
Efficient Modification of the Upper Triangular
Square Root Matrix on Variable Reordering

Khen Elimelech and Vadim Indelman

ICRA 2021

/ 18

State Estimation → Linear Systems
• State estimation problems, such as Simultaneous Localization And

Mapping (SLAM) and Bundle Adjustment (BA), are some of the
main focus points of modern robotics research.

• In such optimization problems, we wish to estimate a state vector
𝑋 ∈ ℝ!, which typically consists of robot poses, and/or positions
of landmarks, given a set of (𝑚) stochastic constraints.

• When these constraints are linear (or linearized), these problems
can be represented as systems of linear equations.

• Such systems can be written in matrix form as
𝐴 ⋅ 𝑋 = 𝑏,

where 𝐴 ∈ ℝ"×! is the coefficient matrix, and 𝑏 ∈ ℝ" is the RHS.

1

/ 18

Solving Linear Systems
• Such systems are often solved by finding the upper

triangular “square root information matrix”,
marked 𝑅 ∈ ℝ!×!, and then performing “back-
substitution”.

• This “square root matrix” can be found by
calculating the Cholesky factorization of the
information matrix Λ ≐ 𝐴$𝐴, such that Λ ≐ 𝑅$𝑅.

• Equivalently, by calculating the QR factorization of
𝐴, such that 𝐴 ≐ 𝑄𝑅, for an orthogonal matrix 𝑄.

• In light blue – entries of the coefficient matrix;

• In green – entries of the original square root matrix;

• Colored cells represent possible non-zero entries in the matrices.
2

/ 18

Variable Reordering: Motivation
• In sequential estimation, as time progresses, and more and more

constraints are added to the system, we are required to update its
solution (i.e., state estimate).

• It is known that the order of state variables can drastically affect
the cost of such updates, especially in sparse systems.

• It is hence common to periodically optimize the order of
variables, e.g., in order to apply a fill-reducing variable order.

• Furthermore, in our recent work, titled “PIVOT: Predictive
Incremental Variable Ordering Tactic”, we demonstrated the
effectiveness of predictive optimization of the variable order,
before planning sessions, in reducing their computational cost.

[1] Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic, K. Elimelech and V.
Indelman, IJRR ’21 (invited)

3

/ 18

Variable Reordering: Challenges
• Surely, the order of variables in 𝑋 must match the order of

columns in 𝑅 (and 𝐴).
• Yet, a naïve attempt to permute the columns of 𝑅, to convey

reordering of the variables, would break its triangular shape, and
is, therefore, an inappropriate solution.

• White overlay – reordered columns.

4

/ 18

Variable Reordering: Challenges
• Thus, variable reordering typically implies

expensive re-factorization of the system, under the
new order, in order to calculate the modified
square root matrix.

• Unfortunately, re-factorization can be challenging
or even infeasible when handling large-scale
systems.

• Dark blue borders – matrices due to re-factorization.

• In red – entries calculated via re-factorization of 𝐴. 5

/ 18

Contribution
• To tackle this concern, in this work, we propose a novel

algorithm for efficient modification of this square root
matrix, on variable reordering.

• As we shall explain, such modification can be performed
efficiently without re-accessing 𝐴 at all, or with minimal
re-factorization of it.

• Note that we assume the new variable order is given (as a
permutation), and only discuss how to practically apply it.

6

/ 18

Direct Modification
• First, we shall recognize that the modified square root matrix can,

in fact, be inferred without re-accessing 𝐴.
• Instead, we can simply re-apply the QR factorization on the

square root matrix directly, after permuting its columns, in order
to “correct” its shape; we hence refer to such approach as “direct
modification”.

• Nonetheless, this naïve re-application of QR is still not optimal for
the task of variable reordering.

• In orange – entries calculated via re-factorization of 𝑅.
7

/ 18

Local Effect of Variable Reordering
• Let us mark with 𝑗.irst the index of the first permuted variable, and

with 𝑗last the index of the last permuted variable.

