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Abstract— We demonstrate distributed, online, and real-time
cooperative localization and mapping between multiple robots
operating throughout an unknown environment using indirect
measurements. We present a novel Expectation Maximization
(EM) based approach to efficiently identify inlier multi-robot
loop closures by incorporating robot pose uncertainty, which
significantly improves the trajectory accuracy over long-term
navigation. An EM and hypothesis based method is used to
determine a common reference frame. We detail a 2D laser
scan correspondence method to form robust correspondences
between laser scans shared amongst robots. The implementation
is experimentally validated using teams of aerial vehicles, and
analyzed to determine its accuracy, computational efficiency,
scalability to many robots, and robustness to varying environ-
ments. We demonstrate through multiple experiments that our
method can efficiently build maps of large indoor and outdoor
environments in a distributed, online, and real-time setting.

I. INTRODUCTION

Distributed cooperative mapping in unknown environ-
ments is an important ability for a wide variety of multi-
robot applications such as coordinated control, surveillance,
and rapid exploration. Applications relying on distributed
mapping must assume a shared environment representation
in order to establish a common reference frame between
vehicles. For this reason, two essential capabilities for a
cooperative mapping system are the ability to robustly and
efficiently compute data association, and establish relative
pose transformations between individual vehicles in an online
and distributed manner (Fig. 1).

Previous solutions to these problems can be divided into
Full-SLAM and Pose-SLAM. In multi-robot Full-SLAM
approaches, robots have shared views of common landmarks
[1], [2], [3], [4], [5]. Several of these Full-SLAM methods
have the ability to build robust multi-robot data associations
without a prior on initial relative poses [2], [5]. Specifically,
Fox et al. consider a similar problem which was solved using
a particle filter approach in the Full-SLAM framework [6].

Alternatively, Pose-SLAM approaches achieve greater effi-
ciency and robustness in comparison to Full-SLAM by avoid-
ing explicit estimation of landmark positions. In this work
we will focus on the Pose-SLAM approach. Many multi-
robot Pose-SLAM techniques assume the existence of direct
relative pose measurements between robots, and can compute
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Fig. 1: Top: three quadrotors cooperatively generating a
map of the environment. Bottom: Three robot trajectories
and emplaced laser scan points in a computed common
reference frame overlaid on a ground truth floor plan. Map
misalignments caused by drift of odometries.

a common reference frame with or without assuming prior
information on initial relative poses between robots [7], [8].
However, these strategies make strong temporal and proximal
assumptions regarding interactions between vehicles, which
may not be viable for operation in expansive environments
where vehicles navigate either asynchronously or without
expectation of frequent rendezvous.

In contrast, we focus on missions through large and
complex environments which do not permit frequent vehicle
interaction, and assume that vehicles autonomously explore
the environment while opportunistically coordinating to build
a common reference frame. Because of these constraints,
we require robots to localize to one another solely through
indirect observations (i.e. through commonalities observed



in collected sensory observations). The problem of building
a common reference frame has been solved under the as-
sumption of perfect multi-robot data association [9], [10],
[11], [12], but these works do not allow for erroneous
data association. To address this issue, methods based on
Expectation Maximization (EM) [13], [14] which simul-
taneously compute a common reference frame and infer
data association through imperfect indirect measurements
have been proposed. Unfortunately, these approaches assume
perfect trajectory estimates, and are unable to identify multi-
robot data associations in the presence of drift.

In this paper, we significantly improve upon a previous
EM-based Pose-SLAM approach [14] [15], focusing towards
a distributed, online, and real-time implementation of multi-
robot cooperative mapping with unknown initial poses and
indirect data association. We detail an online EM optimiza-
tion and hypothesis based method to estimate the multi-
robot common reference frame. In addition, as our main
contribution, we propose an EM-based online method to
robustly identify multi-robot loop closures in pose graphs,
which incorporates robot pose uncertainty to filter incorrect
loop closures caused by trajectory drift. To comprehensively
evaluate the system’s accuracy, efficiency, scalability, and
robustness of the approach, we detail online multi-robot
mapping experiments conducted on aerial robots.

