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I. MOTIVATION

In this era, intelligent autonomous agents and robots can be
found all around us. These agents share the same fundamental
goal – to autonomously plan and execute their actions. These
agents are required to account for real-world uncertainty when
planning their actions, in order to achieve reliable and robust
performance. There are multiple possible sources for such un-
certainty, including dynamic environments, in which unpredic-
table events might occur; noisy or limited measurements, such
as an imprecise GPS signal; and inaccurate delivery of actions.
Also, problems such as long-term autonomous navigation and
sensor placement over large areas, often involve optimization
of numerous variables. These settings are translated to high-
dimensional probabilistic states, known as “beliefs”. Appro-
priately, the corresponding problem is known as Belief Space
Planning (BSP). Relevant instantiations include active Simul-
taneous Localization and Mapping (SLAM), sensor placement
and active sensing, robotic arm manipulation, and recently
more profound problems, such as dialogue management. The
objective in these planning problems is to select “safe” actions,
which reduce the uncertainty in the belief. When planning
under uncertainty, one should evaluate the propagation of the
belief’s uncertainty, considering multiple courses of action;
yet, proper uncertainty measures, such as differential en-
tropy, are expensive to calculate. Overall, the computational
complexity of the problem can turn exceptionally high, thus
making it challenging for online systems, or when having a
limited processing power.

II. PROBLEM DEFINITION

For conciseness, let provide here a simplified definition to
the BSP problem. No limiting assumptions on our approach
should be deduced from this definition. Consider a sequential
BSP scenario, at time-step k, the agent transitions from pose
xk−1 to pose xk, using a control uk−1. It then receives an
observation of the world zk, based on this updated state. The
transition and observation are both probabilistic operations,
with some Gaussian noise. At each time-step, the agent
maintains the posterior distribution over its current state vector
Xk, given the controls and observations until that time; this
distribution is also known as its belief :

bk
.
= P(Xk | u0:k−1, z0:k) = N (X̂k,Λ

−1
k ), (1)

where u0:k−1
.
= {u0, . . . , uk−1} and z0:k

.
= {z0, . . . , zk}. The

agent’s state vector consists of the series of poses, and may

also include external variables, which are introduced by the
observations (such as landmarks in a full-SLAM scenario).

To describe belief bk, we can use the information matrix
Λk, the inverse of the covariance matrix Σk. We can now
reason about an updated belief at time k+ 1, after performing
a control uk and taking an observation zk+1. The information
matrix can be updated according to the following rule:

Λk+1 = Λk + UT
k Uk (2)

where the collective Jacobian Uk encapsulates the new infor-
mation regarding the control and the succeeding observation
(for the full derivation see, for example, [10]). Each control can
be described using a collective Jacobian of this form. Thanks
to the additivity of the information, we can easily examine the
information matrix after applying a sequence of T controls
u

.
= uk:k+T−1; the respective collective Jacobians of each

control can simply be stacked to yield the collective Jacobian
U of the entire sequence.

Now, considering an initial belief b, and a set U of such
candidate control sequences, we wish to select the one which
minimizes the expected uncertainty in the future belief, which
is measured as (differential) entropy. Thus, we can define the
following objective function:

J(b, u) =
1

2
·
(
ln
∣∣Λ + UTU

∣∣−N · ln(2πe)
)
, (3)

where Λ is the information matrix of the prior belief b, and
U is the collective Jacobian of u. An alternative way to
represent the belief is using the upper triangular square root
R of the information matrix Λ, given (e.g.) by the Cholesky
decomposition: Λ = RTR. This representation is used in
prominent state-of-the-art SLAM algorithms (such as in[11]).
To solve this decision problem, we should select u∗, s.t.

u∗ = argmax
u∈U

J(b, a). (4)

Our goal is to allow an efficient solution to this problem.

III. OUR APPROACH

A traditional solution requires calculation of the objective
function for each candidate control action. We point out a key
observation: to solve the decision problem, we should only
sort the candidate actions in terms of their objective function
value; when two problems maintain the same order of actions,
their solution is equivalent. In this case, we can simply say
that the two problems are action consistent. We thus suggest to



identify and solve a simplified yet analogous decision problem,
which results in the same (or similar) action selection, but for
which the solution is more computationally efficient. In this
work, we focus on simplifying the initial belief b.

Generally, solving a simplified problem may lead to loss in
the quality of solution, when the selected action is not the real
optimal action. Most often it is indeed possible to settle for a
sub-optimal action selection in order to reduce the complexity
of the problem; yet, to provide valuable results, it is important
to set bounds over this loss. This can sometimes be done using
the solution of the simplified problem.

