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Abstract

This work presents a vision-based, computationally-efficient method for simultaneous

robot motion estimation and dynamic target tracking, while operating in GPS-denied

unknown or uncertain environments. While numerous vision-based approaches are able

to achieve simultaneous ego-motion estimation along with detection and tracking of

moving objects (DTMO), many of them require performing a bundle adjustment (BA)

optimization, which involves the estimation of the 3D points observed in the process.

One of the main concerns in robotics applications is the computational efforts required

to sustain extended operation. The BA process is performed incrementally as new

camera poses and new measurements arrive, constantly increasing the computational

complexity of the problem. Considering applications for which the primarily interest is

highly-accurate on-line navigation rather than mapping, the number of involved variables

can be considerably reduced by avoiding the explicit 3D structure reconstruction and

consequently save processing time. We take advantage of the light bundle adjustment

(LBA) method [16], which allows for ego-motion calculation without the need for 3D

points on-line reconstruction, and thus, significantly reduce computation time compared

to BA. The proposed method integrates the target tracking problem into the LBA

framework, yielding a simultaneous ego-motion estimation and tracking process, in

which the target is the only explicitly on-line reconstructed 3D point. Furthermore,

our method makes use of the recently developed Incremental Smoothing and Mapping

(iSAM) [20] technique, which allows for re-use of calculations in order to further reduce

the computational cost. Our approach is compared to BA and target tracking in

terms of accuracy and computational complexity using simulated aerial scenarios and

real-imagery experiments performed at the Autonomous Navigation and Perception Lab

(ANPL) at the Technion.
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Abbreviations and Notations
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Chapter 1

Introduction

Ego-motion estimation and target tracking are core capabilities in a wide range of

applications. While motion estimation is essential to numerous robotics tasks such as

autonomous navigation [37, 39, 7, 12] and augmented reality [3, 43], target tracking

has been a key capability, amongst others, for video surveillance [26] and for military

purposes [4]. Although researched for decades, target tracking methods have mostly

assumed a known or highly predictable sensor location. Recent robotics applications

such as autonomous aerial urban surveillance [42] or indoor navigation require the

ability to track dynamic objects from platforms while moving in unknown or uncertain

environments. The ability to solve simultaneously the ego-motion and target tracking

problems becomes therefore an important task. Furthermore, interest has grown for cases

in which external localization systems (e.g. GPS) are unavailable and the estimation

process must be performed using on-board sensors only. In particular, the capability to

perform those tasks based on vision sensors has gain great attention in the past two

decades, mostly thanks to the ever-growing advantages these sensors present [30].

Vision-based ego-motion estimation is typically performed in a process known as

bundle adjustment (BA) in computer vision, or simultaneous localization and mapping

(SLAM) in robotics, where the differences between the actual and the predicted image

observations are minimized. Therefore, the combined process of SLAM and moving

object tracking usually involves an optimization over the camera’s motion states, the

target’s navigation states, and the observed structure (3D points/landmarks). This non-

linear optimization is performed incrementally as new camera poses, new target states

and new surrounding features are observed, constantly increasing the computational

complexity of the problem. One of the main challenges in extended operation is thus

keeping computational efforts to a minimum despite the constantly growing number of

variables involved in the optimization.

However, many robotics applications do not require actual on-line mapping of the

environment. Conceptually, avoiding the 3D structure reconstruction would allow to

reduce the number of involved variables, and therefore, improve processing performances.

Several ”structure-less” BA approaches have been developed, where the optimization
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satisfies constraints which do not involve 3D structure reconstruction. Such a method

would therefore benefit the combined ego-motion and target tracking problem in terms

of processing time. Moreover, these methods use batch optimization, which performs the

whole estimation process from scratch at every step. Instead, incremental optimization

methods can be used to update the solution using partial calculations, allowing for

further computational savings.

1.1 Related Work

The simultaneous ego-motion and dynamic object tracking relates to numerous works

on SLAM and target tracking, both individually and combined. The SLAM problem

consists of building a map of an unknown environment while simultaneously localizing

the mapping platform. While the problem’s origins are found in the photogrammetry

community, its application for robotic purposes appeared first in the late 1980’s [34],[29],

where techniques for estimating relative spatial relationships between different frames

were presented. The early 1990’s have seen further development towards practical

implementations [25] and already recognized the need for computational efficiency. Early

approaches used the Extended Kalman Filter (EKF) to solve the SLAM problem [6, 34],

but were eventually overtaken by other techniques due to their quadratic computational

complexity, which limits them to relatively small environments or to relatively small

state vectors. Numerous SLAM methods have been proposed to overcome computational

complexity, for example, by exploiting the sparsity of the involved matrices [27, 22],

or by approximating the full problem with a reduced non-linear system [23]. A more

recent technique, used in the frame of this work, performs incremental smoothing [20] to

recover the solution while recalculating only part of the variables at each optimization

step, reducing significantly the computational cost. Still, full BA methods involve the

reconstruction of the 3D observed structure, which in case on-line mapping is of no

interest, increases unnecessarily the number of estimated variables. Different structure-

less BA methods have been proposed to address this issue. Rodriguez et al. [33] use

epipolar constraints between pairs of views while Steffen et al. [35] utilize trifocal tensor

constraints. The recently developed LBA method [16], used in this work, applies two

kind of multiview constraints: the two-view and three-view constraints. Pose-SLAM

techniques [8, 14] avoid explicit mapping by maintaining the camera trajectory as a

sparse graph of relative pose constraints, which are calculated using the landmarks as a

separate process.

The target tracking problem, referred more generally as detection and tracking of

moving objects (DTMO) [41] in the robotics literature, has been extensively studied for

several decades [1, 13]. The combined SLAM and DTMO problem, which is assessed

in our work, can be regarded as an optimization process in which the inputs are the

same as in SLAM (e.g. visual observations, environment scans, etc.), but the output

includes the map of the environment, robot poses and the state of the observed dynamic
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objects. This problem has attracted considerable attention in the recent years, mostly

in order to improve SLAM accuracy, which can be greatly degraded by the presence of

dynamic objects in the environment, if the latter are considered as static [28]. The first

mathematical framework to the combined process of simultaneous localization, mapping

and moving object tracking (SLAMMOT) was presented by Wang [40], who decompose

the problem into two separate estimators, one for the SLAM problem given the static

landmarks, and another for the tracking problem. Occupancy grid-based approaches

were proposed later by Vu et al. [38] and Vu [37], who solved SLAM by calculating the

maximum likelihood of occupancy grid maps. Ortega [31] introduced a geometric and

probabilistic approach to the vision-based SLAMMOT problem, providing a comparison

between the different kinds of optimization methods while Hahnel et al. [10] used

sampled-based joint probabilistic data association filter (JPDAF) to track people, and

occupancy grids for static landmarks.

An extensive overview of the literature concerning SLAM and DTMO is presented

by Pancham et al. [32].

1.2 Contribution

This work presents a computationally efficient approach for simultaneous camera ego-

motion estimation and target tracking, while operating in unknown or uncertain GPS-

deprived environments. ”Ego-motion” refers to the camera’s motion expressed in terms

of a relative 6DOF pose, i.e. relative translation and orientation, with respect to a

reference frame (e.g. the first camera), while target ”tracking” refers to the estimation

of its position and velocity. Our focus lies on robotic applications for which on-line

3D structure reconstruction is of no interest, although recovering the latter off-line

from optimized camera poses is always possible [19]. We propose to take advantage

of the recently developed incremental light bundle adjustment (iLBA) [16, 18, 19]

framework, which uses multi-view constraints to algebraically eliminate the (static) 3D

points from the optimization, allowing the dynamic target to become the only explicitly

reconstructed 3D point in the process. The reduced number of variables involved in the

optimization allows therefore for substantial savings in computational efforts.

Throughout this work, we formulate the problem’s probability distribution function

(pdf), over which we calculate the corresponding maximum a posteriori (MAP) estimate.

