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Efficient Modification of the Upper Triangular
Square Root Matrix on Variable Reordering

Khen Elimelech and Vadim Indelman

Abstract—In probabilistic state inference, we seek to estimate
the state of an (autonomous) agent from noisy observations. It can
be shown that, under certain assumptions, finding the estimate is
equivalent to solving a linear least squares problem. Solving such a
problem is done by calculating the upper triangular matrixR from
the coefficient matrix A, using the QR or Cholesky factorizations;
this matrix is commonly referred to as the “square root matrix”. In
sequential estimation problems, we are often interested in periodic
optimization of the state variable order, e.g., to reduce fill-in, or
to apply a predictive variable ordering tactic; however, changing
the variable order implies expensive re-factorization of the system.
Thus, we address the problem of modifying an existing square
root matrix R, to convey reordering of the variables. To this end,
we identify several conclusions regarding the effect of column
permutation on the factorization, to allow efficient modification
of R, without accessing A at all, or with minimal re-factorization.
The proposed parallelizable algorithm achieves a significant im-
provement in performance over the state-of-the-art incremental
Smoothing And Mapping (iSAM2) algorithm, which utilizes incre-
mental factorization to update R.

Index Terms—Incremental least squares, parallel algorithms,
probabilistic inference, SLAM, sparse systems.

I. INTRODUCTION

A. Background

TO OPERATE reliably, autonomous agents and robots must
model their state in the world; however, most often these

agents can only rely on noisy measurements of their environ-
ment. This problem, known as probabilistic state inference, is a
fundamental concern in the fields of Artificial Intelligence and
Robotics [1]. An important instance of this problem is Simul-
taneous Localization And Mapping (SLAM), in which we wish
to estimate an agent’s location, while mapping its surroundings.
Such online systems are of particular interest, as the solution
must be computed in real time. In recent years, smoothing-based
solution approaches have been growing in popularity, due to
their robustness over traditional filter-based solutions. These ap-
proaches, and most prominently factor-graph-based Smoothing
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and Mapping (SAM) [2], utilize graphical models for constraint
satisfaction. Now, to understand the context of our problem
of interest, we must first briefly formalize this state inference
problem.

Let the vector X
.
= [x1, . . . , xn]

T represent the current state
of our agent. Given a set of probabilistic constraints fi(X) (also
known as factors), representing the noisy measurements, we can
define the belief over X as P (X) ∝ ∏

i fi(X). We would like
to find the best estimate of X given the measurements, i.e., the
maximum-a-posteriori (MAP) estimate. If the factors are linear,
and the belief is Gaussian, it can be shown (see [2]) that finding
the MAP estimate of X corresponds to solving a least square
problem. In the least squares approach to linear regression, we
seek an assignment for a vector X ∈ Rn, which minimizes the
squared error on a set linear constraints. A system of m linear
constraints can be written in a matrix form, where every row
represents a linear equation:

A ·X = b, A ∈ Rm×n. (1)

Note that if the factors are not linear, we can still use this solution
approach, by utilizing an iterative local linearization. We assume
the system is over-determined, i.e., contains no less variables
than equations (m ≥ n), and A to be of full column rank n.
Under these assumptions, the solution is unique. To find this
solution in a stable manner, we can use the upper triangular
factor R, which is provided by finding the QR factorization
(decomposition) of A, such that A = QR, for an orthogonal
matrix Q. Equivalently, R can be derived from the Cholesky
decomposition of the symmetric and positive semi-definite in-
formation matrix Λ

.
= ATA, such that Λ = RTR; this matrix

is hence known as the “square root matrix” of Λ. If we require
the diagonal entries of R to be non-negative, then the two
factorizations provide the same matrix R [3]. Using R, we can
conveniently find the estimate of X via back/front substitution;
for more details, see [4].

