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Abstract. Belief Space Planning (BSP) is a fundamental technique in
artificial intelligence and robotics, which is widely used in the solution of
problems such as online autonomous navigation and manipulation. Un-
fortunately, BSP is computationally demanding, especially when dealing
with high-dimensional state spaces. We thus introduce PIVOT: Predic-
tive Incremental Variable Ordering Tactic, a novel approach to improve
planning efficiency. Although variable ordering has been extensively used
for the state inference problem, variable ordering specifically for planning
has hardly been considered. Interestingly, this tactic can also lead to im-
proved loop-closing efficiency during state inference. We use the approach
in an active-SLAM scenario, and demonstrate a significant improvement
in efficiency. This approach follows our previous work regarding efficient
BSP via belief sparsification.

1 Introduction

1.1 Problem Overview

The task of online decision making under uncertainty is often modeled and solved
as a Belief Space Planning (BSP) problem [2]. To solve this problem, we shall
first maintain the posterior distribution (the “belief”) over an agent’s state,
considering the sequence of noisy past actions and sensor observations, in a pro-
cess known as state inference. State-of-the-art state inference approaches (e.g.
[14,13,11]) rely on incrementally updating the upper-triangular square root infor-
mation matrix of the belief, with the arrival of new constraints. Such incremental
updates are efficient when new constraints involve only recent state variables,
but can still grow very expensive when involving variables from the past (loop
closures). In planning, we shall examine the predicted propagation of this be-
lief considering several candidate actions, under some objective measure; as this
essentially means solving multiple multi-step state inference sessions, possibly
containing loop closures, BSP can turn computationally challenging for online
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solution. BSP is used to solve prominent tasks such as active simultaneous lo-
calization and mapping (SLAM), and robotic manipulation, and thus reducing
its cost is of great importance.

1.2 Contribution and Related Work

Various methods were introduced to deal with the high computational cost of the
planning problem. These include, e.g., sampling methods [19]; local trajectory
optimization [16]; and point-value iteration [18]. In this work, we investigate a
more fundamental approach, intended to improve the process of belief update,
which is required when evaluating candidate actions (however they are defined).
Inherently, such approach is complementary to other planning methods, such
as those mentioned before. We thus present the Predictive Incremental Variable
Ordering Tactic (PIVOT). With this method, we suggest to perform a precursory
variable reordering procedure on the belief, in order to optimize the number of
variables to update in planning. When considering sequential re-planning, the
order can be applied incrementally before each planning session. The approach is
highly relevant to high-dimensional state spaces; we demonstrate so in this paper
by applying it in an active-SLAM scenario, showing a substantial improvement
in efficiency.

This idea is a sequel to our previous work regarding sparsification for effi-
cent decision making [7,8,9]. Formerly, a “batch” sparsification procedure was
conducted on the belief before planning, without affecting the maintained state
in inference. The newly suggested procedure, however, is performed on the in-
ferred state, and not “forgotten” after every planning session, which allows us
to update it incrementally. Interestingly, this also allows our method to improve
loop-closing efficiency during state inference. Still, the approach is only relevant
in the context of planning. The predictive order relies on the candidate actions as
defined in planning. Also, precursory reordering only makes sense when applying
multiple actions on the initial belief; otherwise, the reordering can be combined
with the update itself.

Although variable ordering has been extensively used for the state inference
problem, variable ordering specifically for planning, as presented here, has hardly
been considered. As explained, to solve the problem, we examine the propagated
belief’s triangular square root information matrix. It is widely known that the
variable order in the state can have a dramatic impact on the number of non-
zeros in the root matrix. Thus, fill-reducing variable ordering tactics are very
commonly used in the solution of the state inference problem, especially for
SLAM [1]. The aforementioned inference techniques, iSAM2 [13] and SLAM++
[11], apply such orders incrementally, during belief update. Unlike these standard
ordering tactics, which arrange the variables according to the current informa-
tion, we suggest to order the variables based on predicted future development.
One work which indeed considers variable ordering in the context of planning
was introduced in [3]. This approach utilizes variable ordering to allow reuse of
calculations for similar actions and successive planning iterations. This scheme
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is conceptually different from the one presented here, and also requires external
caching. Also, that work is problem-specific, while we impose no such restriction.

