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Abstract— In this paper we introduce a novel approach for
efficient decision making under uncertainty and belief space
planning, in high dimensional state spaces. While recently
developed methods focus on sparsifying the inference process,
the sparsification here is done in the context of efficient
decision making, with no impact on the state inference. By
identifying state variables which are uninvolved in the decision,
we generate a sparse version of the state’s information matrix,
to be used in the examination of candidate actions. This
sparse approximation is action-consistent, i.e. has no influence
on the action selection. Overall we manage to maintain the
same quality of solution, while reducing the computational
complexity of the problem. The approach is put to the test in a
SLAM simulation, where a significant improvement in runtime
is achieved. Nevertheless, the method is generic, and not tied
to a specific type of problem.

I. INTRODUCTION

In recent years, modern robots have been breaking the
barriers of laboratories into the real world. In real scenarios,
accounting for different sources of uncertainty is essential,
both in state inference and decision making, such that truly
autonomous, reliable and robust performance can be attained.
Moreover, such settings often involve reasoning about a
belief over a high-dimensional state. Relevant problems
include SLAM and autonomous navigation in unknown envi-
ronments. Causes for the uncertainty in that context can be,
for instance, noisy measurements, failed locomotion attempts
(e.g. wheels slippage) and inherit risk taking.

Decision making under uncertainty has been investigated
and demonstrated in a broad range of contexts, including
sensor deployment (e.g. [9]), active sensing (e.g. [16]) and
autonomous navigation and active SLAM (e.g. [8], [5], [11]),
as stated. It was also found applicable to high level problems
such as natural language interpretation and financial real-time
decision making agents.

The uncertainty is expressed using ideas from the world
of information theory. Terminology-wise, we can talk about
belief space planning (BSP), where the belief represents a
probability density function over the state (e.g. robot poses,
mapped environment) given the actions and observations
obtained thus far. Numerous BSP approaches have been
recently developed in an effort to reduce computational
complexity at the cost of sub-optimal performance, see
e.g. [1], [13]–[15], [17], [18], [20].
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BSP and decision making in high dimensional states
space is in particular computationally expensive. Decision
making for a belief over n dimensional state, involves
evaluating an information-theoretic metric, such as entropy,
for numerous candidate actions. Each of these requires
calculating a determinant of n×n-sized posterior information
(or covariance) matrix. Overall, the amount of informa-
tion which has to be processed for every decision can be
enormous. As a result, online decision making in high-
dimensional state spaces is challenging, especially consider-
ing computationally-constrained robots, such as quadrotors.

Due to its importance in modern robotics, the topic has
gained more interest in recent years, in attempt to deal
with the high computational cost. However, state of the
art approaches typically focus on the passive instance of
the problem, i.e. inference. In context of SLAM, numerous
approaches exploit sparsity of the underlying information
space, while re-using calculations when possible (see e.g. [6],
[10]). Moreover, sparsification approaches have been recently
developed to extend online performance capabilities in the
context of long-term autonomy [2], [3], [12], [19]. These
approaches typically solve a convex optimization problem
using KL distance as the metric. Yet, the main focus of the
above sparsification approaches was for the inference process
and not for the decision making stage.

A recent publication has investigated a sparsification
method at the level of decision making [4]. According to
that approach, correlations between variables can sometimes
be ignored, when comparing candidate actions, without sac-
rificing performance. Yet that approach is limited to greedy
decision making with unary observation models, limitations
which are often hard to cope with in a realistic scenario. Still,
we consider that approach as a preliminary proof of concept,
which could trigger further research in this unexplored area.

In this paper we present the first well founded attempt
to optimize the decision making process directly, while
considering a general problem setting comprising arbitrary
transition and observation models, and possibly non-myopic
setup. Our approach significantly sparsifies the underlying
information matrices (see Fig. 1) in such a way that does
not impact the decision making process, while substantially
reducing runtime. In other words, despite the sparsification,
results are action consistent, as to be explained ahead.