B. Motivation

In sequential estimation problems, as time progresses, new
measurements are collected; these may lead to addition of new
constraints, or extension of the state with new variables. At each
such event, we shall appropriately update R, in order to refine
our estimate. To efficiently keep up with these updates, we are
often interested in optimizing the order of state variables. For
example, we may want to utilize a fill-reducing order. When
calculating the QR factorization of A (in order to derive R),
we access it column-by-column in a process known as variable
elimination [4]. The order of columns in A (which matches the
order of state variables) affects the fill-in and sparsity pattern of
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R, and, by such, may affect the computational cost of subsequent
updates, and the memory footprint. Although finding the optimal
fill-reducing order is NP-complete [5], various heuristics, such
as COLAMD [6], provide empirically good results. Problem-
specific heuristics, e.g., for SLAM [7], which exploit known state
topology, are also applicable. We may even consider alternative
(“non-fill-reducing”) variable orders. For example, autonomous
agents are often asked to plan their future actions, based on their
current belief (commonly referred to as “belief space planning”).
According to the Predictive Incremental Variable Ordering Tac-
tic (PIVOT) [8], by predicting the future state evolution accord-
ing to candidate actions, we can optimize the variable order in
the current state, and improve the solution efficiency.

Unfortunately, while new constraints can often be incremen-
tally and efficiently incorporated, changing the order of vari-
ables modifies the factor R in a non-trivial way, and implies
re-factorization of the entire system. The computational cost of
such operation is, hence, exceptionally high.

C. Problem Definition and Contribution

We formulate the problem of interest as follows: Consider
the matrix A, and its upper triangular factor R, given by the QR
factorization, which satisfiesA = QR for an orthogonal matrix
Q. Also consider a variable permutation p, with a matching col-
umn permutation matrix P . We wish to find the upper triangular
factor Rp of the permuted matrix Ap

.
= AP , which satisfies

Ap = QpRp for an orthogonal matrix Qp. As explained, we
may equivalently consider R and Rp to be the Cholesky factors
of Λ and Λp

.
= P TΛP , respectively.

To clarify, we do not wish to choose a new variable order;
we consider it to be given, and address how to perform the
appropriate modification to R practically and efficiently. To
achieve this goal, we derive three key contributions: first, we
identify that variable reordering only requires a local modifi-
cation of R, in a contained block of rows; second, we explain
how to identify independent row blocks in R, which can be
modified independently, and in parallel; third, we explain how to
efficiently derive the orthogonal transformation, which defines
the required modification for each row block. We then utilize
these three ideas in two algorithmic variants: one, by manipu-
lating the factor directly, without accessing A; and second, with
partial re-factorization of A. Each of the variants holds specific
advantages, as we shall compare.

Besides the aforementioned contribution to real-time opera-
tion of autonomous agents, the introduced algorithms are also es-
pecially valuable for “large-scale” optimization problems (e.g.,
offline map optimization over extremely large areas), in which
full re-factorization is often practically impossible.

D. Related Work

Numerous methods (e.g., [9]–[11]) examined the modifica-
tion of R on low-rank updates and downdates, i.e., the addition
or removal of rows from/to A. However, column permutation is
not classified as a low-rank change, making such modification
methods inapplicable.

A recent work [12] tried to address a similar problem. There,
the authors provided symbolic formulas for swapping the order
of two consecutive variables. They showed that in such instance,
only the corresponding pairs of rows and columns in the square
root matrix are affected, while the rest of the matrix entries

remain unchanged. They then proposed to use the formulas in
a “bubble sort”-like algorithm, to apply permutations involving
more variables. However, this method is only suitable for simple
permutations, as for extensive permutations, this “bubble sort”
might require up to O(n2) swaps. The authors even declared
that beyond a certain amount of such swaps, one should simply
resort back to Λ, and re-apply the Cholesky factorization on
the permuted matrix. Another drawback of that approach is that
every such swap requires to explicitly update all the affected
elements. Thus, for extensive permutations, some rows might
be completely recalculated over and over. As to be explained,
our algorithm is built to avoid this very problem.

At the arrival of new constraints, the incremental smooth-
ing and mapping algorithm (iSAM [13]) performs incremental
modification toR, instead of re-computing it “from scratch,” and
without accessing the matrix A. However, such updates do not
involve variable reordering, and the algorithm does not manage
to avoid periodic re-factorization of the entire system, in order to
optimize the variable order. Other incremental methods, such as
iSAM2 [14] and SLAM++ [15], incorporate the new constraints
by performing partial re-factorization of A or Λ – starting the
elimination from the first variable to receive a new constraint,
according to the variable order. During this re-factorization,
these methods are able to reorder the re-eliminated variables;
e.g., using a fill-reducing order on these variables, for efficient
calculation of the update. Such reordering helps to maintain
the sparsity of R, as desired. However, as we are only able to
reorder a subset of the variables during updates, the total variable
order may not be globally optimal. Hence, it is still sensible to
periodically conduct a “standalone” reordering process, while
considering all the state variables. Yet, we are not aware of any
approaches which allow modification of R on global variable
reordering, without completely re-factorizing the system.

