 is the expendable robot presented with green lines. The covariance
is presented with the dashed line and the error with the solid line. See text for details.

Performance comparison between the two methods for each scenario in terms of position
estimation uncertainty and path lengths is presented in Figure 5.12 and summarized in Figure
5.13. One can observe that our approach, 'Expendable-MR’ (Figures 5.12(a) and 5.12(c)), always
yields better performance in terms of trajectory length of the strategic robot r;, while keeping
similar levels of accuracy compared to the 'BSP-MR’ method. In particular, path length of robot
r1 is ~1.1km in our approach compared to ~2km for the '/BSP-MR’ method. On the other hand,

in terms of r; position uncertainty at the goal, the performance is scenario-dependent. For the
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“full environment” scenario (Figures 5.12(a) and 5.12(b)), the '/BSP-MR’ method yields slightly
better performance (difference of ~5m between the covariances), probably due the continuous
cooperation between the robots from the known region till they reach the goal. However, for the
“dark-corridor environment” (Figures 5.12(c) and 5.12(d)), our approach yields significantly bet-
ter performance (difference of ~20m between the covariances) for the same reason, i.e. for the
'BSP-MR’ method, the robots stop the cooperation when entering the “dark-corridor” and the
long path cause a bigger uncertainty drift. To summarize, in both scenarios, our approach yields
enhanced performance of robot 71, in terms of path length (short path to goal), while the expend-
able robot o manages to reduce the uncertainty of r; to attain high accuracy upon reaching the

goal.

= N
(¢)] N (¢)]

-
T

r, Path Length [km]

0.5¢

(a) (b)

Figure 5.13: Comparison summery for the four simulation runs. Robot 7/ s (a) path length and
(b) position covariance comparison. One can see that our approach always yield better results
in term of path length. On the other hand, in term of navigation accuracy the performance is
depend on the scenario, for example in a case with region without landmark our case probably
will yield better results (also related to the path length).
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Chapter 6

Conclusions

We addressed the problem of high-accuracy navigation for vision-aided inertial navigation sys-
tems considering both single and multi-robot frameworks and a GPS-deprived environment.
Especially, we addressed two problems related to belief space planning in partially unknown
environment, the first for single-robot framework and the second for collaborative multi-robot
framework.

For the single-robot case, we presented an approach for active inertial sensor calibration for
visual-inertial SLAM setup. This approach advances the state of the art in belief space planning
by incorporating within the belief and objective function also the IMU calibration state estima-
tion. By appropriately modifying the objective function, our approach is capable of calculating
optimal actions for reducing estimation error within inference, reducing estimation error growth
rate via IMU sensor calibration, or a combination of both.

The multi-robot framework builds upon the single-robot approach and introduces the con-
cept of expendable indirect multi-robot cooperation. This approach further advances the state of
the art by defining two collaborative robot subgroups, the “strategic group” and the “expendable
group”. The key idea is to have robots from the “expendable robots” improve performance, in
terms of estimation accuracy, of robots from the “strategic group” while the latter execute time-
critical missions. This approach is based on indirect cooperation concept, that enables one robot
updating the other robots that can be in different regions of the environments.

We examined the performance of our approach in simulation, considering as application
autonomous navigation to pre-defined goals within partial unknown environment. Simulation
results demonstrate estimation performance is significantly improved as a consequence of incor-
porating calibration aspects within the belief or objective function and by using the expendable
indirect cooperation concept.

As for future work, we plan to further investigate the expendable multi-robot cost function
contributions and its connection to the general and common definitions. In addition, a concept
for optimal adjustment of the weight matrices in the objective function. is a possible direction

for increasing the navigation accuracy.
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Chapter 7

Appendix - Indirect Cooperation
Theoretical Analysis

We present a simple theoretically analyze for demonstrate the indirect update concept. We as-
sume simple case of two robots, 1 and ro, starting with some initial correlation (e.g. mutual
observation or prior knowledge). We will assume that robot r; observes an a prioiri known re-
gion and the other robot doesn’t make any observation. Our hypothesis is that the covariance
matrix of 75 will be updated by the observation of the a prioiri known region by r; due to the

initial correlation.