As a part of the approach, we also introduce a solid
standardization to several ideas in decision making and its
optimization, previously undefined. This system of defini-
tions allows to clearly compare the quality of different
approaches, and opens the door to many possible future
directions.



II. NOTATIONS AND PROBLEM FORMULATION

Consider the posterior distribution at time k over state Xk

b[Xk]
.
= P(Xk | a0:k−1, z0:k), (1)

where a0:k−1
.
= {a0, . . . , ak−1} and z0:k

.
= {z0, . . . , zk}

are the actions and observations until time k, respectively.
The variables in the state vector Xk are problem-specific.
In the context of navigation, it can be defined, for example,
as Xk

.
= {x0, . . . , xk}, where xi denotes the robot pose at

time i. For SLAM problems, it can also include locations of
observed landmarks. To describe such a distribution we use
the term belief.

Considering the following transition and observation mod-
els

xk+1 = g(xk, ak) + wk, wk ∼ N (0,Wk) (2)
zk = h(Xo

k) + vk, vk ∼ N (0, Vk), (3)

both containing some Gaussian noise. In Eq. (3), the no-
tation Xo

k ⊆ Xk indicates the directly involved variables
in the observation model. These models can be described
probabilistically as P(xk+1 | xk, a) and P(zk | Xo

k).
One can now reason about the belief at a future time k+1

given some action a and future observation za

ba[Xk+1]
.
= P(Xk+1 | a0:k−1, z0:k, a, za) (4)

A recursive formula can then be derived

ba[Xk+1] = η · b[Xk]P(xk+1 | xk, a)P(za | Xo
k+1), (5)

where η is some normalization constant.
From here we can also derive an update rule for the

posterior information matrix of the future belief (see e.g. [5]):

Λ+
a = Λ +GTW−1k+1G+HTV −1k+1H, (6)

such that b[Xk+1] = N (×, (Λ+
a )−1). Here, Λ is the original

information matrix of the belief b[Xk], and the matrices G
and H are the Jacobians G = ∇g and H = ∇h.

The expression (6) can be rearranged into a more compact
form (see [5] for details):

Λ+
a = Λ +ATA, (7)

where the collective Jacobian A encapsulates information
regarding the models of both the transition and its following
observation, in relation to an action a. Each action can be
described using a Jacobian of this form, to be used when
updating a belief according to Eqs. (5) and (7). Note that
A, and hence Λ+

a , are not dependent on the actual unknown
future observation za, but on its known model [5].

One can also consider a non-myopic setting, where a
represents a sequence of actions a .

= {ak, . . . , ak+l−1}. The
corresponding belief ba[Xk+l] can be written, similarly to
Eq. (5), as

ba[Xk+l] = ηb[Xk]

k+l∏
i=k+1

P(xi | xi−1, ai−1)P(zai | Xo
i ),

(8)
where za .

= {zak+1, . . . , z
a
k+l}.

From here on the time index will be dropped to avoid
clutter.

A. Decision Making Under Uncertainty

Given a set of candidate actions A and a revenue (or
objective) function J , the decision making problem is defined
as

a = argmax
a∈A

J(b, a), (9)

where b
.
= b[Xk] is the current belief. In this context,

we wish to measure the predicted uncertainty in future
beliefs, and to minimize it. We use entropy as a measure
to uncertainty, as commonly used in information-theoretic
decision making. In the case of a Gaussian belief b, over a
vector of size n and a covariance matrix Σ, the entropy is:

entropy(b) =
1

2
ln [(2πe)n det(Σ)] (10)

Consider b to be the current belief and ba the updated
belief after performing an action a and taking the respective
observation. In order to minimize the uncertainty in the
future belief, or equivalently, to maximize the information
gain inducted by the candidate action, we can define the
following revenue function for our decision making process:

J(b, a)
.
=

1

|Σ+
a |

= |Λ+
a | = |Λ +ATA|, (11)

where Λ, Λ+
a are the information matrices of b, ba, re-

spectively. Looking for an action a ∈ A that maximizes
J(b, a). In order to examine the revenue of several different
actions, using the the information matrix, the inverse of
the covariance matrix, is often preferred. The information
matrix holds the lucrative property of additivity. Meaning,
incorporating new information in order to update the belief,
is done by adding it to the current information matrix, as
shown in Eq. (7). This property allows us to examine many
candidate actions easily. Moreover, information matrices are
usually much more sparse to begin with, than covariance
matrices.