2 Preliminaries

2.1 Belief Space Planning

We consider a sequential POMDP process. At time-step k, an agent at pose xk−1
transitions to pose xk, using a control uk, and then collects an observation of the
world zk. The agent’s trajectory x0:k, alongside an optional vector of external
variables l, are collected in the state vector

Xk =

[
x0:k

l

]
, where x0:k

.
=

x0

...
xk

 . (1)

The transition and observation models are both contain some Gaussian noise,
and are described as

xk = gk(xk−1,uk) +wk, wk ∼ N (0,Wk), (2)

zk = hk(Xk) + vk, vk ∼ N (0,Vk), (3)

where Wk,Vk are the covariance matrices of the respective zero-mean Gaussian
noise wk,vk, and gk and hk are deterministic functions.

At each time-step, the agent maintains a posterior distribution over its state
vector, given the controls and observations taken until that time. This distribu-
tion is the agent’s belief. By linearizing the models, given an initial state estimate
Xk, we can estimate the belief at time-step k

bk(Xk)
.
= P(Xk | u1:k, z1:k) ≈ N (X∗k ,Λ

−1
k ), (4)

whereGk
.
= ∇|Xk

gk,Hk
.
= ∇|Xk

hk, and Λk is the information matrix, achieved
by calculating

Λk
.
= UT

0:kU0:k, where U0:k
.
=

U0

...
Uk

 , Uk≥1
.
=

[
W
− 1

2

k ·Gk

V
− 1

2

k ·Hk

]
, (5)

U0 is the prior information root, and X∗k is the maximum a posteriori (MAP)
state estimate. In this least-squares approach, this MAP estimate is gained
by (iteratively) calculating its delta from the previous estimate. This “back-
substitution” calculation requires the upper triangular square root of the infor-
mation matrix Rk, such that Λk

.
= RT

kRk, given by the Cholesky or QR fac-
torization (for more details see [6]). When applying a sequence of T additional
controls u

.
= uk+1:k+T , the information matrix is simply updated according to:

Λk+T = Λk +UTU , where U
.
= Uk+1:k+T =

Uk+1

...
Uk+T

 . (6)
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We call U the collective Jacobian of the control sequence u. Conviniently, Rk+T

can be incrementally calculated from Rk, instead of calculating the factorization
of the new information matrix from scratch. For example, according to [11], it
is enough to recalculate the Cholesky factorization of only the affected bottom-
right block of Rk+T , starting from the index of the first non-zero column of
U ; the variables in this block are the affected variables. Alternatively, [14] also
identifies the affected variables, but instead utilizes the QR factorization on
the relevant part of the A0:k+T , using marginal caching. Eq. 6 may encompass
augmentation of the prior information, which is not detailed, for the sake of
conciseness; for more details see [9].

In BSP, given an initial belief bk and a set U of candidate control sequences,
we wish to select the control which maximizes the expected accumulated reward,
as measured with the objective function

J (bk, u)
.
= E
Z

[
T∑
t=1

r (bk+t−1,uk+t)

]
, (7)

where Z is the set of observations taken while performing this control, for some
reward function r. Specifically, in information-theoretic BSP, we may wish to
minimize the uncertainty in the posterior belief. We use the differential entropy
as an uncertainty measure, which, for a Gaussian belief b, over a state of size N ,
with an information matrix Λ is

H (b) =
1

2
· ln

[
(2πe)

N

|Λ|

]
= −1

2
· (ln|Λ| −N · ln (2πe)) . (8)

Thus, when assuming “maximum likelihood” observations (see [17]), we can
define the following information-theoretic objective function:

J (bk, u)
.
= E
Z

[−H (bk+T )] = ln|Rk+T | −
N

2
· ln (2πe) , (9)

where u ∈ U is a candidate control sequence with a collective Jacobian U , Rk+T

is the posterior information root matrix, after updating Rk with U , and N is
the posterior state size (the number of columns in U). Evidently, to calculate
the value of this function, the prior information root matrix should be propa-
gated (updated) according to the considered control sequence u. Note that the
“maximum likelihood” assumption is not essential in the featured approach, but
it is used for a focused and coherent discussion.