Let X represents the covariance matrix of the problem. The covariance matrix 3 or the

information matrix I, are defined as

Y11 212
Yo 2o

I=ATA=RTR , x=11= [ (7.1)

Where A is the Jacobian matrix and R is the square root information matrix. The matrix R can
be calculated from the information matrix using Cholesky factorization.

Although we could have shown the following analysis via Kalman Filter in covariance form,
we conduct the analysis in information form, specifically considering the square root informa-
tion matrix R, because we use iSAM that use the information form (25, 23]. The usage of iISAM
is more convenient in many aspects such as sparsity conservation, additive calculation and more.

The matrix R, after marginalization previous states as shown in the following equation, is

an upper triangular shape.
p (2] |2i_y,ui_y) = /p (@ |21, ui_y) doyo (7.2)

For the simple case of our analysis its form is defined as shown in figure 7.1, where the

columns and rows represent the robots and 12 represent the correlation between them.

The Jacobian matrix A, is the Jacobian over the observation model z = h (z) + v and it is

calculated by,
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Figure 7.1: The square root information matrix R for the simple case of two robots

A=V (h(X)=]ar ... ay | (7.3)

where n is the number of robots. For our case, only robot r; observe a landmark, so in the

observation time the Jacobian matrix is,

A= [ a 0 } 7.9)

For our case we will examine the matrix R in two times: (a) The moment when the constraint
between the robots was created, tg, and (b) the moment when robot r; observed the oracle, .
To calculate R* we need to update the matrix R*~! with the Jacobian A*, as shown in Figure
7.2.

-1

a 0

Figure 7.2: The matrix at time #;, after adding the Jacobian A*. This matrix is updated using
Given Rotation in order to calculate the a posteriori information matrix R”

This update can be efficiently performed using Givens Rotations that are used to nullify
all entries of A¥ and appropriately updating the entries of R*~! (see Figure 7.2), yielding the a
posteriori information matrix R*,

RN =

kook

i Ti2
0 7“’52

In our case a; is a very accurate measurement due to the a priori known region observation. We

want to show that this measurement impact also robot o estimation and covariance, i.e. 5,

will be updated although robot 73 did not measured anything.
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T
To calculate R* from [ Rk=1 Ak } we can use the relations in [15]

2 2 N2
(rfi) - (rfi—l) + (ag“” (7.5)
(i—-1)_ k-1 k—1_(i—1)
@ _ T4 Ty Ty oag
a;’ = : (7.6)

2

0) k— ~1 (0
)2 eo1)2 (—ag )r]f21+7“]f1 1ag ))
(k) = (%) +

() )

To calculate the covariance matrix of each robot at time t,, X%

%)

(7.7)

we can use the relations in [10, 22]
using R = (75)

n

1 (1 ,
i ol B 2: lezgz
u U 5if T, ;40
1 l n
le = — — Z rijEﬂ — rijEl]
- >,
O\ j=itlr#0 =41, 74570

forl=mn,...,lande=1—-1,...,1.

Generally in our case for moment ¢;

. 1 (7"12)2
21 = (7’11)2 <1+ (7"22)2>

Sy = — 712
11 (r22)
Yoy = (rog)? (7.8)
Using Eq. (7.7) in Eq. (7.8) we get
k\2
¥ = 1 = () (7.9)
(0), k— k-1 (0)\2 N2 N2 .
<T§51>2 + (et :+T11 1a22 ) (T§2 1) (T]fl)z + (—ago)rlfz 1)
)+ ()

It is shown in Eq. (7.9) that in the case without correlation between the robots, i.e. r’fz_ L= 0, the

covariance matrix is not updated
k p-1) 2
Yoy = (7"22 )
On the other hand, with a correlation between the robots and observation made by robot 71, the

covariance of robot 7 is updated - the stronger the initial correlation, the stronger the impact.
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