Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations

Khen Elimelech & Vadim Indelman

The Mission

Computationally efficient online decision making and belief space planning

Our approach: Use rough state (belief) approximations $b \rightarrow b_s$ to **easily eliminate unfit candidates**

The Mission

Computationally efficient online decision making and belief space planning

Our approach: Use rough state (belief) approximations $b \rightarrow b_s$ to **easily eliminate unfit candidates**

- Same quality of solution
- Not restricted to a specific problem
- Can be used alongside any other optimization method
- Focusing on planning under uncertainty

Method Overview

Use a rough state (belief) approximation b_s to easily calculate the expected revenues (for different candidate actions)

Revenue offset definition

$$\gamma(b, b_s, a) \doteq |J(b, a) - J(b_s, a)|$$
$$\gamma(b, b_s) \doteq \max_{a \in \mathcal{A}} \gamma(b, b_s, a)$$

and Perception Lab

Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations

K. Elimelech and V. Indelman,

Method Overview

Given (a bound on) the revenue offset, define the elimination interval

$$J(b_s, a_s^*) - 2 \cdot \gamma(b, b_s) \leq J(b_s, a^*) \leq J(b_s, a_s^*) \stackrel{a^* = \operatorname{argmax} J(b, a)}{\underset{a^*}{\overset{a^*}{=} \operatorname{argmax} J(b_s, a)}}$$

Eliminate all candidates outside this interval - guaranteed not to be optimal

Solve the problem for a subset of candidates

Calculate real revenues only within elim. interval

K. Elimelech and V. Indelman, Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations

Results: Sensor Placement

Decision making under uncertainty

At each step, find the most informative sensor placement

Elimination of unbeneficial sensor positions

Using sparse belief approximations (see also [RA-L'16, ICRA'17, IROS'17])