Implementation of our approach requires a fast 2D laser
correspondence method to robustly detect correspondences
between shared sensory observations. Multi-robot data asso-
ciation is similar in nature to finding loop closures in the
single robot Pose-SLAM problem: both problems involve
comparing a query scan to a set of cached scans. The dis-
tinction between the two is that the query scan in the former
problem is received from a different robot. Therefore to com-
pute sensory correspondences between robots, we borrow
ideas from single robot 2D laser scan loop closure literature.
Granstrom et al. [16] present a method which combines many
global laser scan features, such as Centroid and Close Area
features, to determine loop closures. However, this strategy
is not view-point invariant which makes it unsuitable for a
multi-robot localization task. Several works have developed
laser-based feature detection and description methods [17],
[18] that can be used to rapidly detect correspondences. We
choose to use FLIRT features [18] introduced by Tipaldi et
al. due to their rotational invariance.

The main contributions of this paper are:
• A novel EM-based technique for robust multi-robot loop

closing which integrates robot pose uncertainty.
• A robust multi-robot laser scan correspondence strategy

utilizing FLIRT features and RANSAC registration.
• A real-time implementation of our approach, and ex-

amination of its accuracy, efficiency, scalability, and
robustness through experiments with aerial robots.

The approach can be explained through the following proce-
dure: Robots are initialized and begin localizing and building
individual maps. As they navigate, each robot shares lo-
cally acquired laser scans and SLAM pose estimates with
other robots over a wireless network. FLIRT features are

extracted from laser scans received by each robot and are
compared against that robot’s local history of laser scan
features. RANSAC is used to find correspondences between
the feature sets. We then use EM to cluster correspondences
and detect inliers amongst those clusters. The set of inlier
correspondence clusters is used to build multiple transfor-
mation hypotheses for the robot pair. The most probable
hypothesis is used to initialize a pose graph transformation
constraint between the robots, which is optimized over time
using iSAM2 incremental optimizer [19].

II. PROBLEM FORMULATION

We begin with a probabilistic formulation for a single
robot r. Letting Xr represent the robot trajectory and de-
noting all observations obtained thus far by Zr, the joint
probability distribution function can be written as

p(Xr|Zr) ∝ p(xr0)
∏

ur
k,l∈Zr

p(urk,l|xrk, xrl ), (1)

with p (xr0) being the prior on the initial pose xr0, and
xri ∈ Xr representing the robot pose at time step i. We use
the notation urk,l ∈ Zr to represent a relative measurement
involving two poses xrk and xrl , which could be produced,
for example, by a camera or a range sensor.

Following the common assumption in the SLAM commu-
nity, we define the single measurement likelihood term as a
single Gaussian

p(urk,l|xrk, xrl ) ∝ exp

(
−1

2

∥∥urk,l 	 (xrk 	 xrl )
∥∥2

Σ

)
, (2)

where Σ is the measurement noise covariance and xrk 	 xrl
expresses xrl in the frame of xrk. The single robot Pose-
SLAM problem of robot r can be formulated as a MAP
estimation of joint probability in Eq. (1)

X̂r = argmax
Xr

p(Xr|Zr). (3)

Extending this formulation to the multi-robot Pose-SLAM
problem, we assume a group of R robots are deployed
in an unknown environment to collaboratively explore and
generate a shared map. This augments Eq. (3) to

X̂R = argmax
XR

p(XR|ZR), (4)

where R .
= {1, ..., R} is the set of all robots, XR .

=
{X1, ..., XR} is the set of their trajectories, and ZR is the
union of all single-robot measurements and all relative multi-
robot measurements

ZR .
= {Z1, ..., ZR} ∪ {ur,r

′

k,l |(r, r
′, k, l) ∈ F} (5)

Here, F denotes the set of multi-robot data associations, and
ur,r

′

k,l specifies a measurement correspondence between xrk
and xr

′

l for each data association (r, r′, k, l) ∈ F between
two robots r and r′. We note that the set of multi-robot data
associations F may contain incorrect correspondences.