As mentioned, we also utilize smart partial re-factorization
in one of the two variants of the proposed modification algo-
rithm; but, as to be seen, in comparison to the aforementioned
incremental methods, our algorithm requires re-factorization of
a significantly smaller sub-matrix of A.

We note that, like our approach, modern “multi-frontal” im-
plementations of the QR factorization (e.g., [16], [17]) also uti-
lize parallelization, by applying multiple transformations (e.g.,
rotations) at once. However, generally speaking, the parallel
fronts are not independent; these fronts dynamically change,
and new fronts are initiated according to the results of former
transformations. Such multi-frontal implementation requires in-
tricate synchronization. Our algorithm, on the other hand, yields
a high-level block division of the rows, such that, by definition,
there are no dependencies between the blocks, and there is
no need for communication nor synchronization among them;
each block of rows can theoretically be processed on a different
machine. This approach is also bandwidth efficient, as we do not
initiate factorization on the entire matrix, but only process blocks
of it at a time. Under this division, each block can be factorized
using any implementation of QR, including the aforementioned
multi-frontal ones.

II. PRELIMINARIES

Formally, the permutation p is a bijective function
{1, . . . , n} → {1, . . . , n}, which defines a mapping of each state
variable from index i to index p(i). Such permutation can be
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Fig. 1. A (top), and R, given from qr{A}.

described with an orthogonal permutation matrix:

P
.
=

⎡
⎣ | |
ep(1) . . . ep(n)

| |

⎤
⎦ , (2)

where ei ∈ Rn is the i-th unit vector. Hence, the permuted
coefficient matrix (with permuted columns) is given as AP .

For visualization purposes, we consider an exemplary least
squares system, which will be used as a running example
throughout the letter. In the top sub-figure of Fig. 1, we can see
the original coefficient matrix A of the system, and underneath
it, its factor given from qr{A}. We wish to apply the variable
permutation p, such that

[ 1, . . . , 11 ] · P .
= [ 1, 2, 4, 3, 8, 9, 5, 7, 6, 10, 11 ]. (3)

Each of the sub-figures represents the sparsity pattern of the
corresponding matrix; colored cells represent entries which
are (possibly) Non-Zero (NZ); different colors correspond to
different classification of the entries, as to be described. For con-
venience, the rows ofA are sorted according to the column-index
of their leading NZ entry (i.e, first NZ in the row); nonetheless,
R is invariant under row reordering in A. We do not make any
assumptions on the density (or sparsity) of these matrices.

Finally, let us explain the notation used in this letter. The oper-
ation qr{×} returns the QR factorization; blkdiag{×, . . . ,×}
returns a matrix with the given inputs on its block diagonal; In is
the identity matrix of size n; i1 : i2 marks the vector [i1, . . ., i2];
endmarks the last index;M(I,J ) is the sub-matrix of elements
(i, j) : i ∈ I, j ∈ J of M ; M1M2(×,×) marks the block of
M1M2, and M1 ·M2(×,×) marks the block of M2.

Fig. 2. Local effect of variable reordering. Blue borders mark the re-factorized
sub-matrix; green-colored entries represent entries of R; orange represents
entries calculated from re-factorization of RP ; white overlay indicates column
permutation. Modification of R only requires factorization of the block of rows
jfirst : jlast of RP . Using Algorithm 1, we can divide this row block (dashed
blue line) into the two sub-blocks, which can be factorized independently.