An alternative way to calculate the same revenue function
(11) is by using the triangular square root information matrix,
given by Cholesky decomposition:

Λ = RTR. (12)

The posterior square root information matrix R+
a that corre-

sponds to action a such that

Λ+
a = R+

a
T
R+

a (13)

can be efficiently calculated, while exploiting sparsity,
e.g. using Givens rotations.

In this form, the determinant (11) can be calculated in
linear time - using the diagonal of the triangular matrix.
When using this alternative, we move the more significant
computational cost from the determinant calculation to the
root update, and lose the addetivity of the information in
favor of an easier determinant calculation.

B. Objective

In contrast to inference, where, given action and obser-
vations, the posterior is calculated only once, information-
theoretic decision making requires to evaluate the revenue
function for each action, thereby involving numerous such



Fig. 1: On the left - the original information matrix taken from an iteration of the SLAM scenario. The state vector holds all previous poses and all the observed landmarks.
The sparser part of the matrix is of the loosly correlated poses, which are the first variables in the vector (as expected in an information matrix). The denser part is of the highly
correlated landmarks. On the right - its sparse version, generated using algorithm 1. Note the significant difference in the number of non zero elements.

calculations. In particular, this involves determinant calcu-
lation of appropriate posterior information matrices, while
calculation of a single determinant is by itself O(n3), in the
general case, where n is the state dimensionality. Problems in
the real world often encapsulate very large state vectors and
groups of candidates actions. Hence, the computational cost
of making an uncertainty-related decision can be significant.

The cost of calculation of the determinant is directly
dependent on the number of non-zero elements in the matrix,
making it significantly lower in sparse matrices. Thus, if we
could cut down the number of non-zero elements, and make
the matrix sparser, this calculation would be computationally
cheaper. Obviously changing a matrix can affect its determi-
nant value and by such, the action selection. Our objective is
to find a method to sparsify each Λ+

a , yet to keep a minimal
influence on their determinants (the revenues), and thus to
reduce the computational cost needed to make a decision. If
discussing the alternative square root matrix form, as seen
in Eq. (13), we can equivalently seek a method to sparsify
R, in order to improve the update process into R+. In the
next section we provide a formal definition to this objective.

It should be clarified this sparsification is only discussed
here in the context of decision making, i.e. action selection.
The inference process is not affected and stays exact.

III. APPRORACH

As seen in the revenue function (11), due to the usage of
the information form, the original information matrix Λ is
involved in the calculation of all future posterior information
matrices. Similarly to [4], we propose to find a sparse
version of Λ and use it in the information update phase.
This will lead to sparser posterior information matrices for
all candidate actions. Afterwards, the revenue of each action
can be derived in the usual manner, but using these sparse
matrices. It also means sparsifying the root matrix R.

Moreover, we wish for this sparsification to have a min-
imal effect over the action selection. The following set of
definitions makes it possible to formally compare this aspect.
First, in order to be able to compare beliefs, we define a new
kind of metric, in the context of decision making.