In contrast to the single robot scenario, since the trajec-
tories of different robots are defined in their local frames,



the transformation between these reference frames must be
considered. With this in mind, we define the likelihood term
of the multi-robot constraint between robots r and r′ as

p(ur,r
′

k,l |x
r
k, x

r′

l ) ∝ exp

(
−1

2

∥∥∥err(ur,r
′

k,l , x
r
k, x

r′

l )
∥∥∥2

Σ

)
(6)

with

err(ur,r
′

k,l , x
r
k, x

r′

l ) = ur,r
′

k,l 	
(
xrk 	

(
T rr′ ⊕ xr

′

l

))
. (7)

The notation ⊕ represents transform composition, and T rr′ is
the transform between reference frames of robot r and r′.

Although the complete multi-robot Pose-SLAM problem
is formulated in Eq. (4), solving this problem is not practical
for real-time applications due to network and computational
constraints limiting the frequency of shared sensor measure-
ments. Instead, each robot r uses a subset of measurements
and poses, Zr ⊆ ZR and X r ⊆ XR, corresponding to
all local measurements as well as a subset of measurements
shared by other robots. Under this subsampling, the multi
robot Pose-SLAM problem solved by robot r is

X̂ r = argmax
X r

p(X r|Zr) (8)

In this paper we address the problem of recovering the
MAP estimate in Eq. (8) while considering multi-robot data
association and initial relative poses between the robots
are both unknown. Similarly to [13], [14], we address the
data association problem by introducing a binary variable
jr,r

′

k,l ∈ J r for each multi-robot relative pose measurement
ur,r

′

k,l that is available to robot r. These binary variables
represents whether the measurement is an inlier or an outlier.
To calculate the MAP inference in Eq. (8), we marginalize
over these variables, resulting in:

X̂ r = argmax
X r

∑
J r

p(X r,J r|Zr). (9)

III. EM-BASED MULTI ROBOT INFERENCE

In this section we present our EM framework and discuss
one of the main contributions of this paper. Instead of directly
solving the inference problem in Eq. (9), our approach must
first infer both the initial relative poses between the robots
as well as multi-robot data association. As demonstrated in
previous works [13], [14], these are two coupled problems
that must be solved concurrently before attempting to solve
Eq. (9), and can be formulated as

T̂ r′r = argmax
T r′
r

∑
J r

p
(
T r

′

r ,J r|X̂ r,Zr
)
. (10)

However, since the above inference involves accounting for
all possible values for each of latent binary variables in J r,
it is computationally intractable. We developed an efficient
EM-based approach to perform this inference [13], [14].

In this paper we build upon prior research and contribute
an important extension to identify multi-robot loop closures
even when robot trajectories significantly drift over time,

which was not addressed in [13], [14]. We first detail our
previous approach (Sections III-A and III-B) and in Section
III-C focus on the mentioned contribution.

A. Inference over Initial Relative Poses via EM

The initial relative pose between any two robots r and
r′ can be calculated from each candidate multi-robot cor-
respondence (r, r

′
, k, l) ∈ Fr, involving the measurement

ur,r
′

k,l , and poses xrk and xr
′

l as follows:

T r
′

r =
(
xrk ⊕ ur,r

′

k,l

)
	 xr

′

l , (11)

where xrk and xr
′

l are expressed in the local reference frame
of each robot.

Calculating T r
′

r for all correspondences in Fr and analyz-
ing the distribution of the obtained transformations allows us
to concurrently infer T r

′

r and simultaneously establish data
association (i.e. identify which correspondences in Fr are
inliers and outliers). A key observation mentioned in [13] is
that inlier correspondences will produce a cluster of similar
transformations T r

′

r , while transformations calculated from
outlier correspondences will be scattered. The remaining task
therefore reduces to identifying the inlier cluster.

This concept is demonstrated in Fig. 2 (a) shows the
estimated trajectories of two robots (green and red); these es-
timates were obtained using only local observations available
to each robot, and the initial relative pose between the robots
is unknown. The figure also shows the set Fr of candidate
correspondences available to the green robot. The distribution
of transformations T r

′

r , calculated via Eq. (11) for each such
correspondence is shown in Fig. 2 (b). The large inlier cluster
corresponds to the correct value of T r

′

r .
Identifying this cluster involves performing the inference

in Eq. (10), which, as mentioned, is computationally in-
tractable. The EM approach that we developed in [13] allows
us to drastically reduce computational complexity while
producing a locally-optimal solution.