Incremental smoothing and mapping (iSAM) [20] technique is applied to re-used calcu-

lations, allowing to further reduce running time, in a similar fashion to the static-scene

oriented iLBA approach [19]. We demonstrate, using simulations on synthetic datasets

and real-imagery experiments, that while our methods provides similar levels of accuracy

than full BA and target tracking, it compares favorably in terms of computational

complexity.

This report is structured as follows: Chapter 2 introduces a few of the technical

notions which will be used throughout this report. In Chapter 3, we formulate the

11



simultaneous ego-motion estimation and moving object tracking problem. Chapter 4

reviews the LBA method [18], which is then extended to address the mentioned problem.

Chapter 5 focuses on the optimization process and Chapter 6 describes simulations and

experimental results, comparing our method with full BA in terms of processing time

and accuracy. We conclude in Chapter 7 and share thoughts about further possible

developments.
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Chapter 2

Background

2.1 The Pinhole Camera Model

The most common model for perspective camera assumes a pinhole projection system.

The model describes the camera aperture as a point, through which the light rays pass,

mapping the environment onto the image plane (See Figure 2.1).

Let lC = [x, y, z]T be a landmark (i.e. a scene point) in the camera reference frame

and p̃ = [u, v, 1]T its homogeneous projection on the image plane (in pixels), the mapping

of lC to the image plane is given by the perspective projection equation [11]

p =

 ũ

ṽ

w̃

 = λ

 u

v

1

 = KlC =

 αu 0 u0

0 αv v0

0 0 1


 x

y

z

 (2.1)

where λ is the depth factor (i.e. the z coordinate of the image plane in the camera axis

frame), αu and αv are the focal lengths and [u0, v0] is the principal point (i.e. the optical

center). These parameters are called the intrinsic parameters and the K matrix, the

calibration matrix. In a global reference frame, the considered scene point is expressed

as lC = RlG + t where R is the rotation matrix from global reference frame to camera

reference frame, and t is the translation from the global reference frame to the camera

reference frame, expressed in the latter. Substituting lC into Equation 2.1 allows to

define the projection operator as

proj (x, lG) = K[R|t]lG (2.2)

where x represents the camera pose in the global reference frame.
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Figure 2.1: Pinhole Camera Geometry

2.2 The Tree-View Constraints [15]

The three-view constraints represent geometrical relations between three camera poses

from which the same 3D landmark is observed. These constraints will be used in this

work as part of the pose estimation process.

Consider three camera poses, xk, xl, xm, from which the same 3D point l1 is observed.

As shown in Figure 2.2, we denote tk→l and tl→m the translation vectors from the kth

view to the lth view and from the lth view to the mth view, respectively, and define qk,

ql and qm as the line of sight (LOS) vectors from the camera to the landmark. The

position of the 3D landmark relative to view xk expressed in some reference axis system

G can be written

RCk
G qCk

k = RCk
G tCk

k→l +RCl
G q

Cl
l (2.3)

RCk
G qCk

k = RCk
G tCk

k→l +RCl
G t

Cl
l→m +RCm

G qCm
m , (2.4)

where RCi
G denotes the rotation matrix from the camera system at xi to the reference

frame. Subtracting Equation 2.4 from Equation 2.3 and re-writing Equation 2.3 yields

0 = RCk
G qCk

k −R
Cl
G q

Cl
l −R

Ck
G tCk

k→l (2.5)

0 = RCl
G q

Cl
l −R

Cm
G qCm

m −RCl
G t

Cl
l→m. (2.6)

We define scales parameters λi such that qi = λiq̂i where q̂i is the unit vector in the

LOS’s direction. Equations 2.5 and 2.6 can then be re-written into the matrix form as

14



Figure 2.2: Three view geometry for frames k, l and m observing a landmark l1. Image
from [19]

[
q̂k −q̂l 03×1 −tk→l

03×1 q̂l −q̂m −tl→m

]
︸ ︷︷ ︸

A


λk

λl

λm

1

 = 06×1, (2.7)

where q̂i are expressed in the reference frame (i.e. q̂i = RCi
G q̂

Ci
i ).

Since the elements of
[
λk λl λm 1

]T
are non-zero, it follows that rank (A) < 4,

which is possible if and only if the following conditions are satisfied [15]

qk · (tk→l × ql) = 0, (2.8)

ql · (tl→m × qm) = 0, (2.9)

(ql × qk) · (qm × tl→m) = (qk × tk→l) · (qm × ql). (2.10)

The two first equations are called two-view constraints and correspond to the

epipolar constraint, also reviewed in Section 2.5, which relates between a 3D point

and its projection at two different camera positions. Since Equation 2.8 and 2.9 are

homogeneous, the translations tk→l and tl→m can only be found up to scale. Equation

2.10 connects between the magnitudes of these translations. As a result, given one of

the translation scales, the second can be calculated.
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2.3 Probabilistic Representation of Estimation Problems

Troughout this work, we use Bayesian inference to recover the posterior probability

distribution function over variables of interest such as camera poses, target states

and (possibly) landmark locations, based on available information such as features

from camera-captured images. In this section, however, we first provide the necessary

background in probabilistic inference considering some variable X.

Let X denote some continuous random variable and x a specific value that X may

be equal to. Thus, the expression

p(X = x), (2.11)

abbreviated p(x), denotes the probability that X has the value x and is called the

probability density function (pdf). Assuming normal Gaussian distribution, as is in most

SLAM literature, the pdf of a one dimensional variable (i.e. x is a scalar) with mean µ

and variance σ2 is given by

p (x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
, (2.12)

and is abbreviated x ∼ N
(
µ, σ2

)
. In the case where x is a vector, the normal distribution

is called multivariate and is given by

p (x) =
1√

det (2πΣ)
exp

(
−1

2
‖x− µ‖2Σ

)
, (2.13)

where Σ is the covariance matrix and ‖x− µ‖2Σ
.
= (x− µ)TΣ−1 (x− µ) is called the

squared Mahalanobis norm.

Let Y denote a second random variable involved in the problem and y a specific

value that Y may take on. The joint pdf of variables X and Y is defined p(x, y) and, if

the two variables are independent, is given by

p(x, y) = p(x)p(y). (2.14)

However, variables often carry information about other variables, in which case one

probability will be calculated given the probability of the other one. In the case of X

and Y , the probability that X’s value is x given Y ’s value is y, is written

p (x|y) =
p (x, y)

p (y)
. (2.15)
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From Equation 2.15, we can formulate a relation between the two conditionals p(x|y)

and p(y|x), known as the Bayes rule:

p (x|y) =
p (y|x) p (x)

p (y)
. (2.16)

In probabilistic robotics, Bayes rule allows to compute the conditional probability

p(x|y) over the variable X given Y , called the posterior probability distribution, as a

function of the inverse conditional probability p(y|x) and the prior p(x). p(y) being

independent of x, it can be considered as constant and thus, Equation 2.16 can be

written

p(x|y) = ηp(y|x)p(x), (2.17)

where η = p(y)−1.

Eventually, the goal is to obtain an optimal estimate for the set of unknowns, given

available information. Referring to Equation 2.17, this is done by calculating the

maximum a posteriori (MAP) estimate x∗, given y:

x∗ = arg max
x

p (x|y) . (2.18)

2.4 Factor Graph

A joint probability distribution function can be represented by a graphical model called

factor graph, which can be used to perform efficient incremental inference. A factor

graph is a bipartite graph which represents a specific factorization of a joint pdf p(Θ)

p(Θ) ∝
∏

fi(Θi). (2.19)

Here, Θi is the subset of variables Θ involved in the factor fi, which represents the

constraint between the involved variables, such as motion models, measurement models

and priors. A factor graph is composed of vertices, which picture the variables, and of

nodes, representing the factors. An edge between a factor node fi and a variable vertice

xj ∈ Θ exists only if the factor fi expresses a constraint involving the variable xj . A

simple example is shown in Figure 2.3

Referring to Section 2.3, for the Gaussian case, fi is then defined

f(Θ)
.
= exp

(
−1

2
||gi(Θi)− ti||2Σi

)
, (2.20)

where g is a model function, t a measurement or pose, and ||e||2Σ = eTΣ−1e is the

squared Mahalanobis distance with covariance Σi.
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x0 x1 x2 x3

l

f0

u0 u1 u2

z1 z2

c1

Figure 2.3: Example of factor graph for f (Θ) = f (x0) f (x0, x1) f (x0, x2) f (x1, x2)
f (x1, l) f (x2, l) f (x2, x3).