As we saw, in BSP, calculation of the objective function
involves calculation of the determinant of the posterior in-
formation matrix (Eq. 3). The cost of this calculation depends
directly on the number of non-zero elements in the matrix, and
is significantly lower for sparse matrices. Thus, sparsifying
the posterior information matrices shall reduce the cost of
solving the problem, as desired. Thanks to the additivity of the
information, sparsifying the prior information matrix Λ essen-
tially leads to sparser posterior information matrix for every
candidate action. Notably such sparsification of the prior is
only calculated once, for any number of actions. We also note
that in many problems, especially in navigation problems, the
collective Jacobians are also sparse; hence, even after adding
the new information, the posterior information matrix shall
remain sparse. An appropriate belief sparsification algorithm
is given in [7]. The algorithm depends on a pre-selection S of
state variables, and wisely removes elements which correspond
to these variables from the belief’s information matrix (or its
triangular root). Approximations of different degrees can be
generated using different variable selections.

Considering a specific action, a state variable is involved
if applying the action directly impacts the variable; i.e., if
the relevant transition and observation models are a function
of this variable. Practically, in the collective Jacobian of an
action, each of the columns represents a variable of the state
vector; a variable is involved if at least one of the entries in its
matching column is non-zero; uninvolved variables correspond
to columns of zeros. In a navigation scenario, for example,
the observed landmarks, and variables of the current pose are
involved; variables referring to landmarks from the past, which
are not observed anymore, are uninvolved. In this scenario,
after a while, most landmarks are expected to be out of the
visible range, and only a small portion of nearby landmarks
shall remain relevant.

We claim that sparsification of uninvolved variables does
not affect the posterior information determinant. Hence, when
sparsifying variables which are uninvolved for all the actions,
the objective function values are unaffected, and the resulting
approximation is action consistent (and therefore, inducing no
loss in the quality of action selection). It is possible to sparsify
also involved variables, but then action consistency is not
guaranteed. In that case a bound over the loss can be derived,
as done in [8]. In conducted experiments, we demonstrated
that even when sparsifying all the variables, the quality of
solution is still well preserved, while achieving a significant

improvement in decision making time (as shown in Fig. 1).
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Figure 1: Data is taken from a realistic active-SLAM scenario. (a)
Comparison of an original information root matrix and its sparse
approximations, for different variable selections S. On the left – the
original matrix; in the center – the matrix after partial sparsification
of about half of the variables; on the right – the matrix after full
sparsification. (b) Decision making time, using the corresponding
versions of the matrix. The action selection (i.e. quality of solution)
was unaffected by these approximations.

We can now summarize the presented paradigm for the
efficient solution of BSP problems: start with an initial belief
b; (optionally) identify uninvolved variables and select a set
S of variables to be sparsified; find a sparse approximation bs
using the suggested algorithm; easily calculate the objective
values of all candidate actions using bs, and select the optimal
candidate action; (optionally) bound the loss to guarantee
the quality of solution; finally, apply the selected action on
the original belief b. Most importantly, we notice that this
simplification method is completely separated from the state
inference problem, and therefore does not compromise its
accuracy.

IV. COMPARISON TO EXISTING METHODS

Several works [e.g. 23, 9, 4, 3, 15, 17] consider sparsifica-
tion for the state inference problem, in order to limit the state
size and allow long-term operation. However, these methods
do not examine sparsification in the context of planning pro-
blems (influence over action selection, computational benefits,
etc.). The novelty in our approach is the exploitation of sparse
approximations exclusively for efficient decision making – a
concept which we were the first to introduce.

Furthermore, the main advantage of our approach is that, in
fact, the simplified problem can be solved in any desired man-
ner, making our approach complementary to other methods.
The research community extensively investigated BSP solution
methods to provide better scalability in real-world problems.
These include, for example, point-based value iteration [e.g.
19, 18], sampling-based motion planning [e.g. 20, 12, 13],
and direct trajectory optimization approaches [e.g. 10, 24].
Approaches that focus on autnomous navigation problems,
such as active SLAM, have been also widely examined [e.g.
22, 2, 6, 14, 5].

More closely related to our approach, a few other works
[e.g. 16, 1, 21] examine approximation of the state or the
objective function in order to reduce the planning complexity.
These approaches, however, suffer some significant drawbacks.
They either consider limiting assumptions on the planning
scenario, are unclear regarding the quality of action selection,
or do not demonstrate improvement in efficiency.
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