We now summarize the EM formulation and elaborate
on aspects that will be required later in Section III-C. To
simplify notations, we remove the superscripts and subscripts
r and r′, and rewrite Eq. (10) as

T̂ = argmax
T

∑
J

p
(
T,J |X̂ ,Z

)
. (12)

The tth iteration of the EM optimization can be described
by the following 2 steps:

• E step: Calculate a lower bound on p
(
T |X̂ ,Z

)
via

Q
(
T |T̂ (t)

)
.
= EJ |T̂ (t),X̂ ,Z

[
log p

(
T,J |X̂ ,Z

)]
=
∑
J

p
(
J |T̂ (t), X̂ ,Z

)
log p

(
T,J |X̂ ,Z

)
. (13)

• M step: Calculate the MAP estimation by maximizing
the above lower bound:

T̂ (t+1) = argmax
T

Q
(
T |T̂ (t)

)
. (14)
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Fig. 2: The process of computing an initial relative transform.
(a) shows correspondences between two trajectories. (b)
depicts the transforms calculated through correspondences
in (a) with an inlier cluster highlighted. (c) shows aligned
trajectories with inliers and outliers in black and gray,
respectively. (d) shows the resulting trajectories with scans.

Assuming the binary variables js in J are statistically
independent conditioned on T̂ (t), X̂ and Z , and letting s

.
=

(r, r′, k, l) ∈ Fr and us
.
= ur,r

′

k,l , Eq. (13) can be written as

Q
(
T |T̂ (t)

)
=p
(
T |X̂ r

)
+
∑
s∈Fr

∑
js∈J

p
(
js|us, T̂ (t), x̂rk, x̂

r′

l

)
·

log p
(
js|x̂rk, x̂r

′

l

)
p
(
us|x̂rk, x̂r

′

l , js, T
)
, (15)

where

p
(
js|us, T̂ (t), x̂rk, x̂

r′

l

)
=

p
(
us|x̂rk, x̂r

′

l , js, T̂
(t)
)
p (js)

p
(
us|T̂ (t), x̂rk, x̂

r′
l

) . (16)

p (js) is the prior term and the measurement likelihood
p
(
us|x̂rk, x̂r

′

l , js, T̂
(t)
)

can be expanded as

p
(
us|x̂rk, x̂r

′

l , js, T̂
(t)
)
∝exp

(
−1

2

∥∥∥err(ur,r
′

k,l , x̂
r
k, x̂

r′

l )
∥∥∥2

Σjs

)
,

(17)
The err (.) function is defined in Eq. (7), and Σjs ∈
{Σinlier,Σoutlier}.

The denominator in Eq. (16) is not actually
evaluated; instead, the numerator is calculated
for both inlier and outlier, and the equation is
normalized such that p

(
js = inlier|us, T̂ (t), x̂rk, x̂

r′

l

)
+

p
(
js = outier|us, T̂ (t), x̂rk, x̂

r′

l

)
= 1.

In our implementation, we use a uniform prior p(inlier) =
p(outlier) = 0.5, and set Σinlier to 0.2 m in position and

0.02 rad in rotation, respectively. Σoutlier is set to 500 m in
position and 200 rad in rotation.

B. Hypothesis Selection

The nonlinear EM optimization in Eqs. (13)-(14) is guar-
anteed to converge to a local maxima of Eq. (12). Therefore,
a reasonably good initial guess is required to recover the
correct reference frame T r

′

r . It is for this reason that we
choose several initial guesses and perform the EM opti-
mization for each one of them. These initial guesses are
obtained, in our implementation, by calculating a histogram
and performing basic clustering on each element separately
(x, y, and orientation), as further detailed in [13].

Performing EM optimization for each such initial guess
produces a locally optimal solution, that we call a hypothesis,
representing the inferred T r

′

r and multi-robot data associa-
tion. A hypothesis h

.
= {I,O} is a partitioning of the set

J r into inliers I and outliers O, such that I ∪O = J r. The
problem can be formulated now as choosing the most proba-
ble hypothesis h? from the set H. In this paper we reject any
hypotheses in H with p(js = inlier|us, T̂ (t), x̂rk, x̂

r′

l ) < 0.8
and then choose h? according to the following criteria: (1)
h∗ has most inlier count compared to other hypotheses in H,
and (2) h∗ has at least 10 inliers.