As will be reviewed in Chapter 5, by operating directly on the factor graph, cal-

culations from previous optimization steps can be re-used to improve computational

efficiency.

2.5 Essential Matrix and Pose Estimation

Camera poses are estimated as part of a bundle adjustment process, which requires

an initial guess as a starting point for the optimization. In lack of supplementary

information, this first guess will have to be calculated using the on-board camera

measurements. One way is to extract the relative motion between the current and

the last estimated poses, using an important property called the epipolar constraint.

The epipolar constraint is a geometric relation which links between a 3D point and

its projection on two different camera positions. Let the epipolar plane be the plane

defined by the baseline (i.e. the line defined by Ck−1 and Ck in Figure 2.4) and a 3D

point X. The epipolar lines are then defined as the intersection of the epipolar plane

with the image planes of the two cameras. let p̃ and p̃′ be the normalized projection of

X on frame k− 1 and k respectively. If ~t is denoted as the translation vector from Ck−1

to Ck, then p̃, p̃′ and ~t are co-planar and therefore:

[
p̃′
]T · (t× p̃′′) = 0, (2.21)

where p̃′′ is the vector corresponding to p̃ in Ck’s reference frame and p̃′′ = Rp̃, with R

as the rotation matrix from Ck−1 to Ck. From Equation 2.21, we get

[
p̃′
]T

[t]×R p̃ = 0, (2.22)

where [t]× =

 0 −tz ty

tz 0 −tx
−ty tx 0

.
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Figure 2.4: The epipolar plane is the plane defined by the baseline (i.e. the line defined
by Ck−1 and Ck) and a 3D point X. The epipolar lines are defined as the intersection of
the epipolar plane with the image planes of the two cameras. p̃ and p̃′ are the normalized
projection of X on frame k − 1 and k respectively. If ~t is denoted as the translation
vector from Ck−1 to Ck, then p̃, p̃′ and ~t are co-planar. This is known as the epipolar
constraint

E ' [t]×R (2.23)

is called the essential matrix. Here, the symbol ' denotes the fact that the equivalence

is valid up to a multiplicative scalar. Incorporating the latter in Equation 2.22, we get

[
p̃′
]T
E p̃ = 0. (2.24)

This homogeneous equation defines the epipolar constraint.

Given data-association, or as part of a feature-matching algorithm such as RANSAC

[9], the essential matrix resulting from Equation 2.24 can be estimated. Referring to

Equation 2.23, the rotation and translation parts can be extracted using singular value

decomposition (SVD). A valid essential matrix after SVD is E = USV T . In general,

there are four different solutions R, t for one essential matrix:

R = U
(
±W T

)
V T (2.25)

t̂ = U (±W )SUT (2.26)

where W T =

 0 ±1 0

∓1 0 0

0 0 1

. In order to identify the correct R, t pair, a single point

is triangulated. The resulting z component of the reconstructed point must be positive
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(a) (b)

(c) (d)

Figure 2.5: The four solutions to the R, t extraction. (a) is the only possible solution,
where the landmark stands in front of both cameras

in the two camera frames (See Figure 2.5).
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Chapter 3

Problem Formulation and

Notations

We consider a scenario where a monocular camera mounted on a mobile robot is tracking

a dynamic target while operating in a GPS-deprived unknown environment.

3.1 The Bundle Adjustment Problem

The process of determining the camera poses and the stationary 3D structure given

measurements is called bundle adjustment (BA), or simultaneous localization and map-

ping (SLAM). Let xk represent the camera pose (i.e. 6DOF position and orientation) at

time-step tk, and denote all such states up to that time by Xk
.
=
{
x0 . . . xk

}
. We

also use Lk
.
=
{
l1 . . . ln

}
and Zk

.
=
{
z0 . . . zk

}
to represent, respectively, all

the landmarks observed by time tk, and the corresponding sensor observations. Here,

for each time index i ∈ [0, k], zi corresponds to all image observations obtained at time

ti. In particular, we use the notation zji to denote an observation of the jth landmark

at time ti.

Using probabilistic representation, the BA problem can be expressed by the joint

pdf

P (Xk, Lk|Zk) . (3.1)

Using Bayes’ rule, the general recursive Bayesian formula for bundle adjustment can

be derived as (See Section 2.3 for more details)

P (Xk, Lk|Zk) ∝ priors ·
k∏
i=1

∏
j∈Mi

p
(
zji |xi, lj

)
, (3.2)

where Mi is the set of landmarks observed at time index i and priors represent prior
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information on the estimated variables.

Considering a standard pinhole camera, the corresponding observation model can

be defined as (See Section 2.1)

zji = proj (xi, lj) + vij , (3.3)

where proj (·) is the projection operator [11] and vij ∼ N (0,Σv) is a zero-mean white

noise with measurement covariance Σv. Under Gaussian distribution assumption, the

measurement likelihood of the perception measurement can be expressed as

p (z|x, l) .
=

1√
|2πΣv|

exp

(
−1

2
‖z − proj (x, l)‖2Σv

)
. (3.4)

We assume camera calibration is known; otherwise, the uncertain calibration parameters

could be incorporated into the optimization framework as well.

Solving the bundle adjustment problem would therefore consist in calculating the

maximum a posteriori estimate over the joint pdf, defined as

X∗k , L
∗
k = arg max

Xk,Lk

P (Xk, Lk|Zk) . (3.5)

Due to the monotonic characteristics of the logarithmic function, calculating the

MAP estimate X∗k , L
∗
k becomes equivalent to minimizing the negative log-likelihood of

the BA pdf 3.1

X∗k , L
∗
k = arg min

Xk,Lk

− logP (Xk, Lk|Zk) . (3.6)

This leads to a nonlinear least-squares optimization, where the cost function

JBA (Xk, Lk) =
∑
i

∑
j∈Mi

∥∥∥zji − proj (xi, lj)
∥∥∥2

Σ
(3.7)

is to be minimized. Note that, to avoid clutter, the prior terms are not explicitly shown

in Equation 3.7.

3.2 Bundle Adjustment and Target Tracking

We investigate scenarios in which a dynamic target is tracked by the camera. Based on

the camera observations of the target, we seek to estimate its trajectory and velocity over

time. We assume the target moves randomly, however, its motion is assumed to follow

a known stochastic kinematic model (e.g. constant velocity or constant acceleration).

Let yk represent the target state at time step tk, defined generally as
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yk
.
=
[
yTk dTk

]T
= [xTk , yTk , zTk , ẋTk , ẏTk , żTk , ...]

T , (3.8)

where yTkdenotes the target’s tri-dimensional position and dTk its higher order time

derivatives required to accommodate the assumed motion model. In the frame of this

work, we focus on the target’s position and velocity. yk is therefore a six element vector

defined as

yk =

[
yTk
ẏTk

]
∈ R6×1. (3.9)

We denote Yk
.
=
{
y0 . . . yk

}
the set of all target’s states up to time-step tk.

Assuming a known Markovian motion model for the target, which likelihood is

represented by p (yi|yi−1), we define a joint pdf for the random variables involved in the

considered problem, given all information thus far, as

P (Xk, Yk, Lk|Zk) ∝ priors ·
k∏
i=1

p (yi|yi−1) p (zyii |xi, yi)
∏
j∈Mi

p
(
zji |xi, lj

) , (3.10)

where zyii denotes the observation of the target by the ith camera and p (zyii |xi, yi) refers

to a similar observation model than the one discussed in Section 3.1. Mi is the set

of landmarks observed at time index i and we consider priors = p (x0) p (y0) as given

information.