To conclude, we consider (throughout this paper) the decision problem
P .

= (b,U , J), where b is an initial belief over the state vector X; U is a set
of candidate control actions; and J is the objective function defined in Eq. 9. To
solve the problem we should select the optimal control u∗, s.t.

u∗ = argmax
u∈U

J (b, u) . (10)
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2.2 Sparsification for Efficient BSP

As mentioned, a traditional solution to the aforementioned decision problem
requires calculation of the objective function (via belief propagation) for each
candidate control action. In our previous work [9], we introduced a novel method
for an efficient solution of the problem: using a sparse approximation of the initial
belief only while planning, without influencing the state inference. The sparsifi-
cation algorithm we provided returns an approximation of a given belief, such
that its information matrix and its root are sparser. The algorithm relies on a
user-selected subset S of the state variables; this allows to generate approxima-
tions of different degrees, which trade-off sparsity and accuracy. Let us briefly
analyze the algorithm steps; for a thorough analysis, please see [9].

Firstly, let us clarify our terminology, as used throughout this paper: pushing
a variable forwards means to increase its index in the state vector, bringing it
closer to the end of the state; accordingly, pushing a variable backwards means
to decrease its index, bringing it closer to the start. We, hence, start by pushing
all the variables in S backwards, and calculating the information root matrix
R under this order. Even if the information root is given initially, this variable
permutation requires to resort to the symmetric information matrix Λ (or Jaco-
bians matrix), and then recalculate the factorization in the relevant order. We
then remove off-diagonal elements from R in rows matching variables in S; i.e.,
removing dependencies of the sparsified variables. Finally, we reorder the vari-
ables back to their original order. We showed that after the sparsification, this
reordering can be done directly on the triangular root matrix, while maintaining
its triangular shape, without recalculating the factorization. The sparse infor-
mation matrix may be recalculated from the sparsified root, if needed. When
looking at the resulting sparse information root matrix, for each sparsified vari-
able, the algorithm replaces its corresponding entries with a single adjusted
diagonal entry. Then, when applying the candidate actions, we are able to min-
imize the computational cost inflicted by the sparsified variables on the belief
update process.

Thus far, we performed this sparsification before each planning session, and
used the approximation to only efficiently solve the planning problem. This
method proved to be very worthwhile. Still, at each planning session, we bared
an overhead of calculating the sparsifcation from scratch, as the approximation
from the previous step had been used and discarded. In this follow up work, we
would like to examine the possibility to reduce this cost, by incrementally updat-
ing this sparse approximation between planning sessions, and further improve
the planning performance.

3 Approach

3.1 Predictive Variable Order

A particularly interesting case of the aforementioned sparsification algorithm,
is when S contains only variables which are uninvolved in any of the candi-
date actions. For each action u, we can identify the set of involved variables
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marked as Inv(u); these are the prior state variables which are directly up-
dated by u, i.e. variables for which the action introduces a new constraint. In
the (linearized) Gaussian least-squares representation, as presented before, this
means that the column corresponding to this variable in the collective Jaco-
bian of the action is non-zero. In a factor graph representation, this means that
the action leads to connection of a new factor to this variable. The remaining
variables are uninvolved in this action, and marked ¬Inv(u). Accordingly, the
variables which are uninvolved in any of the actions u ∈ U are marked ¬Inv(U).
When S = ¬Inv(U), the algorithm returns an action consistent approximation
– one which is guaranteed to not affect the action selection while planning. This
paramount claim is only guaranteed due to the initial reordering of the vari-
ables in the algorithm [9]; thus, although it is the costliest step of the algorithm
(due to the re-factorization), it cannot be avoided. Instead, let us avoid the final
reordering of the variables, back to their original order.