C. Identifying Multi-Robot Loop Closures Over Time

Once a common reference frame has been determined, it
becomes possible for each robot r to perform the optimiza-
tion Eq. (8) with its own measurements and the inlier multi-
robot constraints. The latter is obtained by performing EM
optimization and hypothesis selection (Sections III-A and III-
B) when new multi-robot measurements are received.

However, due to drift in the robot pose estimates, iden-
tifying true multi-robot inlier correspondences as inliers
becomes very challenging over time. The problematic as-
pect in the EM formulation from Section III-A is that it
is conditioned on the robot estimated trajectories, without
accounting for the uncertainties in these estimations, see
Eq. (12). In practice, this is far from being correct, as the
trajectory estimations develop significant drift over time.

An example is shown in Fig. 3(a), where the red and green
robots start from same location, move towards the top-left,
diverge, and finally reconverge in the same corridor. Upon
reconvergence, due to significant drift in their trajectory
estimations, the predicted relative pose will be far from
the measured relative pose as determined by true inlier
multi-robot correspondences. As a result, all of these inlier
correspondences are identified as outliers, leading to sub-
optimal map merging and estimation accuracy.

To address this issue, we incorporate the uncertainty in
robot trajectories within the EM formulation from Section
III-A, providing a probabilistically sound mechanism to
adapt the inlier and outlier covariances Σinlier,Σoutlier
from Eq. (17) according to the associated uncertainty in
appropriate robot poses. In practice, Σoutlier needs not to
be modified, as it is typically already very large.
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Fig. 3: Two robots moving towards the top-left. (a) True
relative pose measurements cannot be identified as inliers
(black) due to poor trajectory alignment (inset). (b) With
a changing noise model, inliers are correctly identified,
correcting for drift.

For example, when considering the true inlier relative pose
measurement ur,r

′

k,l that relates between the poses xrk and xr
′

l ,
the uncertainties in estimates of these poses will be used to
modify Σinlier. If these uncertainties are high (corresponding
to a high estimation error) Σinlier will become large, and
ur,r

′

k,l will be identified as an inlier.
Specifically, the MAP estimation in Eq. (12) must now

also be conditioned the joint covariance Σ:

T̂ = argmax
T

∑
J

p
(
T,J |X̂ ,Z,Σ

)
, (18)

and the derivation in Eqs. (15)-(17) must be changed accord-
ingly. Thus, the lower bound Eq. 15 becomes

Q
(
T |T̂ (t)

)
=
∑
J

p
(
J |T̂ (t), X̂ ,Z,Σ

)
log p

(
T,J |X̂ ,Z,Σ

)
,

(19)
and the explicit expression of this bound, given by Eq. (15),
also becomes conditioned on Σ. In particular, the measure-
ment likelihood changes from Eq. (17) to

p
(
us|x̂rk, x̂r

′

l , js, T̂
(t),Σ

)
∝exp

(
−1

2

∥∥∥err(ur,r
′

k,l , x̂
r
k, x̂

r′

l )
∥∥∥2

Σv

)
,

(20)
which now includes a modified measurement covariance Σv .

We now focus on developing an expression for Σv . The
predicted measurement upreds can be written as

zpreds = x̂rk 	
(
T̂ (t) ⊕ x̂r

′

l

)
= h(T̂ (t), x̂rk, x̂

r′

l ), (21)

resulting in the following observation model:

us = h(T, x̂rk, x̂
r′

l ) + v (22)

with v ∼ N (0,Σv). Now, T ≡ T r
′

r is the random variable,
while the estimates x̂rk and x̂r

′

l are considered fixed (see
Eq. (18)).

However, the inlier measurement noise covariance Σinlier
only correctly models the error us−h(T r

′

r , xrk, x
r′

l ) for true
values x̄rk and x̄r

′

l . Since xrk and xr
′

l are fixed, any deviation
from these values must be accounted for by the measurement
covariance model Σv (see similar treatment in [12]).