In this work, as in many robotics applications, we consider a constant velocity model

[2], characterized by the equation

ÿ (t) = w̃ (t) , (3.11)

where w̃ (t) is a continuous time zero-mean white noise representing the slight velocity

changes from its actual value.

The target state linear continuous propagation is generally noted as ẏ (t) = Ay (t) +

Dw (t), where A =

[
0 1

0 0

]
and D =

[
0

1

]
, or under its discrete form:

yk+1 = Φkyk +Gkwk, (3.12)

where Gk is the process noise Jacobian defined as Gk =

[
0

1

]
∈ R6×3 and Φk is the

state transition matrix and is defined as Φk =

[
1 4t
0 1

]
∈ R6×6 with 4t .= tk+1 − tk.

The discrete-time process noise wk ∼ N (0,Σw) relates to the continuous-time one

as wk =
∫ ∆t

0 eA(∆t−τ)Dw̃ (k∆t+ τ) dτ . Under Gaussian distribution assumption, the
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x0 x1 x2 x3

y1y0 y2 y3
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yprior
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fpro j fpro j fpro j

fmm fmm fmm

Figure 3.1: Factor graph representing a factorization of the joint pdf for bundle adjust-
ment with single target tracking

motion model likelihood is therefore expressed

p (yk+1|yk)
.
=

1√
|2πΣmm|

exp

(
−1

2
‖yk+1 − Φkyk‖2Σmm

)
, (3.13)

where Σmm
.
= GΣwG

T .

Finally, solving the combined bundle adjustment and target state estimation process

consists in calculating the MAP estimate over the joint pdf from Equation 3.10

X∗k , Y
∗
k , L

∗
k = arg max

Xk,Yk,Lk

P (Xk, Yk, Lk|Zk) (3.14)

3.3 Factor Graph Representation

As mentioned in Section 2.4, the factorization of the joint pdf described in Equation

3.10 can be represented using a factor graph [24], which will be used later to efficiently

solve the optimization problem using incremental inference (see Chapter 5) . Using

the same observation (Equation 3.3) and motion (Equation 3.12) models, this pdf is

expressed in factor graph notation as

P (Xk, Yk, Lk|Zk) ∝ priors ·
k∏
i=1

fmm (yi, yi−1) fproj (xi, yi)
∏
j∈Mi

fproj (xi, lj)

 .(3.15)

An illustration expressing the above factorization for a small example is shown in Figure

3.1. The corresponding factors in Equation 3.15 are straightforwardly defined as follows:

The factor fmm (yi, yi−1) corresponds to the target motion model and, referring to
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Equations 3.12 and 3.13, is defined as

fmm (yi, yi−1)
.
= exp

(
−1

2
‖yi − Φi−1yi−1‖2Σmm

)
. (3.16)

The projection factors fproj (xi, lj) and fproj (xi, yi) correspond to the landmarks and

target observation models; these factor are defined respectively as

fproj (xi, lj)
.
= exp

(
−1

2

∥∥∥zji − proj (xi, lj)
∥∥∥2

Σv

)
(3.17)

and

fproj (xi, yi)
.
= exp

(
−1

2
‖zyii − proj (xi, yi)‖2Σv

)
. (3.18)

Similarly to the previous section, the MAP estimate is defined as

X∗k , Y
∗
k , L

∗
k = arg max

Xk,Yk,Lk

P (Xk, Yk, Lk|Zk) , (3.19)

and can be efficiently calculated by exploiting the inherent sparse structure of the

problem while re-using calculations, as explained in Chapter 5.

This corresponds to the state of the art where inference is performed over camera

poses, landmarks and target states. Yet, when the primary focus is navigation rather

than mapping, explicit estimation of the observed landmarks in an on-line process is

not actually required. Conceptually, estimating only the camera poses and the dynamic

target (but not the landmarks) involves less variables to optimize and could be attractive

from a computational point of view. In this work, we develop an approach based on

this idea.

25





Chapter 4

LBA and Dynamic Target

Tracking

Bundle adjustment is a nonlinear iterative optimization framework typically applied for

estimating camera poses and observed landmarks. In this chapter, we integrate target

tracking to a structure-less bundle adjustment technique called Light Bundle Adjustment

(LBA) [18]. In the first section, we formulate the LBA equations while considering

a static scene. These equations are then extended in Section 4.2 to incorporate the

dynamic target tracking problem.

Using the factor graph notations from Chapter 3, the joint pdf P (Xk, Lk|Zk) which

corresponds to the static problem can be factorized, similarly to Equation 3.15, as

P (Xk, Lk|Zk) ∝ priors ·
k∏
i=1

 ∏
j∈Mi

fproj (xi, lj)

 , (4.1)

where priors = p (x0) p (y0) represents the prior information on the camera and target

states.

As mentioned, this works considers robotics applications for which the on-line

reconstruction of the 3D structure is of no interest. One way to avoid explicit estimation

of the landmarks in the solution is by marginalizing out the latter from the joint pdf as

in

P (Xk|Zk) =

∫
P (Xk, Lk|Zk) dLk. (4.2)

However, this involves a series of calculations which, in the case of on-line operation,

could be penalizing: First, performing the exact marginalization would initially require

the optimization of the full bundle adjustment problem, including landmarks, before

applying a Gaussian approximation to compute the marginal. Secondly, marginalization

in the information form involves expensive calculation of the Schur complement over the

variables we wish to keep [8]. Moreover, marginalization introduces fill-in, destroying
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the sparsity of the information matrix.

In contrast, structure-less BA methods approximate the BA cost function, allowing

for estimation of the camera poses without involving the reconstruction of the 3D struc-

ture [33, 35]. In this work, we use the recently developed light bundle adjustment (LBA)

approach [19, 16], which algebraically eliminates the landmarks from the optimization,

using multi-view constraints and in particular, three-view constraints.

4.1 Light Bundle Adjustment (LBA)

LBA allows for reduction of the number of variables involved in the optimization

compared to standard bundle adjustment. By algebraically eliminating the landmarks

from the problem, the optimization can be performed over the camera poses only. The

key idea is to use geometrical constraints relating three views from which the same

landmark is observed.

As reviewed in Section 2.2, considering a set of three different poses from which

a common landmark is observed (See Figure 2.2), it is possible to derive constraints

that relate the three poses while eliminating the landmark [17]. These constraints can

be formulated as two two-view constraints g2v between the two pairs of poses and one

three-view constraint g3v between the three involved poses [15, 17]. Conceptually, the

two-view constraint is equivalent to the epipolar constraint (See Section 2.5), while the

three-view constraint relates between the scales of the two translations tk→l and tl→m

(See Figure 2.2). Writing down the appropriate projection equations, we get

g2v (xk, xl, zk, zl) = qk · (tk→l × ql) (4.3)

g2v (xl, xm, zl, zm) = ql · (tl→m × qm) (4.4)

g3v (xk, xl, xm, zk, zl, zm) = (4.5)

(ql × qk) · (qm × tl→m)− (qk × tk→l) · (qm × ql),

where k, l and m are the three overlapping poses. qi
.
= RTi K

−1
i z for the ith view and

image observation z, where Ki is the calibration matrix, Ri represents the rotation

matrix from some reference frame to the ith view, and ti→j denotes the translation

vector from view i to view j, expressed in the global frame.