We recall that when incrementally updating a belief according to some action,
the affected variables are all the state variables starting from the index of the
first non-zero column of the collective Jacobian, i.e. the first involved variable;
thus, the involved variables are, by definition, a subset of the affected variables.
The affected variables can also include uninvolved variables which are “trapped”
between the involved variables, and should only be updated due to their order.
When applying the sparsification algorithm without the final reordering, the
uninvolved variables ¬Inv(U) are pushed backwards before Inv(U); this makes
them necessarily unaffected for all the candidate actions. In this case, as we
now realize, we do not actually need to perform any sparsification. Since the
uninvolved variables are not updated, their sparsification would not influence
the performance anyway. We shall amplify our conclusion: by simply separating
the variables according to their classification (un/involved), under the order

P =

[
¬Inv(U)
Inv(U)

]
, (11)

we can achieve the same computational improvement in planning previously
gained with sparsification (of uninvolved variables). An illustration of this claim
is brought in Fig. 1. The performance improvement results from pushing back-
wards the “trapped” uninvolved variables, and reducing the size of affected block
for each candidate action. We may recall that updating the square root factor-
ization has, at worst, cubical complexity in relation to the number of affected
variables [10], and hence the importance of minimizing it. Since the identifica-
tion of involved variables, and thus this order, is based on the predicted updates,
induced by the candidate actions, we refer to P as predictive variable order.

To clarify, the order of variables in P matters. This separation of classes
maintains the relative order of variables in each class. If variable x comes before
variable y, and they both share the same classification, then even after the
reordering, their relative order is kept. This means that involved variables may
only be pushed forward, compared to their original position, and the number of
the affected variables in each planning hypothesis may only decrease.
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Optimally, for each action, we would like to update only the involved vari-
ables, and make all the uninvolved variables unaffected. However, we identify
the involved variables and perform the reordering once per planning session,
and not for every candidate action. Thus, for each candidate action, some of
the variables in Inv(U) might not actually be involved. Still, pushing backwards
even the minimum intersection of the uninvolved variables of each action (i.e.
¬Inv(U)) is beneficial.

Involved

Vars.

Const. Rows

Updated

Rows

(a) Baseline (without PIVOT).

Involved

Vars.

(b) With PIVOT.

Fig. 1: A conceptual demonstration of PIVOT. On the left are a prior information root
matrix, and Jacobians of three candidate actions. Colored rows/columns represent non-
zero entries, i.e. the rows/columns of the involved variables; the involved variables in
each action are marked in a different color. To the right are the posterior root matrices
matching each of the actions. Only the yellow rows should be updated, starting from
the first involved variable in the action. By applying PIVOT (b) we are able to reduce
the number of rows to update, in comparison to the baseline (a).

3.2 Incremental Order Update

According to our approach thus far, the sparsified belief was discarded after
planning, and the selected action was applied on the original belief. We hence
applied a full “batch” reordering of the root matrix, as part of the sparsification
algorithm (which required a full re-factorization), before solving each planning
session. In fact, when reordering the variables, we should only update the factor-
ization starting from the index of the first reordered (affected) variable, similarly
to incremental incorporation of updates. Since the classification of variables usu-
ally does not change much between planning sessions, we propose to enforce the
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predictive variable order on the maintained belief as well. I.e., instead of using
the reordered belief only for planning, it will be kept for the following infer-
ence and planning sessions. This way, the order applied at the previous planning
session is kept, and can be incrementally updated, according to the change in
variable classification. When the reordering required between sessions is small,
the original cost of applying the sparsification, can be reduced significantly.

Consider that in planning session k, we applied the variable order

Pk =

[
¬Inv(Uk)
Inv(Uk)

]
. (12)

We should identify the first reordered variable in planning session k + 1, from
which the incremental reordering should start. Uninvolved variables from session
k which are reclassified as involved in session k + 1, should be pushed forwards.
Also, as to be explained, when applying actions between planning sessions k
and k + 1, the affected variables in those inference sessions may be shuffled.
Assuming the predicted classification of variables from session k coincided with
the applied action, the shuffling in inference would not affect the variables in
class ¬Inv(Uk). Alternatively, if a variable, which was classified as uninvolved
in planning session k, ended up being involved in the applied action, then the
order of all the variables starting from this variable may be altered (shuffled).
This should not affect the position of the preceding variables. In any case, we
can identify the first mk fixed uninvolved variables Pk(1 : mk), which kept their
order from planning session k.