Definition 1: Consider a group of actions A, a revenue
function J and two beliefs b and bs (these notations will
also be relevant for the definitions to follow).
The revenue offset of an action a is defined as:

γ(b, bs, a)
.
= |J(b, a)− J(bs, a)|. (14)

The revenue offset between the two beliefs is defined as:
γ(b, bs)

.
= max

a∈A
γ(b, bs, a). (15)

Definition 2: Two beliefs b, bs are action-consistent, and
marked b ∼AJ bs, if the following applies ∀ai,j ∈ A:

J(b, ai) < J(b, aj) ⇐⇒ J(bs, ai) < J(bs, aj) (16)

J(b, ai) = J(b, aj) ⇐⇒ J(bs, ai) = J(bs, aj) (17)
Meaning, the order of actions in terms of revenue is kept
whether starting from b or bs. Therefore, deriving the best
candidate action is equivalent in both cases. Now we can
state our objective formally: Given a belief b, we wish to
find a sparse and action-consistent bs.

Note that when the metric between two beliefs is zero,
they are action consistent. This rule is given directly from
these definitions.

Theorem 1:

γ(b, bs) = 0 ⇒ b ∼AJ bS (18)
Proof:

γ(b, bs) = 0 ⇒ ∀a ∈ A J(b, a) = J(bs, a)

⇒ J(b, ai) = J(bs, ai), J(b, aj) = J(bs, aj)

Meaning:

J(b, ai) < J(b, aj) ⇐⇒ J(bs, ai) < J(bs, aj)

J(b, ai) = J(b, aj) ⇐⇒ J(bs, ai) = J(bs, aj)

Keeping this condition not only means the beliefs are
action-consistent (maintain the order of actions), but also
that the values of the revenues do not change.

The belief can be sparsified by identifying uninvolved
variables. Considering a given action, variables in the state



vector are involved if they are directly updated by the action.
Practically, in the collective Jacobian of the action, each of
the columns corresponds to a variable of the state vector. A
variable is involved if at least one of the entries in its match-
ing column is non-zero. Uninvolved variables correspond to
columns of zeros. To clarify, this identification of uninvolved
variables is done for each action independently.

1 Inputs:
2 A belief b ∼ N (x,Λ−1)
3 A list of the variables which are uninvolved for all

candidate actions in A
4 Output:
5 A sparse belief bs such that γ(b, bs) = 0

6 Use Cholesky decomposition to find R such that Λ = RTR

7 Calculate M = R−1

8 Generate a sparse Ms according to:

(Ms)ij =

 Mii i = j
Mij i 6= j and the i-th variable is involved
0 i 6= j and the i-th variable is never involved

9 Calculate Rs = M−1
s

10 Calculate Λs = RT
s Rs

11 return bs ∼ N (x,Λ−1
s )

Algorithm 1: Sparsification of the belief

Algorithm 1 summarizes the approach for generation of
a sparse version of the prior information matrix Λ. The
algorithm considers the variables which are uninvolved in all
the candidate actions. This allows only a single sparsification
process per decision, while keeping consistency for all ac-
tions. It is possible to generate a sparse prior approximation
per action, or per subgroups of actions, considering the
uninvolved variables in each subgroup independently. This
will result in a better, more adapted sparsification for the
subgroup, since less variables should be involved in this
case. Yet, calculation of the sparsification itself has a cost.
Finding the optimal number of subgroups (ranging from 1 to
the number of actions), to achieve the best performance, is a
challenging problem on its own. Here we examine the simple
and most general case, which is necessary for assuring the
condition is kept for all actions, using a single run of the
algorithm.

Theorem 2: Given a belief b, Algorithm 1 yields a belief
bs such that γ(b, bs) = 0.

Proof: Consider the Jacboian A ∈ Rm×n consists of
several row vectors vi ∈ R1×n, 1 ≤ i ≤ m, i.e.

A =

 v1
...
vm

 (19)

It is not difficult to show that ATA from the information
update (7) can be written in additive form in terms of
individual vectors vi, i.e.: ATA =

∑
i v

T
i vi.

Below we prove Theorem 2 considering single-lined Jaco-
bians A = v. The relation above makes the proof valid for the
general case (again, due to the additivity in the information
space).