The resulting probability distribution PLBA (X|Z) can thus be factorized as

PLBA (X|Z) ∝
Nh∏
i=1

f2v/3v (Xi) , (4.6)

where f2v/3v represents the involved two- and three-view factors and Xi is the relevant

subset of camera poses. Referring to Equations 4.3-4.5, under Gaussian distribution
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(a) (b)

Figure 4.1: Factor graph representation for a small example including three views xk, xl,
xm. (a) represents the BA problem, where the three views are related to the landmark
l with projection factors. (b) represents the LBA problem, where the landmark l has
been eliminated, and the three views are related by two- and three-view constraints

assumption, f2v and f3v are defined as:

f2v (xk, xl)
.
= exp

(
−1

2
‖g2v (xk, xl, zk, zl)‖2Σ2v

)
(4.7)

and

f3v (xk, xl, xm)
.
=exp

(
−1

2
‖g3v (xk, xl, xm, zk, zl, zm)‖2Σ3v

)
, (4.8)

which correspond to the likelihoods of the two- and three-views constraints involving xk

and xl in Equation 4.7 and involving xk, xl and xm in Equation 4.8. The covariances

Σ2v and Σ3v are defined as:

Σ2v
.
= (∇zk,zlg2v) Σ(∇zk,zlg2v)

T , Σ3v
.
= (∇zk,zl,zmg3v) Σ(∇zk,zl,zmg3v)

T . (4.9)

Figure 4.1 shows a comparison between the factor graph representation of LBA and

standard BA for a small example.

Therefore, rather than optimizing the cost function 3.7, that involves the camera

and landmark states, the optimization is performed on the cost function [19]

JLBA(X)
.
=

Nh∑
i=1

‖hi(Xi, Zi)‖2Σi
, (4.10)

where hi ∈ {g2v, g3v} represents a single two- or three-view constraint involving the set

of poses Xi and the set of image observations Zi, Nh being the number of resulting

constraints.

Practically, when a landmark is observed by a new view xk and some earlier views

xl and xm, a single two-view (between xk and one of the two other views) and a single

three-view constraint are added (between the three views). The reason for not adding

the second two-view constraint (between views xl and xm) is that this constraint was

already added when processing these past views. In case a landmark is observed by
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only two views, we add a single two-view constraint.

4.2 LBA and Dynamic Target Tracking

In this section we integrate dynamic target tracking into the LBA framework. As will

be shown in Chapter 6, the resulting approach provides comparable accuracy for both

target tracking and camera pose estimation while significantly reducing running time,

compared to an equivalent BA approach.

The idea behind the proposed method is to incorporate the target tracking problem

into the LBA framework in order to yield a proxy for the joint pdf P (Xk, Yk|Zk) which

involves significantly less variables than the joint pdf P (Xk, Yk, Lk|Zk), while somewhat

avoiding the expensive calculations involved in the marginalization process [19]. Indeed,

if Xk ∈ RMk×1 , Yk ∈ RNk×1 and Lk ∈ ROk×1, then the amount of variables involved in

the optimization is decreased form Mk +Nk +Ok to Mk +Nk only, which would reduce

computational complexity (We note that Ok �Mk and Ok � Nk).

We integrate the factors f2v/3v corresponding to the camera poses described in

Equations 4.7 and 4.8 with the target tracking related factors fmm and fproj defined in

Equations 3.16 and 3.18 to yield the joint pdf P (Xk, Yk|Zk) over the relevant states

only. The target becomes therefore the only 3D point to be estimated in the process:

P (Xk, Yk|Zk) ∝ priors ·
k−1∏
i=1

fmm (yi, yi−1) fproj (xi, yi)
N∏
j=1

f2v/3v (Xj)

 , (4.11)

where, similarly to Equation 3.15, priors = p (x0) p (y0) represents the prior information

and Xj is the relevant subset of views for the ith frame. An illustration expressing the

above factorization for the same example as in Figure 3.1 is shown in Figure 4.2.

Solving the localization and target tracking problem then corresponds to estimating

the MAP

X∗k , Y
∗
k = arg max

Xk,Yk
P (Xk, Yk|Zk) , (4.12)

which is equivalent to minimizing the cost function

J (Xk, Yk) = ‖x0 − x̂0‖2Σx
+ ‖y0 − ŷ0‖2Σy

+

+

k∑
i=1

‖yi − Φiyi−1‖2Σmm
+ ‖zyii − proj (xi, yi)‖2Σv

+

Nh∑
j

‖hj(Xj , Zj)‖2Σj

 .
(4.13)

Solving the above mentioned non-linear least square problem is achievable using

several optimization methods. In the next chapter, we present the methods used in this

work to perform this task efficiently.
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Figure 4.2: Factor graph representing a factorization of the joint pdf for LBA and target
tracking
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Chapter 5

Incremental Inference

Estimating the MAP X∗k , Y
∗
k = arg maxXk,Yk P (Xk, Yk|Zk) involves solving a non-linear

least square problem in which the correspondent cost function J (Xk, Yk) is minimized.

This can be achieved using different types of optimization methods. While standard BA

technique often require trust-region optimization methods such as Levenberg-Marquardt

or Dogleg, LBA has been shown to converge using Gauss-Newton [19], a non trust-region

method. This allows for additional improvement of the processing time. Gauss-Newton,

which we review in the next section, will therefore be the method of choice in the

frame of this work. Computational complexity can be further reduced using incremental

techniques, which allow to re-use calculations from previous steps. Such a technique is

described in Section 5.2.

5.1 Gauss-Newton Optimization

The Gauss-Newton algorithm is an iterative process allowing to find the variables for

which a specific cost function is minimized. Considering the above mentioned cost

function J (Xk, Yk), it is performed as follows:

First, the cost function is linearized using the first-order Taylor expansion:

J
(
X̄ + ∆X, Ȳ + ∆Y

)
= ‖x̄0 − x̂0 + ∆x0‖2Σx

+ ‖ȳ0 − ŷ0 + ∆y0‖2Σy
+

k∑
i=1

(
‖ȳi − Φiȳi−1 + ∆ŷi − Φi∆ŷi−1‖2Σmm

+ ‖zyii − proj (x̄i, ȳi)−∇xiproj ·∆x̂i−

−∇yiproj ·∆ŷi‖
2
Σv

+

Nh∑
j

∥∥hj (X̄j , Zj
)

+∇Xjhj ·∆Xj

∥∥2

Σj

)
, (5.1)

where ∇qf = ∂f
∂q |q̄. Using the identity ‖f‖2Σ

.
=
∥∥∥Σ−

1
2 f
∥∥∥2

for a function f with covariance
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Σ, equation 5.1 is re-organized to yield the following representation:

J
(
Θ +4Θ

)
≈ ‖A4Θ − b‖2 , (5.2)

where Θ
.
= {X,Y }. A is called the Jacobian Matrix and comprises the jacobians of

all the involved functions with respect to the involved variables, while b is called the

residuals.

Next, The optimal increment ∆Θ is calculated by solving the linear equation

A4Θ = b, (5.3)

and the linearization point is updated for all variables

Θ +4Θ → Θ. (5.4)

This process is then repeated until convergence.

Still, several operations in the Gauss-Newton process are potentially demanding in

terms of computational efforts. First, the solution of the linear Equation 5.3 is not a

trivial task. A naive approach would process by calculating

4Θ =
(
ATA

)−1
AT b. (5.5)

As said, A includes the jacobians of all the involved functions with respect to all the

involved variables, and thus, A can grow to be very large. As a consequence, the calcu-

lation of the inversed information matrix (ATA)−1 can become an expensive procedure.

Futhermore, the Gauss-Newton process is usually done using batch optimization, which

re-performs the optimization process from scratch at every time-step (or batch of steps)

and can be penalizing in the case of on-line operation.

A better alternative is thus to use Incremental Smoothing And Mapping (iSAM), a

recently developed algorithm ([20]) that exploits the sparsity of the involved matrices

while re-using calculations from previous time steps in order to reduce computational

complexity. This method is reviewed in the next section.

5.2 Incremental Smoothing

Incremental smoothing and mapping (iSAM) [5, 21, 20] allows to efficiently handle the

optimization process described in the previous section. The iSAM method is applied in

the framework of our simulations and experiments in order to speed up calculations,

regardless of the bundle adjustment technique in use. The method is therefore reviewed

here for the sake of self-completeness.