Fig. 2: Incremental reordering. On the left is the state under the predictive variable or-
der, as applied before planning session k; the variables in blue are classified as involved.
In the middle is the state after performing the selected action. Only the variables in
yellow are affected by the inference updates (including new variables). In planning
session k + 1, on the right, we reclassify the variables. Variables with a new classifi-
cation are marked with stripes. The first mk variables remain uninvolved, and we can
incrementally reorder the variables to the desired predictive order.

Besides these variables, we use ¬Invδ(Uk+1) to mark all the remaining unin-
volved variables at session k + 1. This class would contain uninvolved variables
which were shuffled forward in inference, and new uninvolved variables, whether
they were added since the previous planning session, or variables which changed
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their class from planning session k. By definition, all these variables should come
after the fixed uninvolved variables from the previous session Pk(1 : mk). The
applied order in session k + 1 would then be

Pk+1 =

 Pk(1 : mk)
¬Invδ(Uk+1)
Inv(Uk+1)

 , (13)

and the first variable to reorder would be (at least) mk + 1. This analysis
is demonstrated in Fig. 2. This is the most general case, with no assump-
tions on the reordering applied between planning sessions. Notably, if at the
time of reordering, there are no variables from class Inv(Uk+1) “trapped” be-
tween variables from classes Pk(1 : mk) and −Invδ(Uk+1), or alternatively, if∣∣−Invδ(Uk+1)

∣∣ = 0, then no reordering is required.
To conclude our suggested approach, before every planning session we shall

reclassify the variables according to the predicted candidate actions, and per-
form an incremental reordering procedure on the current belief accordingly. The
planning problem should be then solved regularly, e.g. as specified in Section 2.1.
We thus refer to the approach as Predictive Incremental Variable Ordering Tac-
tic (PIVOT). The tactic is intended to benefit the efficiency of the planning,
which is a much harder problem than state inference. In planning we should
account to multiple candidate realizations, with (usually) longer horizons. Still,
since PIVOT is applied on the maintained belief, its influence on the inference
process needs to be examined.

3.3 Influence on State Inference

Before we can examine the effects of PIVOT on the state inference, we shall un-
derstand what the default baseline tactic is. Variable ordering in the information
matrix can have a dramatic effect on the number of non-zeros (i.e. fill-in) in its
triangular square root matrix. As explained, to solve the state inference problem,
we should maintain this root matrix, achieved via Cholesky or QR factorization.
Fill-reducing variable ordering tactics are very commonly applied in the solution
of the state inference problem. Although finding the optimal variable order is
NP-complete, good heuristics exist; COLAMD is a prominent one [4].

In sequential state inference, we can optimize the order of all state variables,
as a periodical “batch” procedure, which is followed by a recalculation of the
entire root matrix under the new order (e.g. [14]). Alternatively, in incremental
belief updates, we can optimize the order of only the affected variables, as a part
of the refactorization of the affected block (as in [11,13]). Incremental application
of fill-reducing ordering tactics tend to be inferior to their batch counterpart in
the resulting fill-in, but are more efficient.

We notice that recent algorithms such as iSAM2 [13], as part of the inference
update, also constrain the variables involved in the applied action to the end
of the state, besides applying COLAMD. This does not optimize the current
inference session – on the contrary, it leads to a sacrifice in fill-in – but does
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contribute to the following inference sessions. If the variables are likely to be
updated again, then the affected part would be smaller. In their experiments the
authors demonstrated that this claim is well worthwhile. As the current state of
the art, we will refer to this tactic, constrained incremental COLAMD, as the
baseline to our comparison. Accordingly, PIVOT affects the state inference in
two main aspects:

