Efficient Decision Making under Uncertainty
in High-Dimensional State Spaces

Khen Elimelech
under the supervision of Assoc. Prof. Vadim Indelman

Ph.D. Seminar, May 2021

~
TECHNION

Israel Institute
of Technology

Autonomous Navigation
and Perception Lab

1 ANPL

Autonomous Systems

1 /50

Robust Autonomous Systems

* Need to answer questions, such as:

State estimation,

* Wheream I?
» inference,
e What’s around me?

mapping...

Planning,
* Where to go?

control,
 How to get there? decision

making...

e Accounting for uncertainty is essential for reliability

2 /50

In this talk...

* Online decision making under uncertainty

* In the context of (but not limited to) SLAM:
Simultaneous localization and mapping

1. State estimation and SLAM
2. Decision making under uncertainty

3. Contributions:

|. Efficient DM via belief sparsification (+ results)
Il. Efficient DM via predictive reordering (+ results)

3 /50

Decision Maxir ng
under Uncer: um Ly
In Aigh-Dimensional
Sirare sSpaces

* A robot navigating in an unknown environment
e Observes features/landmarks around it
* Wants to infer its location in the environment

5 /50

Example Scenario: Discretized

* Factor graph: a graph of constraints

* Constraints are defined according to the controller
and sensor models

Poses

Landrmaris
Observation constraint
Motion constraint

6 /50

Stochastic Constraints => Beliefs
 The motion model is stochastic (Markov assumption):

X = g(xy_1, U) + noise

e The observation model is also stochastic:

Z1 = h(xg, 1) + noise

e At each time-step, these constraints induce a belief:
b(Xy) = P(Xy|uq.k, 21:1)

* The posterior distribution over the state, given past

controls and observations.

7 /50

A Big Optimization Problem

* From the belief b;, (distribution), we wish to find the
MAP estimate of the state vector X,

* E.g., robot poses, and position of landmarks

e Offline global optimization:

Structure from Motion (SfM) / Bundle Adjustment
(BA)

* Online iterative optimization, as time progresses:

Simultaneous localization and mapping (SLAM)

8 /50

/
;/IJJ
IS

Traditional Approach: Bayesian Filtering

e E.g. Kalman filter, information filter, particle filter

* Tells us how to update the belief given new
actions/observations

b(Kir1) % P(Zisq|Xisn) j b(X) - Pk sa % @) dxi

* Marginalization of (“forgetting”) previous poses
* We only maintain the most recent pose in the belief:

Xk = [xk’ L]T

10 /50

Traditional Approach: Bayesian Filtering

 Advantages: smaller state size
e Disadvantage: dense(r) system,
cannot update estimate of past poses

@__________

11 /5o

Smoothing and Mapping

b(Xi41) X b - P(Zgq1|Xps1) - PCrgaq|xn, ax)

 State vector contains the entire trajectory
Xk = [xl:kJ L]T

* No marginalization of past poses
e Pose-SLAM vs. full-SLAM

 More accurate estimation (updatable past poses)
* High-dimensional states, estimation cost grows quickly

12 /50

Common (Non-Essential) Assumptions

e Gaussian noise and linear(ized*) models
* Leads to Gaussian beliefs:

b(Xy) = P(Xgluik, 21.0) = N (X, Zg)
* Can be described with two components:

* Mean vector (the MAP estimate)
* Information matrix Aj (the constraints)

* For brevity, not discussed here.

13 /50

Constraints <~ Graphs < Matrices

“Jacobians Matrix” Information Matrix
. T
Factor Graph Ay A = AkAk
I l2 I9 ll T3 l3 I ll lz o I3 l3

e Given the constraints, we wish to find the MAP

estimate

14 /5o

Belief Factorization

e Skipping some equations...

* |[n practice, looking for the upper triangular “square
root” of Ay, such that A, = Ri R,

x1 b1 ly o 3 3 x1 lo o 11 w3

I3

Cholesky l

Factorization

—

e At worst, factorization holds a quadratic cost

15 /50

Belief Factorization Update

* New constraints are represented with “Jacobian”
rows

* Shauyld lincrementally) update the square root

16 /5o

Recap: State Estimation (Inference)

* In sequential estimation, we gradually collect a set of
constraints over a state vector of variables of interest

* We wish to maintain an up-to-date state estimate throughout
the process

* The smoothing paradigm suggests no pose marginalization,
i.e., examining high-dimensional states

* At each time-step, the set of constraints induces a belief: the
posterior distribution over the state

* To find the estimate, we shall find (and maintain) the belief’s
upper triangular square root matrix

17 /50

Decision Malking

under Uncertain
In Aign=-Dimensi
t

onal

Planning In the Belief Space

e We wish to plan the next action (sequence)

Poses
Landrarks

Motion constraint

Observation constraint

19 /5o

Planning In the Belief Space

* Predict belief development (new poses/constraints) for
multiple candidate actions/policies

Poses
Landrarks

Motion constraint
Dashed: predicted

Observation constraint

20 /50

* Planning is comprised of many sub-problems, e.g.:
 action generation (motion planning)
* motion prediction
* reward engineering
* candidate comparison