III. DIRECT MODIFICATION

A. Local Effect of Variable Reordering

First, we shall try to derive Rp by appropriately modifying
the original square root matrix R, and without accessing A.
Let us look at RP , i.e., R with columns permuted according
to p. As visualized in the left sub-figure in Fig. 2, applying the
column permutation breaks the triangular shape of the original
root matrix R. We may re-apply qr to “correct” it:

{Q′,R′} .
= qr{RP } (4)

The permutation does not affect the rank of the matrix, and since
R is of full rank (the rows/columns are linearly independent),
so is RP . Therefore, we know a unique qr factorization of it
exists. A similar re-application of qr to “correct” the factor is
performed also by the aforementioned iSAM algorithm; though,
there, the factor is modified due to the addition of constraints
(new rows), and not permutation of the state variables.

This factorization can be calculated in several manners. We
may choose to apply a series of Givens rotations {Qk}k to zero
all elements below the diagonal, one entry at a time, column-by-
column. Each of these rotations is applied only on a pair of rows
in the factorized matrix; the angle of rotation is chosen such that
the leading NZ entry in the lower of the two rows is zeroed (for
more details, see [3]). Since the factorization exists, we know
that after a finite number of such rotations, we will end up with
an upper triangular matrix R′ with a non-zero diagonal, such
that

R′ = Q′T · (RP ), where Q′T .
=

∏
k

Qk. (5)

Surely, since the product of orthogonal matrices remains or-
thogonal, R′ is the desired “square root matrix” of the permuted
system:

Ap = (QR) · P = Q · (RP ) = Q · (Q′R′) = (QQ′) ·R′.
(6)

Although it provides the solution, we do not suggest to use
this naive approach to modify R, as it may be far from optimal.
Yet, due to the uniqueness of R′, we know that this R′ ≡ Rp,
and we can use this solution to derive general properties Rp,
which we will exploit to derive it more efficiently.
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Let us mark with jfirst and jlast the the minimal and maximal
non-fixed points ofp, respectively; i.e., the minimal and maximal
indices j ∈ 1 : n, for which p(j) �= j. NZ entries below the
diagonal can only appear in RP in rows indexed between jfirst

and jlast. Hence, application of the aforementioned Givens rota-
tions shall only modify these rows of the factorized matrix; R′
(≡ Rp) remains equal to RP in all other rows. The underlying
conclusion, which holds regardless of the manner by which Rp

is calculated, is conveyed in Proposition 1.
Proposition 1. (The Local Effect of Variable Reordering): The

block of rows jfirst : jlast ofRp relies only on the respective block
of rows ofR; the matrices may differ in value only in these rows.
The top (jfirst − 1) rows, and bottom (n− jlast) rows of Rp, are
identical to the respective rows ofR (up to column permutation).

Thus, Rp may be derived using any qr implementation as:

Rp =

⎡
⎢⎣ — R′

top —

0 R′
middle

— R′
bottom —

⎤
⎥⎦ , where (7)

R′
top

.
= RP (1 : (jfirst − 1), 1 : n), (8)

{Q′
middle,R

′
middle}

.
= qr{RP (jfirst : jlast, jfirst : n)}, (9)

R′
bottom

.
= RP ((jlast + 1) : end, 1 : n). (10)

Accordingly, Q′ .
= blkdiag{Ijfirst−1,Q

′
middle, Im−jlast} marks

the “correcting” orthogonal matrix, such that Qp = Q ·Q′
completes the solution. This “localized” direct modification
method is visualized in Fig. 2.

We may also reach a similar conclusion from probabilistic
analysis. The belief P (X) (which we defined in Section I-A)
can be factorized to a product of conditional probabilities:

P (X) ∝
n−1∏
k=1

P (xk|π(xk)) · P (xn), (11)

where π(xj) denotes the set the variables xj is conditioned on,
for a given variable elimination order; a variable may only be
conditioned on those which follow it according to that order.
Now, say we wish to modify this factorization to match a
permuted elimination order, which is defined by the permutation
p. By definition, π(xj) = π(xp(j)) for j < jfirst and j > jlast.
Thus,

P (X) ∝
jlast∏

j=jfirst

P (xp(i)|π(xp(i))) · . . .

∏
1≤j<jfirst

jlast<j≤(n−1)

P (xk|π(xk)) · P (xn) (12)

Meaning, the permutation only affects the conditional probabil-
ities of the variables jfirst : jlast, or, in other words, permutation
has only a local effect on the belief factorization – with no
assumptions on the type of distribution! Nonetheless, we recall
that, whenX is normally distributed, this factorization of P (X)
corresponds to factorization of A to the matrix R, where each
conditional probability corresponds to the respective row of R
[2]. Hence, in accordance with Proposition 1, we may again con-
clude that applying the permutation only leads to modification
of rows jfirst : jlast of this matrix.