We achieve this in the following way. To account for errors
∆xrk and ∆xr

′

l in the estimates x̂rk and x̂r
′

l , we write

x̄rk = x̂rk + ∆xrk , x̄r
′

l = x̂r
′

l + ∆xr
′

l . (23)

Linearizing h(T r
′

r , x̄rk, x̄
r′

l ) about x̂rk and x̂r
′

l yields:

us ≈ h
(
T, x̂rk, x̂

r′

l

)
+

∂h

∂xrk
∆xrk+

∂h

∂xr
′
l

∆xr
′

l +vinlier. (24)

The uncertainty of the last three terms in Eq. (24) is
quantified by Σv from Eq. (20), which is equal to:

Σv =
(

∂h
∂xr

k

∂h
∂xr′

l

)
Σxr

k,x
r′
l

(
∂h
∂xr

k
∂h
∂xr′

l

)
+ Σinlier, (25)

where Σxr
k,x

r′
l

is the joint marginal covariance of xrk and xr
′

l .
This covariance can be extracted from the joint covariance
Σ that represents the second moment of the pdf p(X r|Zr)
and can be evaluated using the MAP estimation Eq. (8).

The approach described above also allows us to correctly
determine multi-robot inlier correspondences even when the
estimated trajectories develop significant drift. We use this
approach in all of the experiments presented in this paper.
For example, referring again to the scenario considered in
Fig. 3, one can observe that this approach correctly identifies
the inlier multi-robot correspondences, while the two robots
travel in the same corridor (compare Figs. 3(a) and 3(b)),
and as a result, the maps are well aligned.

IV. FEATURE-BASED CORRESPONDENCE

To implement the formulation in Section III, a practical
multi-robot correspondence generation approach is required.
In our previous works [13], [14], [15], naïve scan-to-scan
ICP was used. However, ICP is both time consuming and
susceptible to local minima in the presence of large rotations
which are common when matching laser scans between
robots in arbitrary reference frames. Instead we seek an
efficient and robust method of forming correspondences.
We propose a fast 2D laser scan based approach towards
multi-robot data correspondence generation. The 2D laser
correspondence generation problem can be formulated in
the following manner: given a set of cached laser scans
Lr .

= {Lri } from robot r and a query scan Lr
′

l from robot r′,
determine the scans Lrk in Lr which share similarity to Lr

′

l ,
and align them to produce a relative pose measurement ur,r

′

k,l .
Our approach can be divided into detection and matching. In
the detection step, given a local scan set Lr and a received
scan Lr

′

l , we determine all correspondences (r, r′, k, l). In
the matching step, we align Lrk with Lr

′

l and return the
relative pose measurement ur,r

′

k,l .

A. Correspondence Detection

The detection approach can be divided into training and
testing phases. To train, FLIRT [18] features and 128-
dimensional descriptors are extracted for every incoming
scan. The generated descriptors are inserted into randomized
kd-trees provided by the FLANN library [20], granting the
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Fig. 4: The loop closure process. (a) shows the feature match
histogram as well as query and peak scans. (b) shows the
matching phase, with features in circles, inlier and outlier
feature matches in black and gray, respectively, and scans
after alignment (inset).

ability to rapidly query for nearest neighbors in the 128-
dimensional feature space.

In the testing phase, upon receiving a query scan from
another robot, we first extract features and descriptors, then
perform fast nearest neighbor searching in the local descrip-
tor set for each query descriptor. Nearest neighbors of all
query descriptors are placed in a histogram, indexed by local
scan number. The peak value in the histogram corresponds
to the local scan with the highest number of similar features,
which implies a similarity between the two scans.

Figure 4 (a) shows an example query scan (blue) from
another robot being matched against a set of 80 local scans.
The scan at index 26 (red), corresponding to the histogram’s
peak, is indeed well-matched with the query scan.

B. Correspondence Matching

Once potential correspondences are identified, a
RANSAC-based matching strategy is used to find the
relative pose measurement for each loop correspondence.
We first match FLIRT descriptors in each matched scan
pair (query and local matched scan candidate) by finding
the nearest neighbor, and use 2-point RANSAC to reject
outliers and build a rigid relative transform. Figure 4
(b) depicts feature points plotted as circles, with nearest
neighbor correspondences plotted as lines between features,
and RANSAC inliers and outliers in black and gray,
respectively. Finally the relative transform is refined by ICP.