• As the first step in optimizing the modification process, we
identified that variable reordering has only a “local effect” on 𝑅.

• In other words, to apply the new variable order, we should only re-
calculate the block of affected rows indexed between 𝑗.irst and
𝑗last; all other rows remain unchanged.

8

/ 18

Identifying Independent Row Blocks
• Further, by decomposing the variable permutation into

disjoint cycles, we can divide it into distinct “sub-
permutations”, which affect non-overlapping subsets of
variables.
• Hence, we can divide (as marked with the dashed blue line)

the affected row block into distinct sub-blocks, which can be
re-calculated independently, and even in parallel!

9

/ 18

Efficient Row Modification
• We may note that each row block in the square root matrix is

“wide”, i.e., it contains more columns than rows.
• Accordingly, we show that, for each such row block, it is sufficient

to examine its square sub-block, around the matrix diagonal, in
order to infer its “correcting” orthogonal transformation (via QR
factorization).

10

/ 18

Optimized Direct Modification
• After correcting the block around the diagonal, the correcting

transformations should and can be easily applied to the
remainder of the elements in each row block.

• The following figure represents our suggested optimized
algorithm for direct modification of 𝑅, when considering variable
reordering.

• Again, the individual blocks can be processed in parallel.

• In yellow – entries calculated by applying a pre-calculated transformation. 11

/ 18

Numerical Concerns
• We note that direct modification is more prone to numerical

errors, in comparison to naïve re-factorization, since it conveys an
overall longer sequence of mathematical operations:

𝐴 → 𝑅 → 𝑅& (direct modification)

vs.
𝐴& → 𝑅& (re-factorization)

• Such numerical errors may lead to “false fill-in” in the matrix,
when zero entries incorrectly become non-zeros.

12

/ 18

Modification via Re-factorization
• Therefore, if maintaining sparsity is crucial, we should modify the

affected row block via re-factorization of 𝐴, instead.
• This, of course, is more expensive than direct modification.
• Yet, by utilizing the same conclusions we identified before

(locality of variable reordering, division into distinct row blocks,
and efficient row modification), we can similarly minimize the
sub-matrix of 𝐴, which is due for re-factorization.

13

/ 18

Modification via Re-factorization
• The figure on the right represents our suggested optimized

algorithm for modification of 𝑅 via re-factorization.

• In purple – marginal factors obtained from the original factorization process.
14

Naïve “iSAM2” Suggested

/ 18

Experimental Demonstration
• To test our modification algorithm(s), we applied them to a

realistic linear system, derived when solving a robotic SLAM
problem.

• Constraints between the poses in this state represent the robot
motion and the inferred loop closures (via point cloud matching).

15

A visualization of the robot navigating in
the unknown indoor environment.

The coefficient matrix 𝐴, and its square root
𝑅, at the end of navigation.

/ 18

Experimental Demonstration
• We considered a randomized variable permutation, and

appropriately modified 𝑅, using different modification algorithms.
• We measured the runtimes of these calculations, in order to

compare the efficiency of the algorithms.
• We also measured the number of non-zero entries in the

modified matrices, in order to compare the accuracy of the
algorithms.

• The results are summarized in the table below.

16

/ 18

Summary
• In this work, we provided a new algorithm for modification of the

square root matrix of a linear system, on variable reordering.
• We identified three main conclusions in that regard:

• (1) variable reordering has a “local effect” on the matrix;
• (2) the modification can be parallelized, by identifying independent row

blocks;
• (3) each row block can be efficiently modified, by only examining a relevant

square sub-block.

• We applied these conclusions in two algorithmic variations:
via direct modification of 𝑅, and via partial re-factorization of 𝐴.

• Generally, direct modification enjoys a relatively lower computation
time, while re-factorization is less prone to numerical errors.

• In either case, we saw that our optimized algorithm was able to
significantly reduce the modification time compared to naïve
solutions.

17

Thank you!
Full implementation of the algorithms is available at:

www.khen.io