The first – loop closing. As explained, incorporating updates to variables from
the past (i.e. loop closures) is expensive, as these affect numerous variables. In
our approach, we conduct a variable reordering procedure before every planning
session, which pushes forward predicted loop closing variables, according to any
of the candidate actions. Unlike the constrained baseline approach, we push for-
ward these variables before the loop closures occur, as a part of the planning
process. Thus, we can reduce the cost of future state inference iterations con-
taining big loop closures, when they actually occurs. We should note that since
we identify the involved variables based on the entire set of candidate actions, we
constrain to the end of the state more variables than we would have for a single
action. Still, if we maintain the relative order of the involved variables, then loop
closures can only move forward. When ignoring the planning problem, there is
no point in actively bringing forward loop-closing variables, as the cost of this
reordering is equivalent to actually performing the loop-closure. However, since
we conduct the reordering procedure anyway, as part of the planning, we gain
this indirect benefit to the state inference process. This conclusion is derived
from a wider view of the system, which considers both the state inference and
planning processes.

Another aspect to consider – fill-in. Applying PIVOT is intended to increase
planning efficiency, in the ways indicated, and is not inherently fill-reducing.
Like the baseline, constraining the involved variables forward may lead to sub-
optimal fill-in and a denser information root matrix. Fill-in in the root matrix
is usually correlated with the factorization performance – more fill-in indicates
(usually) a slower calculation. However, when examining incremental factoriza-
tion updates, we should only look at the number of non-zero elements only in
the recalculated affected block. Surely, the affected block becomes smaller when
applying PIVOT; hence, despite the added density, the number of recalculated
non-zero elements shall remain balanced, and the update performance should
not suffer. We demonstrate this claim in the following experimental results.

Besides that, added fill-in in the root matrix might increase the cost of back-
substitution, which is solved when updating the state MAP estimate. Although
we expect some sacrifice in back-substitution cost, the overall gains in perfor-
mance should prevail. The frequency of back-substitution in the system is a mat-
ter of design. For example, one may compute it after every state inference session,
or only before planning. We also do not always need to calculate the entire back-
substitution solution. Updating the estimation of the last pose, which is usually
at the end of the state, can be achieved almost immediately. Regardless, in plan-
ning, assuming “maximum likelihood” observations, there is no need to perform
back-substitution, as the posterior state estimate does not change [17,12].
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4 Experimental Analysis

4.1 The Scenario

As a proof of concept, we applied PIVOT in an active-SLAM simulation. In
this scenario, an agent autonomously navigates to a specified goal in a mostly-
unknown environment, in which random landmarks are scattered. The agent
is equipped with a radar-type sensor, providing range-bearing observations of
surrounding landmarks. To ignore collisions, the agent and landmarks are con-
sidered mass-less. Largely, the full map is unknown to the agent, and it is inferred
by it during the navigation. Still, the agent begins its task with a prior belief
over some landmarks in known areas. This scenario can also be viewed as if the
agent had previously performed an exploration task, and had already mapped
parts of the environment.

0 50 100 150

0

50

100

150 Goal

Start

Goal

Start

Goal

Start

Goal

Start

Goal

Start

Loop Closing Areas

Candidate Paths

Mapped Landmarks

Fig. 3: The active-SLAM
simulation during a plan-
ning session. The agent’s
estimated trajectory is in
blue; underneath it, in grey,
is the ground-truth. The
start point is (0m, 0m),
and the navigation goal is
(150m, 150m). Ground-truth
position of all landmarks is
in light green; darker green
crosses indicate estimation of
observed landmarks. Areas
with prior knowledge are
marked with with circles.
Candidate paths to the
goal in the current planning
session are in orange – dark
tone for a direct path, and
light tone for loop-closing
paths. The maximal step size
between poses, marked with
arrowheads, is 5m. Sensing
range is 15m.

After passing a set distance, a new pose is added to the state, and the sensor
scans the environment. New landmarks are added to the end of the state, and
constraints are added between the new pose and the observed landmarks. The
data association is assumed to be known. Motion constraints are also created
between every two consecutive poses. Both the observation and motion contain
some Gaussian noise. After adding the new motion/observation constraints, the



12 K. Elimelech and V. Indelman

agent updates its belief over the state by incrementally updating the square root
information matrix (i.e. a state inference session). Overall, the agent’s state Xk

consists of the entire executed trajectory and positions of observed landmarks
(i.e. full-SLAM). Each of the poses consists of three variables, representing the
position and orientation; each landmark is represented via two position variables.
Our approach is highly relevant in this case; as the agent progresses towards the
goal, past poses and landmarks are expected to become uninvolved.