First, the SAM method exploits the sparsity of the Jacobian Matrix by resorting to

matrix factorization in order to simplify the linear Equation 5.3 (Matrix factorization is
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a cost-effective procedure only when the involved matrix is sparse). Matrix factorization

is usually performed using QR or Cholesky method, both yield an upper-triangular

matrix R called the square-root infornation matrix which replaces the Jacobian matrix

A in Equation 5.3. Using QR method:

||A∆Θ− b||2 =

∣∣∣∣∣
∣∣∣∣∣Q
[
R

0

]
∆Θ− b

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣QTQ

[
R

0

]
∆Θ−QT b

∣∣∣∣∣
∣∣∣∣∣
2

=

=

∣∣∣∣∣
∣∣∣∣∣
[
R

0

]
∆Θ−

[
d

e

]∣∣∣∣∣
∣∣∣∣∣
2

= ||R∆Θ− d||2 + ||e||2 (5.6)

where Q is an orthogonal matrix . ||A∆− b||2 is thus minimal if R∆Θ = d, leaving

||e||2 as the residual. ∆Θ is then obtained by back-substitution.

Still, matrix factorization remains the main task performed at every optimization

step. Batch optimization performs this from scratch each time new variables are

added to the problem. In contrast, incremental smoothing updates the problem as new

measurements and variables arrive, by directly updating the square root information

matrix R and by recalculating only the matrix entries that actually change. A key

insight is the fact that factorizing the measurement Jacobian matrix A into a sparse

square root information matrix R is equivalent to eliminating the corresponding factor

graph into a Bayes net with a certain variables elimination order. Having that in mind,

updates on the matrix R can be performed by directly updating the corresponding

Bayes net. For this exact purpose, the Bayes tree is introduced, a directed tree in which

the nodes represent cliques of the underlying Bayes net. As new variables and factors

are added, the SAM problem is updated directly by changing the affected part of the

Bayes tree only, thus avoiding the need to re-factorize the Jacobian Matrix.

Bayes trees are graphical models that represent probability densities. Each of the k

cliques Ck represents a set of fully connected variables in the Bayes net and is assigned a

conditional probability. A Bayes tree is constructed from a Bayes net by discovering its

cliques using the maximum cardinality search algorithm [36]. For a new factor f(xi, xj),

only paths between the cliques containing either xi or xj and the root are affected.

During the inference step, the affected part of the Bayes tree is converted back into a

factor graph, which can be re-eliminated into a Bayes net after the addition of f(xi, xj).

The Bayes net is then re-converted into a Bayes tree, which can be re-attached to the

unaffected sub-trees of the original Bayes tree. An example of this process is described

in Figure 5.1.

Additionally, using a Bayes tree eliminates the need for batch reordering. Instead,

affected variables can be re-ordered continuously at every incremental update (see 5.1c),

keeping sparsity at a relatively constant level. Although this is not the optimal solution

in terms of global variables ordering, as only the variables affected by the update are

being re-ordered, it has provided considerably better results than the periodic batch
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l, x3, x2

x1 : x2, l

x0 : x1, x2

(a) The affected cliques are
detected in the original Bayes
tree.

x1 x2 x3 x4

l

(b) Affected cliques are extracted from the Bayes
tree to recreate their corresponding factor graph,
to which the new factors f (x4, x3) , f (x4, l) and
the new variable x4 are added.

x1 x2 x3 x4

l

(c) The updated factor graph is then re-eliminated
with a new elimination order x1, x2, x3, l, x4 to
create a Bayes net.

x4, x3, l

x2 : x3, l

x2 : x2, l

x0 : x1, x2

(d) The Bayes net is
then converted into a
Bayes tree which is re-
attached to the unaf-
fected part of the pre-
vious Bayes tree.

Figure 5.1: Update of a Bayes tree with new variable x4 and factors f(x3, x4) and
f(x4, l).
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re-ordering. Furthermore, rather than fully re-linearizing the whole set of variables at

heuristically determined points in time, fluid re-linearization triggers re-linearization of

a variable only when the deviation between its current estimate and the linearization

point is larger than a defined threshold β, set heuristically or as part of a ”tuning

process”. The same idea is used for the state update at the back-substitution step.

Because new variables and factors generally impact their direct surroundings, only a

limited part of the system’s variables needs to be updated. Therefore, iSAM keeps

track of the previous values of the ∆ vector, stopping the update process whenever a

clique is encountered that refers to a variable for which ∆ changes by less than a defined

threshold α.
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Chapter 6

Results

We demonstrate the benefits of the proposed method with simulations performed on

synthetic datasets and with real-imagery experiments. For each scenario, target tracking

and ego-pose estimation using LBA and full BA are compared in terms of accuracy and

processing time. All experiments were run on an Intel i7-4720HQ quad core processor

with 2.6 GHz clock rate and 8GB of RAM. The methods used for comparison were

implemented using the GTSAM library1.

6.1 Experimental Evaluation with Synthetic Datasets

A series of simulations were performed on synthetic datasets in order to compare

our method with full BA technique and to demonstrate its capability in terms of

computational performance and estimation accuracy for both camera and target states.

We present two types of studies: A statistical performance study on an approximately

3km long aerial scenario (Figure 6.1), and a case study in a larger aerial scenario (Figure

6.3). In both cases, the downward-facing camera operates in GPS-denied environments

and occasionally re-visits previously explored locations, providing occasional loop-closure

measurements. The simulated target takes a similar course on the ground and for the

sake of simplicity, stays in the camera’s field of view throughout the process. The

priors p (x0) and p (y0) are Gaussians with means equal to their initial values, and

with σ = 2 [m] standard deviation. The measurement model assumes an image noise

σ = 0.5 [pix]. The continuous-time system is discretized with time-step 4t = 3 [sec].

Regarding target motion, we use the constant velocity model described in Section 3.2

and assume a zero-mean, white Gaussian noise σ = [30, 30, 0.001]T [m/sec]. Here, we

constrained the noise on the z axis to prevent divergence, both with LBA and BA, which

use data only from a single monocular camera. Addressing this issue would probably

require additional information or constraints on the target motion (multi-robot setup,

additional sensors, geometric constraints, etc.).

1https://research.cc.gatech.edu/borg/download
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Figure 6.1: Scenario used for statistical study. Camera and target trajectories are shown
in red and blue respectively.

6.1.1 Statistical Simulation Results

A performance comparison between the proposed method and BA with target tracking is

presented, in a 45-run Monte-Carlo study. The scenario used in this simulation, showed

in Figure 6.1, contains 52 frames, gathered over ˜160 seconds. Loop-closures can be

noticed around view 20 and 38. The comparisons presented in Figure 6.2a-6.2c are given

in terms of root-mean-square error (RMSE), calculated over the norms of the error

vectors. All results refer to incremental estimations, i.e. at each time tk performance is

evaluated given Zk, which is in particular important for online navigation.

Figures 6.2a and 6.2b describe the camera incremental position and orientation

errors and Figure 6.2c shows the target position error. We observe similar levels of

accuracy with the two techniques. The camera pose and target trajectory errors are

bounded, with clear negative trend in both the camera and target position errors around

view 20, upon loop-closure. We note that, in this case, the navigation is performed

relatively to the camera’s and target’s initial positions. Those were initialized from their

ground truth values, causing initial errors to be zero for all the estimated states.

Figure 6.2d shows statistics over running time between the proposed method and

full BA with target tracking. For BA, a distinct increase in computation time can be

observed at view 38, where a loop-closure occurs. While one can already observe a

significant difference in running time between the two methods in favor of LBA, we

confirm this observation further in a larger scenario and with real imagery experiments

in the next sections.
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Figure 6.2: Monte-Carlo study results comparing between the proposed method and full
BA with target tracking (a) Camera position RMSE; (b) Camera orientation RMSE
(including close-up); (c) Target position RMSE; (d) Running time average with lower
and upper boundaries.
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Figure 6.3: Large synthetic scenario with about 25300 observed landmarks (shown in
black). Camera and target trajectories are shown in red and blue respectively.

6.1.2 Large Scenario

The large scenario, showed in Figure 6.3, simulates an approximately 14.5km long aerial

path and involves a series of loop closures, resulting in variables recalculation during

optimization. As in the previous case, the target takes a similar course on the ground.