B. Identifying Independent Row Blocks

It is known that every permutation can be decomposed into
disjoint cycles. Each cycle defines a “sub-permutation” which
only affects a distinct subset of the input elements (in our case,
the indices 1 : n), while all other elements are stationary (i.e.,
mapped to themselves). We can write our exemplary permutation
(Eq. 3) in “cycle notation”:

p = (1)(2)(3 4)(5 8 7)(6 9)(10)(11). (13)

Each set of parentheses represents a disjoint cycle; each number
in the cycle is mapped to the one that follows it, and the last
number is mapped back to the first one.

Thanks to Proposition 1, we know that applying each such
“sub-permutation” only requires factorization of a specific block
of rows ofRP , encapsulated between the minimal and maximal
index in the cycle, independently of the other rows. However,
we note that multiple “sub-permutations” cannot always be
applied independently of each other, as these blocks of rows,
corresponding to each of the cycles, are not always distinct.
This happens when the cycles define overlapping ranges, like
(5 8 7) and (6 9). In this case, the two cycles cannot be considered
independently, and we have to factorize the entire block of rows
5 : 9. While accounting for such scenarios, Algorithm 1 specifies
how to divide the rows of RP into distinct row blocks, which
can be treated independently,given a certain permutation. The
result of this algorithm is visualized in Fig. 2, where, given p, we
identified two row blocks ofRP . After the blocks are identified,
we can “correct” each of them by applying an independent qr
factorization. These factorizations can (and should) be executed
in parallel.

C. Efficient Row Modification

Assume we wish to factorize the non-triangular block of rows
j1 : j2 of RP , in order to derive the respective block of rows
of Rp. We note that, even without the leading zero columns,
this is a “wide” matrix, i.e., the number of columns is greater
than or equal the number of rows. Hence, let us examine a sub-
matrix of this row block, containing only its first l

.
= j2 − j1 + 1

NZ columns: square_block
.
= RP (j1 : j2, j1 : j2). This is a
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Fig. 3. Applying Algorithm 2 for optimized direct modification of the factor R given p. Blue borders mark the re-factorized sub-matrices; green-colored
entries represent entries of R; orange represents entries calculated from re-factorization of RP ; yellow represents entries calculated by applying a pre-calculated
transformation; white overlay indicates column permutation. (a) RP and its block diagonal structure. (b) Applying qr independently on each square block. (c)
Deriving Rp by applying the calculated orthogonal transformations on the remaining elements in the respective rows. (d) The “correcting” orthogonal matrix Q′
follows the same block structure.

square block taken around the diagonal of RP . This block is
of full rank l, as it differs from the block R(j1 : j2, j1 : j2)
only in the order of columns, and the latter is upper triangular
with NZs on its diagonal (and hence of full rank). Therefore,
square_block has a unique factorization:{

Q′
block, square_block′

}
= qr{square_block}, (14)

such that square_block′ is also an upper triangular matrix
with NZs on its diagonal. Thus, it is sufficient to examine
square_block, in order to derive the matrixQ′

block, which defines
the desired transformation for the entire row block.

This approach essentially separates the calculation and appli-
cation of this orthogonal transformation; this can improve the
modification efficiency in comparison to a “naive” application
of qr on the entire row block. Calculating the qr factorization
requires finding and applying an appropriate series of transfor-
mations (e.g., Givens rotations or Householder reflections [3]),
which together form the orthogonal matrix. Generally, we must
apply each rotation, in order to find the next one in the se-
ries. This means that each entry in the factorized matrix is
modified multiple times throughout the factorization, accord-
ing to the number of transformations needed. Thus, by only
factorizing the square block, and not the entire rows, we can
avoid unneeded calculations. The entries beyond column j2 (i.e.,
RP (j1 : j2, (j2 + 1) : n)) do not need to be continuously mod-
ified throughout the factorization process; they can be modified
only once, by multiplying them in the matrix Q′

block
T after it is

found.
Overall, we shall repeat this process for every row block of

RP which requires factorization (provided by Algorithm 1);
by doing so, we can identify a block diagonal structure, such
that all the NZ entries of RP below the diagonal are contained
(as visualized in Fig. 3(a)). In order to calculate Rp, we shall
(independently) factorize each of these square blocks, and apply
the transformations to the rest of the respective row blocks. As
mentioned,Qp = Q ·Q′, andQ′ can be found by concatenating
each block’s Q′

block matrix, according to the block diagonal
structure. Algorithm 2 summarizes the approach.