V. EXPERIMENTAL RESULTS

Teams of quadrotor were deployed into three indoor and
outdoor environments to evaluate the accuracy, efficiency,
scalability, and robustness of the approach. The quadrotor
platforms were equipped with onboard computers (1.86 GHz
Intel Core 2 Duo processor), IMUs, and 2D laser scanners. In
addition to the incremental EM framework, each quadrotor
estimated its trajectory using a laser and inertial filter-based
3D SLAM framework. Due to the fact that the individual 3D
SLAM instances running on each quadrotor do not model
loop closures, drift occurs over the trajectories.

We implement the multi-robot incremental EM algorithm
using a distributed framework, where each robot shares laser

scan and pose information over a wireless network with all
other robots on the network. The GTSAM library1 which
includes an iSAM2 implementation is used for pose graph
optimization. Our pipeline runs at a 10 Hz frequency on each
robot, while laser scans are shared at lower frequency: a robot
will share its most recent scan after moving 0.2 meters or
after 1 second has transpired since the most recent scan share
(triggered when either criteria is reached).

To evaluate the feasibility of our approach as well as its
adaptability to varying environments, we provide an analysis
of three online multi-robot trials. The first experimental
environment is a large stretch of hallways with a central loop
and a second loop through an outdoor patio. The second
experiment consists of two robots initialized in separate
buildings before switching buildings without observing one
another directly. The third experiment takes place in a large
outdoor hedge maze. Experiment 1 is shown in Fig. 1 and
experiments 2 and 3 are depicted in Fig. 5.

A. Accuracy

The accuracy of the proposed approach was analyzed by
comparing inter-robot transformations against ground truth
measurements. In addition, robot trajectories in the computed
common reference frame were validated through comparison
against floor plans and satellite imagery.

The initial estimated, final estimated, and ground truth
between robot transformations estimated for experiment 1 are
displayed in Table I, with ground truth ues measured by tape
measure. The initial transformation estimate is built online
during operation when a robot pair has highly weighted
inlier correspondences, and is refined by online pose graph
optimization to build the final transformation estimate at
the end of the trial. Averaging across robots, the initial
transformation error for experiment 1 is 0.82 m in translation
and 0.07 rad in rotation. At the end of operation this error is
reduced to 0.80 m in translation and 0.04 rad in rotation. The
low initial error as well as the reduction in error with time
implies that the EM-hypothesis based method is suitable for
multi-robot mapping on this environmental scale.

Estimated trajectories and emplaced laser scans from the
three experiments on top of a ground truth background are
displayed in Fig. 1 and Fig. 5. While experiment 1 shows
misalignment respect to the ground truth floor plan, this
error manifests itself in areas with no sensory overlap and is
therefore a consequence of drift in individual robot odometry.
This drift can be bounded by further multi-robot observa-
tions. For instance, in Fig. 6, a single robot’s trajectory was
significantly improved through pose graph optimization after
data associations were made between itself and other robots.

B. Efficiency

The CPU and usage of each robot was recorded during
online experimentation to evaluate the efficiency of our
algorithms in a real-time setting. The CPU usage of a robot
from experiment 1 is shown in Fig. 7.

1https://collab.cc.gatech.edu/borg/gtsam/



(a) Experiment 2: indoor and outdoor building exchange (b) Experiment 3: outdoor hedge maze

Fig. 5: Aligned trajectories resulting from our approach for two outdoor experiments on top of satellite imagery. The points
at which the two robots in experiment 2 established a common reference frame are marked with circles.

TABLE I: Initial relative transforms for experiment 1
Robot 1 Robot 2 Robot 3

T r2

r1
T r3

r1
T r1

r2
T r3

r2
T r1

r3
T r2

r3

Original
x -17.30 -0.26 11.29 -4.33 -2.49 16.27
y -11.04 -15.76 -17.13 -16.56 -15.55 -5.30
θ 1.56 -3.00 -1.56 1.64 3.01 -1.64

Final
x -17.46 -0.68 10.82 -4.36 -1.67 16.47
y -10.95 -15.19 -17.54 -16.75 -15.11 -5.32
θ 1.58 -3.08 -1.58 1.63 3.08 -1.63