From its starting point, the agent begins a planning session by generating
a set U of candidate trajectories to the goal: one direct trajectory, and several
indirect trajectories which pass through the known areas on the map, in order to
identify loop closure and reduce uncertainty. The trajectories are sampled using
the Probabilistic RoadMmap (PRM) algorithm [15]. Each candidate trajectory
matches a certain control sequence, and is translated to a series of constraints
and variables to be added to the prior belief. Loop closure constraints are added
between future poses and landmarks from the past, according to their estimated
location, i.e. where we expect to add them when executing this trajectory. The
scenario can be viewed in Fig. 3.

For planning, we use the following objective function, which balances the two
sub-goals – minimizing both the length of the trajectory, and the uncertainty of
the state, by preferring a more informative trajectory:

Ĵ(b, u)
.
= ω1 · J(b, u) + ω2 · length(u), (14)

where ω1, ω2 ∈ R are scalar weights and J(b, u) measures the posterior entropy,
as defined in Eq. 9. As explained, calculating J(b, u) requires propagation of
the belief’s root matrix; the expected trajectory’s length, however, does not
depend on it, under “maximum likelihood” assumption. The agent partially
executes the selected trajectory (i.e. a set number of state inference sessions),
and then conducts a new planning session, with newly generated trajectories.
This re-planning is important in order to account for the previously-unknown
state development. The agent repeats the planning-execution cycle until reaching
its goal.

To evaluate our method, we maintained in parallel two versions of the belief,
under different ordering tactics: the baseline (as explained in Section 3.3), and
PIVOT; we performed all belief updates on both versions. For each version, we
measured and compared the total state inference and planning times. For each
inference session, we measured the time of updating the information root matrix;
for each planning session, we measured the matrix update time for each candi-
date action, along with the time of reordering the variables in the root matrix,
when applying PIVOT. For the sake of comparison, in each planning session we
also measured the reordering time when applying the predictive ordering from
scratch on the original baseline belief (i.e. non-incrementally). This configuration
represents non-incremental AC sparsification (see Section 2.2). We will refer to
this configuration as “batch reordering”. We recall that reordering the variables
does not affect the accuracy of the solution.

The belief was maintained using the MATLAB interface of the GTSAM
library [5]. We still wished to fairly measure the reordering and update time
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in the matrix form, without the specific framework overhead, nor accounting
for re-linearization. Therefore, at each state inference and planning sessions,
we extracted the prior root matrix, and the relevant linearized Jacobians, and
performed the matrix updates manually, for timing.

4.2 Results
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Fig. 4: Accumulated planning and inference times in two outcomes of the same sce-
nario: (1) when the selected path includes loop-closing in the known areas – represented
by the two figures on the left (a and c); and (2) when the agent headed directly to the
goal – represented by the two figures on the right (b and d). For each inference session,
we measured the time of updating the information root matrix; for each planning ses-
sion, we measured the matrix update time for each candidate action, along with the
time of reordering the variables in the root matrix. In both cases, agent performed at
most 30 inference steps before re-planning. The x axes overlap between the graphs of
each outcome. Surely, lower computation times are better.

Fig. 4 presents the accumulated planning and inference times. We present
two possible outcomes of the same scenario, according to different assignment of
weights in the objective function – first when the selected path included loop-
closing in the known areas, and second when the agent headed directly to the
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goal. In both cases, the agent performed at most 30 inference steps before re-
planning. Since the trajectory in outcome 1 is longer, it resulted in 5 planning
sessions, compared to 4 in outcome 2. For this reason, the accumulated planning
and inference times in outcome 1 are higher than in outcome 2. We therefore
only care for the relative performance. The numerical values from Fig. 4 are
given in Table 1.