A comparison in terms of accuracy and processing time are presented in Figure 6.4.

The obtained camera average position incremental errors for LBA and BA are 0.94

and 0.83 meters, respectively, with a maximum error of 3.65 and 3.45 meters. While the

accuracy levels are similar, one can easily notice the difference in running time. Loop

closures have a high impact on BA running time due to landmark re-elimination and

re-linearization they trigger; this process is avoided with LBA. It results in an average

processing time of 2.5 seconds for LBA with target tracking, versus 20.7 seconds for BA

method. The obtained overall processing time for the same scenario is 602 seconds for

the proposed method, versus 5020 seconds with BA.

42



0 50 100 150 200 250
Pose Index

0

1

2

3

4

P
os

iti
on

 E
rr

or
 [m

]

Camera Position

Dyn LBA
Dyn BA

(a)

0 50 100 150 200 250
Pose Index

2.216

2.218

2.22

2.222

2.224

R
ot

at
io

n 
E

rr
or

 [d
eg

]

Camera Orientation

Dyn LBA
Dyn BA

(b)

0 50 100 150 200 250
Pose Index

0

1

2

3

P
os

iti
on

 E
rr

or
 [m

]

Target Position

Dyn LBA
Dyn BA

(c)

0 50 100 150 200 250
Pose Index

0

20

40

60

80

P
ro

ce
ss

in
g 

T
im

e 
[s

ec
]

Processing Time

Dyn LBA
Dyn BA

(d)

Figure 6.4: Comparison between the proposed method and full BA with target tracking
for a large scale synthetic scenario
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Figure 6.5: Scheme of the lab setup for the real-imagery experiments. The yellow dots
represent the trackers installed on the platforms, allowing for detection by the ground
truth system. Images were scattered on the floor to densify the observed environment.
Best seen in colour

6.2 Experimental Evaluation with Real-Imagery Datasets

Further evaluations were performed through real-world experiments conducted at the

Autonomous Navigation and Perception Lab (ANPL). Similarly to the synthetic dataset

evaluation, these experiments involve a downward-facing camera which performed an

aerial pattern while tracking a dynamic target moving on the ground. Ground truth

data was gathered for the camera and the dynamic target using an independent real-time

6DOF optical tracking system. A scheme of the lab setup is presented in Figure 6.5 and

two samples of typical captured images are presented in Figure 6.6. The recorded datasets

are available online and can be accessed at http://vindelman.net.technion.ac.il.

Two different datasets were studied. In the first dataset, ANPL1, the camera and

the target perform circular patterns, while in the second, ANPL2, they move in a more

complex and unsynchronized manner, with occasional loss of target sight. Both cover

an area of approximately 10 [m] × 6 [m]. In ANPL1 the camera and target travel 26.9

and 34.6 meters respectively, while in ANPL2, the distance traveled is 19 and 21.1

meters respectively. Image sensing was performed using a high definition, wide angle
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Camera

Resolution

[pix]

Frames
Duration

[sec]
Landmarks

Obser-

vations

ANPL1 1280× 960 80 40 2439 31333

ANPL2 1920×1080 40 117 3366 25631

Table 6.1: Datasets details

  

Target

Figure 6.6: Typical images from the ANPL1 real-imagery dataset

camera and image distortion was corrected in the process using calibration data. Table

6.1 provides further details regarding the number of views and observations, camera

settings and dataset durations.

Data association is performed using an implementation of the RANSAC algorithm [9].

The target is detected by identification of the most highly recurrent feature, although

more advanced techniques exist but are outside the scope of this work. Since the

experiments were conducted in a relatively constrained area with a wide field-of-view

camera, numerous loop closures occur, as locations are often re-visited.

We compare the pose estimation errors of the camera and the position errors of

the dynamic target with respect to ground truth for both LBA with target tracking

and full BA cases. Incremental smoothing was applied for both methods in ANPL1

dataset and standard batch optimization in ANPL2. QR factorization was used in

all cases. We assume priors p (x0) and p (y0) on the initial camera and target states

with means equal to their respective ground truth values and a σ = 0.3 [m] standard

deviation. For the rest of the estimation process, new camera states are initialized

by composition of last estimated pose with the relative motion from ground truth,

corrupted with a white Gaussian noise σ = 0.1 [m] for position (i.e. the typical distance

traveled between two frames), and σ ∼= 5 [deg] (0.09 [rad]) on each axis for orientation.

A different option, tested with the LBA method, is composing the previous estimate

and relative motion extracted from the essential matrix calculated during the data

association process, as reviewed in Section 2.5. Results using the latter initialization

method indicate similar performance with respect to the former initialization method.

Here again, we use the constant velocity model for the dynamic target. This motion
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Target Position
Error [m]

Camera Position
Error [m]

Mean Max Mean Max

ANPL1 0.07 0.19 0.06 0.18

ANPL2 0.14 0.42 0.08 0.34

Table 6.2: Relative estimation errors summary of LBA method with respect to BA
method for the camera and target positions in ANPL1 and ANPL2 datasets. The table
entries are absolute values

Processing Tine
[sec]

Mean Total

ANPL1
BA 5.6 447.8

LBA 2.2 177.1

ANPL2
BA 3.1 222.9

LBA 1.9 139.4

Table 6.3: Summary of the processing times with LBA and BA methods for the ANPL1
dataset

model becomes the only available information for trajectory estimation when the target

moves out of the camera’s field of view, as it is the case for ˜15% of the frames in

ANPL2. Similarly to the synthetic simulations, we assume the target moves on the

ground, and thus constrain the first vertical velocity to zero. The measurement model

assumes an image noise σ = 0.5 [pix].

Figure 6.7 shows the estimated trajectories and ground truth for the camera and the

dynamic target in both datasets, using LBA method. We calculate an average error in

position estimation of 22 and 38 centimeters for the camera and the target respectively

in ANPL1 dataset, and of 49 and 47 centimeters in the ANPL2 dataset. The same level

of position accuracy is calculated for the BA method. These errors are due to a specific

practical data synchronization issue (ground thruth data vs. image sequence) during

the experiment. Since we are interrested to assess the similarity in terms of accuracies

between the two techniques, we show in Figures 6.8a to 6.8c the relative errors between

LBA and BA methods, meaning the difference between the estimation errors using both

methods. Then, a comparison of the processing time is shown in Figure 6.8d.
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Figure 6.7: Estimated vs. ground truth 3D trajectories with real-imagery datasets for
LBA approach in (a) ANPL1 dataset (b) ANPL2 dataset. BA approach produces
similar results in terms of estimation errors, as shown in Table 6.2.
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Figure 6.8: Incremental relative errors of LBA method with respect to BA method for
the (a) camera position, (b) camera orientation, (c) target position, in ANPL1 dataset.
(d) presents a comparison of the processing times per frame
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Table 6.2 and 6.3 summarize the absolute values of the relative errors and the

processing times for the two datasets. In both cases, the two methods show similar levels

of accuracy: The average values for target and camera positions are 7 and 6 centimeters

respectively, for ANPL1 dataset, and 14 and 8 centimeters for ANPL2 dataset. In

contrast, LBA with dynamic target tracking shows consequently better computational

performances. The mean processing time per step is reduced by 61% for ANPL1 and

by 39% for ANPL2.
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Chapter 7

Conclusions and Future Work

We presented an efficient method for simultaneous ego-motion estimation and target

tracking using the LBA framework. By algebraically eliminating the observed landmarks

from the optimization, we allow the target to become the only reconstructed 3D point

in the process. This reduces significantly the number of variables compared to full

BA methods, and thus, allows for processing time improvements. We presented the

mathematical process involved in the integration of the target tracking problem into the

LBA framework, leading to a cost function that is formulated in terms of multi-view

constraints, target motion model and observations of the target. Computational efforts

are further reduced by applying incremental inference over factor graphs representing

the optimization problem, thus performing partial calculations at each optimization

step.

We investigated performance of the proposed approach and compared it to the

corresponding bundle adjustment formulation using synthetic and real-imagery datasets.