Measured
x -16.80 -0.48 10.47 -5.32 -0.48 16.33
y -10.47 -15.80 -16.82 -16.33 -15.80 -5.32
θ 1.57 -3.14 -1.57 1.57 3.14 -1.57

The overall CPU usage reaches a maximum at 62%
during the experiment, and is generally below 30%. Our
proposed approach consumes under 25% of the total CPU
usage at all times, while other processes vary from 10%
to 50% of CPU usage. When breaking our approach into
individual algorithmic steps, FLIRT feature detection and
description accounts for roughly 80% of our algorithm’s
computations. Prior to establishing relative transformations,
hypothesis selection consumes a negligible amount of CPU.
EM optimization has short bursts corresponding to inlier
data associations between robots, which consume 10% of
the total CPU at maximum. FLIRT feature extraction has
roughly constant time complexity, so the main efficiency
concern arises from expensive iSAM2 optimizations as the
map grows, which is not the main focus of this work.

C. Scalability

Constrained network capacity is the most significant con-
straint limiting the scalability of our algorithm. In practice,
packets containing laser scans are 11 kB in size, and are
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(a) Single robot SLAM trajectory.
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(b) After multi-robot EM optimization

Fig. 6: Accuracy improvement in the trajectory of a robot
through multi-robot loop closures and pose graph optimiza-
tion: robot 3, experiment 1. Map shown in inset image.

multicasted at an upper limit of 2 Hz. With pose estimates
included the maximum transmission rate is 25 kB/s. Due
to network latency, the maximum receive rate is 80 kB/s.
Mesh networks exhibit O(1/n) throughput when distributing
packets between n systems [21]. Given a network with 11
Mb/s bandwidth and a maximum sharing rate of 2 Hz, this
limits the number of active robots to 6-7. However, number
of robots can be increased given a larger network bandwidth,
lower latency and lower sharing rate.

D. Robustness

The three experiments detailed in Fig. 1 and Fig. 5 demon-
strate that the approach is robust to structural symmetries
in indoor environments (experiment 1), is unaffected by
indoor to outdoor transitions as well as robots starting in
different buildings (experiment 2), and is resilient to sparse
and disparate laser scans in outdoor environments (experi-
ment 3). The formulation assumes that robots communicate
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Fig. 7: CPU usage for robot 3, which had the longest
deployment duration in experiment 1. Red lines mark the
times when initial relative poses are selected.

opportunistically, and is therefore naturally insensitive to
dropped packages and network latency.

VI. DISCUSSION

Although the approach and its implementation have been
comprehensively analyzed in Section V, several theoretical
limitations to the formulation must be mentioned.

In Section III-B, hypotheses are chosen on the basis of
number of inlier correspondences. While this criteria works
in typical scenarios, including those presented in this work,
it has potential to fail in the case of severe perceptual
aliasing, i.e. situations where the environmental structure is
exceedingly similar in two or more locations, which could
result in choosing an incorrect hypothesis. A possible method
of alleviating this issue is to require consideration of whether
a sufficient amount of data has been accumulated to reliably
perform hypothesis selection. We refer the reader to our
previous work [14], which discusses these challenges.

Furthermore, our approach to incorporate uncertainty in
robot trajectories within the EM formulation allows us
to identify inlier multi-robot correspondences, even in the
presence of significant trajectory drift. However, modifying
the inlier covariance Σinlier, as described in Section III-C,
could, theoretically, also result in identifying outlier corre-
spondences as inliers if the error of these correspondences is
in accordance with Σinlier. We note we have not observed
this in the performed experiments. Nevertheless, addressing
this aspect is the subject of future research.

VII. CONCLUSION

In this paper, we proposed a distributed and online ap-
proach to multi-robot cooperative localization and mapping.
To address trajectory drift, we introduced a novel EM-
based method that incorporates uncertainty to identify inlier
and outlier multi-robot data associations. An EM-hypothesis
based method was used to build a common reference frame.
A robust feature-based multi-robot correspondence approach
was presented. Our implementation was evaluated through
online experiments in expansive environments, demonstrat-
ing that our solution is real-time viable, repeatable in varying
environments, and scalable to larger fleets of robots.
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