From Algorithm 1, we know Λ = RTR, M = R−1. Thus:

Λ−1 = (RTR)−1 = R−1(RT )−1 = R−1(R−1)T = MMT

The matrix Ms is upper triangular and has the same diagonal
as in M (see line 8 in Algorithm 1). Therefore:

|M |2 = |Ms|2

|Λ| = 1

|Λ−1|
=

1

|MMT |
=

1

|M |2
=

1

|Ms|2

=
1

|MsMT
s |

=
1

|Λ−1s |
= |Λs|

If we notate ε = |Λ| − |Λs|, then in this case ε = 0.
Let us choose an action a ∈ A with a matching Jacobian

vector v. Now:
γ(b, bs, a) =

| |Λ+| − |Λ+
s | |=

| |Λ + vvT | − |Λs + vvT | |=
(according to the matrix determinant lemma)

| (1 + vT Λ−1v) · |Λ| − (1 + vT Λ−1s v) · |Λs| |=
| (|Λ| − |Λs|) + vT · (Λ−1|Λ| − Λ−1s |Λs|) · v |=
| ε+ vT · [(Λ−1 − Λ−1s ) · |Λ|+ ε · Λ−1s ] · v |=
η· | vT · (Λ−1 − Λ−1s ) · v |=
η· | vT · (MMT −MsM

T
s ) · v |=

η· |
n∑

i=1

n∑
j=1

vi · (MMT −MsM
T
s )ij · vj |

If vi = 0 or vj = 0 the inner term is equal to zero.
If vi, vj 6= 0:

(MMT −MsM
T
s )ij = (MMT )ij − (MsM

T
s )ij =

n∑
k=1

MikMjk −
n∑

k=1

MsikMsjk =

n∑
k=1

MikMjk −
n∑

k=1

MikMjk = 0

Thus making the inner term zero anyway.

⇒ γ(p, q, a) = 0

In an equivalent manner, using the method can be looked
at as if the derivation of the best action is based on an
adapted version of the revenue function, which uses the
sparse version of the initial belief. This function is easier
to calculate than the original, but without any impact on
the results. Note that only a single run of the sparsification
algorithm is required in order to examine any number of
actions, since the same sparse initial belief is used in the
calculation of all revenues.

Js(b, a)
.
= J(bs, a) = |Λs +ATA| = |Λ+

a s| = |Λ
+
a | (20)



An important observation is that according to this scheme,
it is also possible to apply the approach to non-myopic
decision making process. The same sparsification method
can be applied when examining several look-ahead steps at
a time, as described in Eq. 8.

The diagram in figure 2 concludes the usage paradigm of
the optimization method.

Fig. 2: High-level usage paradigm of the suggested approach.

IV. RESULTS

In this demonstration we wish to prove the improve-
ment in runtime in an actual decision making process, in
a simulated SLAM scenario. The simulation consists of
a robot navigating in an unknown environment, in which
random landmarks are scattered. In the scenario the robot
tries to navigate through several predefined world points.
The robot aims to navigate between these goals in a safe
way. Meaning, keeping the uncertainty low throughout the
trajectory, by preferring more informative actions. The state
vector maintains the entire trajectory Xk and positions of
observed landmarks. The robot iteratively decides what is
the best future action, executes it, and takes an observation
of the environment.

Candidate actions are generated dynamically in every
iteration. The actions refer to taking possible short paths
around the robot, either to observed close by landmarks (can
reduce uncertainty by observing loop closures), or directly
to one of the goal points. The actions actually represent
several future steps, depending on the length of the suggested
trajectory. As previously stated (8), our sparsification method
is still applicable in this case.

The total revenue function by which the actions are chosen
is of the following form:

J(b, a)
.
= w1 · |Λ+

a |+w2 · |xk+1−Goal|+w3 ·Penalty(a),
(21)

where w1, w2, w3 ∈ R. Our optimization is only relevant
to the calculation of the first element - the uncertainty. The
other two elements represent the distance to the next goal
and penalty on the cost of locomotion (taking a shorter path
is preferable). We can use the adapted revenue function (20)
to calculate the value of the uncertainty element, as we know
it isn’t affected by the sparsification.