D. Numerical Concerns

We recall that Rp is unique (under the aforementioned condi-
tions), and, thus, all modification methods should theoretically

yield the same matrix. However, the orthogonal transformations
used in the factorization are operations with real numbers, which
are inevitably rounded, in order to be computed in a machine
with limited precision. Therefore, two mathematically equiva-
lent sequences of operations might, in practice, reach different
results, due to slight numerical errors.

Altogether, we can divide the modification methods into two
categories: direct modification of R, without re-accessing A (as
considered thus far); and methods which, to varying capacity,
involve re-factorization of A, under the new variable order.
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Fig. 4. Modification via re-factorization. Blue borders mark the re-factorized sub-matrices; teal-colored entries represent entries of A (i.e., factors); green
represents entries of R; purple represents marginal factors; red represents entries calculated from re-factorization of A; yellow represents entries calculated
by applying a pre-calculated transformation; white overlay indicates column permutation. (a) Naive/complete re-factorization. (b) iSAM2-style incremental
factorization, starting from the first permuted variable. (c) Utilizing the local effect of variable reordering. (d) Optimized re-factorization, as described in Algorithm 2;
utilizing block independence and efficient block modification; the highlighted blocks can be factorized in parallel.

Direct modification tends to be faster, as it takes advantage of
the original factorization, in which we handled the “heavy load”
of reducing the overdetermined system to a “square” one. When
performing direct modification, we essentially apply additional
transformations on top of those which were applied in the orig-
inal factorization: Rp = Q′T ·QT ·AP . Hence, as a rule of
thumb, this approach corresponds to an overall longer (although
theoretically equivalent) series of operations to reach Rp, than
if we were to re-factorize AP (A → R → Rp vs. A → Rp).
This may cause the matrix returned by direct modification to be
more prone to numerical errors, and, most importantly, to “false”
fill-in. Such errors occur when a series of operations that should
accumulate to a zero entry, yields a slightly different value. This
added fill-in can be problematic in sparse systems or sequential
tasks, as it can accumulate over time. As each of the approaches
has its advantages (as we shall compare), we follow the previous
discussion by addressing modification via re-factorization.

IV. MODIFICATION VIA RE-FACTORIZATION

Clearly, as demonstrated in Fig. 4(a), we can derive Rp by
simply re-factorizing the system under the new variable order:

{Qp,Rp} = qr{AP }. (15)

In the top sub-figure, we can see the permuted coefficient matrix
Ap, and in the bottom one – its triangular factor. Yet, this “naive”
solution is far from efficient; as we can see, this solution is
oblivious to the original factorization, and all entries of Rp are
calculated from scratch. As we shall formulate, it is possible to
take advantage of the original factorization, and perform smart
partial re-facatorization of Ap.

A. Marginal Factor Caching

When calculating qr{A}, we build R in ascending order of
rows, by gradually applying orthogonal transformations on the
rows of A [3]. We start by factorizing all the rows in which
the leading NZ is in the first column. By the end of this step,
this block of rows from A is reduced to a single row with the
leading NZ in the first column (which is the first row of R), and
“marginal factors”; these are rows which were not present in A
before, and will not appear in R – they represent intermediate
steps in the factorization, and shall be processed in the next
factorization steps. We then move on to the next block of rows,
with the leading NZs in the second column (considering also
the marginal factors generated in the previous steps), and so on,
until all the rows of R are calculated. We know that the j-th row
of R is calculated once there is no more than a single row with
leading NZ in the j ′-th column, for each j ′ ≤ j. Now, assume
that after finding R, we are interested in the factor R̃ of another
matrix Ã ∈ Rm̃×n.