While the two approaches exhibit similar accuracy levels, a significantly reduced running

time was obtained for the proposed approach with both experimental methods. In

particular, the presented method was up to eight times faster than full bundle adjustment

in the simulations and up to two and a half times faster in the real-imagery experiments.

This difference, however, is expected to vary with the number of landmarks observed

per frame. The created real-imagery datasets have been made available to the research

community through the ANPL website. These datasets include recorded images with

synchronized ground truth for both the camera and the target, and is seen as a

contribution by itself.

As for future work, the extension of this method to a multi-robot localization

and/or multi-target tracking problem seems natural continuations, as those subjects

have attracted great attention in recent years. In this case, the method used for target

detection would have to be adapted and represents a real challenge in the frame of

real-imagery experiments.
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בו לאופן בשיערוך, המעורבים המשתנים למספר בנוסף גורמים. ממספר מושפעת חישובים מורכבות

אופטימיזציה על מבוססות SLAMל ביותר החדישות השיטות גדולה. חשיבות האופטימיזציה מבוצעת

בשיטה צעדים. מספר או צעד בכל מתחילתו מבוצע התהליך כלומר, ,(batch-optimization) ״בקבוצה״

בשלבים שנעשו בחישובים תלות ללא מחדש, מבוצעים האופטימיציה לתהליך הנדרשים החישובים כל זו,

Incremental Smoothing and Mapping בשיטת להשתמש זו, עבודה במסגרת מציעים, אנו הקודמים.

במודל שימוש על מבוססת זו שיטה קודמים. מצעדים בחישובים חוזר שימוש לבצע המאפשרת ,(iSAM)

המשתנים את המסמלים צמתים ידי על הפיזיקלית הבעיה את המתאר ,Factor Graph הנקרא גראפי

המשתנים בין האילוצים את המסמלות וקשתות וכדומה) המטרה מיקום המצלמה, (מצב בבעיה האקראיים

ניתן , Factor Graphה־ על המבוצעות פשוטות פעולות בעזרת וכדומה). מדידה דינאמי, (מודל השונים

המערבים קודמים בחישובים חוזר שימוש לבצע ובכך חדש מידע מהוספת המושפעים המשתנים את לזהות

המשתנים. שאר את

פלטפורמה מצב של סימולטני בשיערוך הטמונה הבעיה את מתמטית מנסחים אנו הזו, העבודה לאורך

בין מבדילים אנו הבעיה, של הסתברותי ייצוג באמצעות .LBA בשיטת שימוש תוך ניידת מטרה של ותנועה

מציגים אנו כן, כמו .(BA) הסביבה מיפוי ביצוע הכוללות סטנדרטיות שיטות לבין LBA בשיטת שימוש

מודגם המוצעת השיטה יתרון האופטימיזציה. תהליך ייעול לצורך שימוש נעשה בה iSAM שיטת את

אוירית פלטפורמה על מורכבת מצלמה בו תרחיש על המתבססים וניסויים בסימולציות שימוש ידי על

סינטטי נתונים בסיס על מבוצעות הסימולציות המטרה. את המהווה רכב נע עליה הקרקע, כלפי ומכוונת

250 כ־ המונה ארוך מסלול של בוחן מקרה וניתוח יחסית קצר מסלול על סטטיסטית אנליזה ומכילות

ומכילים Autonomous Navigation and Perception Lab (ANPL) במעבדת בוצעו ניסויים תמונות.

BA ביצוע לבין המוצעת השיטה בין החישוב זמני מבחינת השוואה ביצענו במורכבותם. שונים תחרישים

ממוצע עיבוד בזמן דרמאטי שיפור מראים אנו השיטות, שתי בין דומות דיוק רמות למרות סטנדרטי.

המעבדתיים. הניסויים עבור 2.5 פי ועד הסימולציות עבור 8 פי עד של המוצעת, השיטה לטובת לצעד

ii



תקציר

דינאמית פלטפורמה מצב של סימולטני לשיערוך חישובית מבחינה יעילה גישה מציגים אנו זו בעבודה

דינאמיות פלטפורמות של המצב שיערוך חיצוני. מידע וללא ידועה לא בסביבה ניידת, מטרה ותנועת

של תנועה בקרת כגון מגוונים יישומים לטובת עניין מקור רב זמן מזה מהווה ואורינטציה) (מיקום

היא גם מהווה ניידת מטרה של תנועה ושיערוך עקיבה מדומה. ומציאות אוטונומי ניווט אוויריות, מערכות

המחקר למרות עשורים. מספר מזה צבאיים ויישומים אויריות מעקב מערכות ומשמשת קריטית יכולת

מתחום חדשים יישומים כצפוי. מסלולו או כידוע החיישן מיקום את מניחות העבודות רוב בנושא, הרב

לשערוך יכולות מצריכים אדם־מכונה, ממשק או ניידת מטרה אחר אוטונומי מעקב כגון הרובוטיקה,

ידועה. לא בסביבה הנעות מפלטפורמות מטרה של התנועה

בלבד. הפלטפורמה על המותקנים בחיישנים שימוש לעשות צורך קיים ,GPS כגון חיצוני מידע בהעדר

האחרונים, העשורים בשני ניכר באופן התפתחה תנועה שיערוך לצורך מידע כמקור במצלמה השימוש יכולת

להפקה. הניתן המידע של וגוברת ההולכת והאיכות יחסית הנמוך מחירם בשוק, הפתרונות לזמינות הודות

יחיד. מידע כמקור אחת מצלמה סמך על תנועה שיערוך בבעית נתמקד זו בעבודה

חישוב המיפוי: לבעית ישירות קשורה המיקום שיערוך בעית ידועה, לא בסביבה נעה פלטפורמה כאשר

המצלמה, מיקום בהנתן רק לשערך ניתן מיקומם שאת בסביבה, הנמצאים העצמים סמך על נעשה המיקום

Bundle Adjust- כ־ ידוע זה אופטימיזציה תהליך אחת. ובעונה בעת להפתר צריכות הבעיות שתי ולכן,

הרובוטיקה. בקהילת Simultaneous Localization And Mapping (SLAM) או ,ment (BA)

הסביבה ומיפוי המטרה תנועת המצלמה, מצב משוערכים מטרה אחרי ועקיבה MALS של משולב בתהליך

חדשים משתנים מתווספים צעד, בכל כאשר ״מצטבר״ באופן מבוצע זה תהליך מתקיים. התרחיש בה

האתגרים אחד חישובית. מבחינה הבעיה מורכבות את מתמיד באופן המגדיל דבר חדשות, ומדידות

האפשר ככל ונמוך יציב חישובי מאמץ רמת על לשמור הינו מתמשך תפעול הדורשים ביישומים המכזיים

זמן. לאורך

במקרים אמת. בזמן הסביבה מיפוי בתהליך עניין אין עבורם רובוטיים ליישומים מתייחסים אנו

לשיטות ולכן משאבים, ביזבוז מהווה בסביבה הנמצאים העצמים מיקום בשיערוך הכרוך המאמץ אלו,

שיטות מספר קיימות החישוביים. הביצועים לשיפור פוטנציאל יש הסביבה ממיפוי להמנע המאפשרות

מערבים שאינם באילוצים שימוש על מתבססות אלו שיטות הסביבה. במיפוי צורך ללא SLAM לביצוע

המעורבים המשתנים מספר את משמעותית המקטין דבר בסביבה, הנמצאים (landmarks) העצמים את

שפותחה Light Bundle Adjustment (LBA) בשיטת שימוש עושים אנו זו, בעבודה באופטימיזציה.

מתהליך להסיר המאפשרים גיאומטריים באילוצים שימוש תוך מצלמה מצב שיערוך המבצעת באחרונה,

זו שיטה עם משלבים אנו בסביבה. הנמצאים הסטטיים העצמים את אלגברית בצורה האופטימיזציה

בחישוב. המעורבת היחידה מימדית התלת לנקודה ההופכת ניידת, מטרה של תנועה שיערוך
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