To test the approach, in each iteration, as a part of the
calculation of the overall revenue function (21), we calculate
the uncertainty using both the original and adapted revenue

(a)

(b)
Fig. 3: (a) The 2-dimensional navigation scenario from a top view. The robot
navigates between goals 1-4. The red line indicates the estimated trajectory, with
the uncertainty ellipses drawn at each state. The blue line indicates the ground
truth that the robot passes. Blue dots are landmarks - when observed they are
marked green. Note the reduction in size of the red ellipses when observing more
landmarks. (b) A demonstration of a single decision. The robot is in the middle point.
Comparing candidate trajectories to close by points (red lines). The selected trajectory
is highlighted in green. For in depth explanation, see [7], [5]

functions, J and Js (11, 20). The revenue is calculated for
each candidate action, in order to select the best one. We
measure the the total revenue calculation time per iteration
for both the original and optimized methods, and compare
between the two. The optimized method requires a one time
calculation of the sparsification per iteration. It has also been
measured and taken into consideration for the optimized
method. Overall, in each iteration we compare the time it
takes to make the decision in two ways. Note that as the
revenue values remain the same, the decision making itself
is the same for both methods. The other two elements in
Eq. 21 do not change.

The accumulation of the measured time throughout the
navigation process is shown in Fig. 4. The graph clearly
shows a significant improvement in runtime over the original
version. It also shows how insignificant the sparsification
becomes as the state grows.

Fig. 5 shows the correlation between the percentage of
uninvolved variables for a certain decision, to the improve-
ment in runtime which was achieved for that decision.
More uninvolved variables translates to a more significant
sparsification, and thus to a more significant improvement to
the computational cost. As the navigation state vector grows,
a higher percentage of the variables becomes uninvolved.

V. CONCLUSIONS

This paper introduced a novel optimized approach for
decision making under uncertainty. While related optimiza-



Fig. 4: Comparison of the accumulated decision making time throughout process. In
cyan - time to calculate the sparsification (Alg. 1), once for every decision. In blue -
the sparcification time, together with the time to calculate all the revenues according
to the sparsified information matrix. In green - time to calculate all the revenues
with the original information matrix, i.e. without using our method. Note the growing
gap in favor of our optimized version, even with the added overhead calculation of
the sparsification, runtime is still improving, showing that about 20% of the decision
making time could be saved by the 100-th iteration.

Fig. 5: Correlation between the percentage of uninvolved variables in the state vector,
and the improvement in runtime.

tion methods usually focus on sparsifying information in
the inference process, here we wished to do so only in
the context of decision making. Thus, leaving the inference
process intact. This concept also makes the method generic,
with no limitations to specific problems.

We used a new sparsification algorithm for the information
matrix, in order to reduce the computational cost of the rev-
enue calculation, and making an uncertainty based decision.
Not only the sparsification optimizes the performance, it is
also proved that it has no effect over the action selection.
The benefits of the method has been demonstrated in a
simulated SLAM problem. Showing significant improvement
in runtime, even when considering the calculation for the
sparsification itself. Keeping the same quality of solution
while reducing the computational cost makes the approach
highly worthwhile.

This concept is a step forward from the current state of
the art, and opens the door to an unexplored field of research
- optimizations in decision making. Although the method
demonstrated in this paper assumes Gaussian beliefs, the
leading definitions and the objective - finding an action con-
sistent and sparse approximation by minimizing the revenue

offset, are valid as a general concept for reducing compu-
tational complexity and achieving efficient decision making.
This objective can be further examined with less restrictive
conditions. It can also be used for a non-information related
decision making. The supporting definitions presented here,
creates a well defined environment for future progressions.
Possible directions can examine more ways to preserve
action-consistency, or even discuss a deviation to the non-
exact case.
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