Let IA{j1 : j2}mark the set of indices of rows ofA, in which
the leading NZ is between the j1-th and j2-th columns, and
further assume the block of rows IA{1 : jfirst − 1} of A is equal
to the block of rows IÃ{1 : jfirst − 1} of Ã. From the previous
discussion, we understand that the calculation of the top jfirst − 1

rows of R and R̃ is equivalent. Thus, we can potentially take
advantage of the prior factorization efforts (of A), to efficiently
factorize Ã: given access the marginal factors, we can “restart”
the prior factorization from an intermediate step, after the top
jfirst − 1 rows of R were calculated, and continue factorizing
rows IÃ{jfirst : n} of Ã,to derive the remaining rows of R̃.
Surely, we can take advantage of this incremental calculation
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even if the overlapping rows between A and Ã differ in the
order of columns jfirst : jlast; when restarting the factorization,
the top jfirst − 1 rows of R (and the marginal factors) can just be
permuted accordingly, and shall remain “triangular”. Of course,
this idea is only applicable if we save (or cache) the marginal
factors while calculating the prior factorization. This requires a
custom implementation of the qr algorithm, e.g., as described
in Algorithm 3.

This idea, is not, in fact, a novel contribution of this letter; it is
prominently used in state-of-the-art approaches for incremental
smoothing and mapping, such as the aforementioned iSAM2,
which performs incremental updates to R, at the arrival of new
constraints (i.e., addition of rows to A). Although we do not
consider addition of constraints, but only reordering of A’s
columns, we can still utilize this idea here, to efficiently calculate
Rp from AP , as visualized in Fig. 4(b). Note that typically,
when using cached marginals, formation of the orthogonal ma-
trices (Qp and Q, in Algorithms 2 and 3, respectively) from
their blocks requires tedious index tracking. However, once R
or Rp are found, the orthogonal matrices can be easily found,
if needed, by calculating Q = A ·R−1, or Q′ = RP ·Rp

−1

(where Qp = Q ·Q′), respectively.

B. Optimized Re-Factorization

Nonetheless, this method is not optimized for pure variable
permutation, as we consider here; we can improve it by utilizing
our previous conclusions. From Proposition 1, we know that not
only the top rows of R are preserved in the permutation, but also
the bottom ones. So, similarly to Eq. 9, we can also “skip” the
factorization of rows IAP {jlast + 1 : n} of AP , and factorize
only rows IAP {jfirst : jlast}, which, together with the permuted
marginal factors, yield rows jfirst : jlast of Rp, i.e.,

qr

{[
marginalsp{jfirst − 1}

AP (IAP {jfirst : jlast}, jfirst : n)

]}
. (16)

This improvement is visualized in Fig. 4(c). We note that here,
unlike in direct modification, it is possible that the triangular
block resulting from this re-factorization would contain addi-
tional rows, representing residual marginals factors; such rows
can be trimmed, to be left only with the relevant rows of Rp.

Furthermore, we can also utilize the concept of block inde-
pendence, and divide rows IAP {jfirst, jlast} of AP into smaller
independent row blocks, which can be factorized in parallel –

Fig. 5. Sparsity pattern ofA (a), and the modified factorRp, calculated using
the two variants our optimized modification algorithm: direct modification (b),
and re-factorization (c).

just like we considered in direct modification. Here, though, to
every row block we shall add its relevant marginal factors (which
were pre-cached). Finally, in each of these row blocks, we can
separate the calculation of the orthogonal transformation from
its application, as previously suggested. For a block of rows of
AP (with the marginal factors), representing l rows of Rp, it
is sufficient to examine its first l columns, in order to calculate
the desired transformation. Only then we shall apply it to the
remaining columns of that row block. We note, though, that in
this case, this sub-block is not necessarily square, as the number
of rows to re-factorize may be greater than the rank of the block.
Application of these two concepts is visualized in Fig. 4(d). Also,
we recall that this optimized modification method is summarized
in Algorithm 2.