Loop-closing trajectory Direct trajectory
Baseline “Batch” PIVOT Baseline “Batch” PIVOT

Inference Update 0.27 0.27 0.22 0.172 0.172 0.169

Planning
Update 0.37 0.16 0.16 0.24 0.10 0.10
Reordering 0 0.16 0.10 0 0.07 0.03

Total time 0.64 0.59 0.48 0.41 0.35 0.31

Table 1: Numerical summary for the accumulated inference and planning times pre-
sented in Fig. 4.

For both outcomes, using PIVOT resulted in a substantial 25% improvement
in overall performance, without any sacrifice in accuracy. However, the detailed
results differ between the two outcomes. In outcome 1, we faced two large loop-
closures, around pose #60 and pose #80, as can be seen in Fig. 4a. We recall
that the baseline ordering pushes forwards the loop-closing variables only after
they are met. Applying PIVOT pushed the loop-closing variables forwards before
meeting them, in the preceding planning sessions; this resulted in a more efficient
loop-closing in inference compared to the baseline. After facing the loop-closures,
the baseline ordering coincided with PIVOT; thus, in the following planning ses-
sions, when considering these loop-closure again, the update cost was similar for
both PIVOT and the baseline. Applying PIVOT was still beneficial to planning
when examining the other loop-closure, as the loop-closing variables which had
not been met, remained backwards under the baseline ordering. In outcome 2, we
faced no major loop closures, thus PIVOT did not benefit the baseline inference
in the ways we described before, and inference time was kept (almost) the same.
Also, under the baseline ordering, all the loop-closing variables did not move
forwards, and loop-closing remained expensive in all planning sessions; thus, the
relative performance improvement in planning is higher in outcome 2.

The performance using “batch reordering” falls between PIVOT and the
baseline, as expected. Since the planning is conducted with the predictive order,
the update time in planning is the same as in PIVOT. But since this order is
discarded and not applied on the maintained state, the inference time remains
the same as in the baseline. We can see that applying the order incrementally
significantly improves the reordering time, as we originally intended, while the
inference performance remains the same or better.

Fig. 5 shows the difference in fill-in in the two versions of the information
root matrix at the end of the trajectory. The constrained order leads to a slight
increase in the number of non-zero elements.



PIVOT: Predictive Incremental Variable Ordering Tactic 15

0 100 200 300 400
nz = 6670

0

100

200

300

400

0 100 200 300 400
nz = 7037

0

100

200

300

400

Fig. 5: A comparison of the sparsity pattern of two versions of the information root
matrix, after reaching the goal through the direct trajectory: baseline (left), and PIVOT
(right). The constrained order leads to a slight increase in the number of non-zeros.

5 Conclusion

We presented PIVOT, Predictive Incremental Variable Ordering Tactic, a novel
paradigm to improve the efficiency of BSP, with no sacrifice in accuracy. We
started by explaining the relation to our previous line of work regarding belief
sparsification in the context of planning. We suggested to apply a predictive
variable order before the beginning of the planning session; this order pushes
backwards all the variables which are classified as “uninvolved”, based on the set
of candidate actions. This order helps minimizing the cost of belief propagation,
based on these actions; specifically, the cost of updating the information root
matrix. This order can be incrementally updated between planning sessions,
based on the change in the variable classes.

We also saw that as a by-product of applying the tactic, we are able to cut
down on the cost of loop-closing in inference. Still, the approach is only relevant
in the context of planning, as the predictive classification of variables relies on the
candidate actions. Also, precursory reordering only makes sense when applying
multiple actions on the initial belief; otherwise, the reordering can be combined
with the update itself.

To demonstrate its benefit, we applied PIVOT in an active-SLAM simulation.
In different scenarios we were able to significantly reduce computation time of
both the planning and inference. The improvement achieved by PIVOT depends
on multiple various parameters; examining the influence of all of them is well be-
yond the scope of this paper. These include, for example, the number of inference
sessions per planning sessions, belief structure (e.g. full-SLAM vs. pose-SLAM),
ratio of uninvolved variables, number of candidate actions, etc.. Examining these
parameters, as well as solutions to the added fill-in the constrained order might
invoke, are left for future work.
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