V. EXPERIMENTAL RESULTS

We would now like to demonstrate the advantages of our
optimized modification technique, provided in Algorithm 2. As
explained, variable reordering is highly relevant when perform-
ing online sequential estimation tasks. Accordingly, we solved
a SLAM problem, in order to estimate the trajectory of a ground
robot navigating in an unknown environment, in a highly real-
istic Gazebo simulation (for more details about the simulation,
see [18]). At the end of the trajectory, the state vector contained
nearly 400 (three-dimensional) poses. We then extracted the
coefficient matrix A, and the square root matrix R = qrA, to
be used in this demonstration; the sparsity pattern of A can be
viewd in Fig. 5(a). We examined three variants of direct mod-
ification: naive (i.e., qr{RP }); our optimized algorithm; and
our optimized algorithm, while allowing parallel modification of
independent blocks. We also examined four variants of modifi-
cation via re-factorization (visible in Fig. 4): naive, i.e., complete
re-factorization; incremental re-factorization, matching iSAM2;
and our optimized algorithm, with and without parallelization.
For fairness, our implementation1 of all variants relied on the
standard qr function in MATLAB. To attain unbiased results, we

1Implementation of the presented algorithms is available at www.khen.io

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on January 22,2021 at 06:18:55 UTC from IEEE Xplore.  Restrictions apply. 



682 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

TABLE I
COMPARISON OF MODIFICATION ALGORITHMS

generated 100 random permutations, to be used for comparison.
In order to still keep the number of blocks consistent, when
generating each permutation, we first randomly selected two
blocks of variables, each with a random number of poses, and
within each of those, generated a random permutation of the
poses.

The average results of applying these permutations, for each
of the compared algorithms, are summarized in Table I; the
table presents the execution time, and the number of NZs
(NNZ), indicating the added fill-in due to numerical errors.
The sparsity pattern of the modified factor Rp (considering
a typical permutation) can be seen in Fig. 5(b) and Fig. 5(c).
Several observations can be made. First, the NNZ within each
algorithm category is consistent, though direct modification gen-
erally yields additional fill-in in comparison to re-factorization.
Nonetheless, in terms of execution time, direct optimization
beats re-factorization by a large margin. As we expected, even
without parallelization, in each category, our optimized algo-
rithm achieves significantly better performance in comparison
to the baseline methods. Allowing parallel computing can obvi-
ously further improve the performance, in direct relation to the
number of concurrently modified blocks.

VI. CONCLUSION

We addressed the problem of modifying the upper triangular
matrix R, given by factorizing the coefficient matrix A of a lin-
ear(ized) least squares system, to convey reordering of the vari-
ables. We identified three main contributions, to allow efficient
computation. First, variable reordering has only a local effect on
the factor; meaning, R is affected only between its rows which
correspond to the first and last permuted variables. Second, this
row block can be divided into independent sub-blocks, which can
be modified independently, and even in parallel. Third, to modify
each of these blocks, it is sufficient to examine only the square
portion of it, around the matrix diagonal, in order to derive the
transformation required for the modification. We utilized these
conclusions in a novel modification algorithm, and examined
two variants of it: directly modifying R, without re-accessing
A; and combining (partial) re-factorization of A. As our sim-
ulation proves, the first enjoys lower computation time, while
the latter enjoys higher accuracy. Nonetheless, considering ei-
ther variant, our optimized algorithm significantly improves the
performance over state-of-the-art. Overall, as the two variants
show superiority in different criteria, selecting the one to use in a
matter of preference. If execution time holds higher importance
over reducing fill-in, one should use direct modification; if the
opposite is true, one should use re-factorization. Though, we

remind again that optimized re-factorization relies on marginal
factor caching, which may not be available.

We can consider a “hybrid” modification, which enjoys the
benefits of both methods. Modern sparse qr implementations
often rely on a precursory symbolic factorization process. These
start by calculating the sparsity pattern of R, and identify the
entries which are zero “by definition,” and those which “need to
be computed”. They then calculate the numerical values only for
the relevant entries. Since the rows of R are denser than those
of A, the sparsity pattern we can derive in direct modification
is inferior to the one we derive in re-factorization; this causes
more entries to suffer from numerical errors. Thus, we may begin
by performing symbolic re-factorization, to derive the sparsity
pattern of the modified factor, and then calculate the relevant
numerical values via direct modification. To further generalize
and extend the applicability of our ideas, we are also interested
in analyzing them in the context of graphical models, such as
the factor graph, or the Bayes tree (which underlies the iSAM2
algorithm). Formulation of these ideas is left for future work.
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