* A decision problem P = (b, A,V):

e Given a set A of candidate actions, we wish to find
the optimal one, according to the objective
function V:

a*= argmaxV(b,a)
aeA

21/50

Measuring Uncertainty

* We often wish to evaluate the impact of actions on
the information/uncertainty of the posterior belief

e (Differential) entropy: H(X) =
— [P(x) InP(x) dx

* For a Gaussian belief, yields the objective function:

V(b,a) =In|R*| — % - In(2me)

* R* is the square root matrix of the posterior belief

22 /50

Computationally Challenging

Belief update for every candidate, over (possibly) long

horizons

5. et

g*

[]

I:.III+IIII.II.I I.IIIII.I+II
v +

23 /50

=

:ﬁ‘
'j

= —

@)

1

o~
2
c (b

O [

(D

>
—

"~
Q)

X
48
(S

-

(D

(1

— C

(O

(S

(P

—

N =
©
Oy
R

E S
pa S

—

Decision Making: Simplified

 Consider a decision problem P = (b, A, V)

* The concept: Identify and solve an equivalent, yet
“easier” decision problem P, = (b, A, V;)

* In this talk, focus on simplifying the initial belief

* Goal: improving efficiency, maintaining quality

* How should we measure the simplification quality?

25 /50

Action Consistency

Definition:

The problems are action consistent,
if the following applies Va;, a; € A:

V(b,a) <V(b,a;) & V(b a;) < V(b a;)

Value

* |n decision making, we only care
to rank the actions

e Action selection is not affected by
the actual objective values

Action Consistent Decision Problems

10

2 3 4 5 6 F § 8 9
Action

26 /50

Simplification Loss

Definition:
loss(P,P,) =V(b,a*) —V(b,a})

e Simplification may lead to a sub-
optimal action

* Measure for the quality-of-
simplified-solution

 Further work on how to derive
loss bounds for simplification
methods is not discussed here...

Value

Loss of the Simplified Decision Problem

—o—7 ||
_e_Ps

Action

27 /50

Belief Sparsification

* Plan with a sparse approximation of the initial belief

e Reduce the number of factors and disconnect
variables

o (\nl\l ~ cinn'g CY\')PC;'Fif“)‘l'ion pQV‘ nlﬁnninn’ CQCC‘EI\Y\

’ : e S g*\ _
(=

[1] Consistent Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces, K. Elimelech and V. Indelman, ICRA ‘17

[2] Scalable Sparsification for Efficient Decision Making Under Uncertainty in High Dimensional State Spaces, K. Elimelech and V. Indelman, IROS '17
[3] Fast Action Elimination for Efficient Decision Making and Belief Space Planning Using Bounded Approximations, K. Elimelech and V. Indelman, ISRR ‘17

[4] Simplified Decision Making in the Belief Space using Belief Sparsification, K. Elimelech and V. Indelman, IJRR ‘18 (conditionally accepted) 28 /50

* [n practice — (square root) matrix sparsification

Algorithm 1: Scalable Belief Sparsification

Inputs:
A belief b = N(X,A"),st. A=R"R
A subset S of state variables to sparsify
Output:
| A sparsified belief b

1. Separate variables 2. Remove entries 3. Reorder back

10 return bs = N (X,A;'),st. A; = RTR,

29/50

Efficient Reoredering

* Reordering the variables (=columns) would break R’s shape
* Thus, variable reordering typically requires re-factorization

* We showed that we can simply apply (in parallel!) “local”
modifications to the matrix, with minimal to no re-

factorization

= - [- M’

[1] Efficient Modification of the Upper Triangular Square Root Matrix on Variable Reordering, K. Elimelech and V. Indelman, RA-L 21

30 /50

Belief Sparsification

Sparsification is scalable:

Original Partial Sparsification Full Sparsification
TN
i
But which variables should we sparsify: e

Sparsification of uninvolved variables
does not compromise action consistency!

31 /50

Approach Summary

[Identify uninvolved variables from the J acobians]

guarantee the quality-of-solution

[Calculate “online” loss bounds, to

|

32 /50

Experimental Results

* A highly realistic active-SLAM problem

* The robot should navigate through a list of goals in
an unknown indoor environment.

* Pioneer 3-AT robot, with a lidar sensor, Hokuyo UST-10LX — real and in
simulation.

33 /50

* The environment and the PRM graph, used for
generation of candidate trajectories.

* Every square stands for Im x 1m in reality.

34/50

Experimental Results

Pose SLAM
Examining 20 different trajectories to the next goal
Objective: minimal final uncertainty (entropy)

Loop closures via point cloud matching (ICP)

For comparison, for each goal we solved three versions of
the decision problem:

e P —using the original belief

* Pinvolved — With sparsification of the uninvolved variables

* Paiagonal — full sparsification

35 /50

e Scenario, three versions of the initial belief, and the
considered updates of the candidate trajectories

R Rinvolved Rdz’agonal
U

) L. . s 10
———a[A, | C—A
Z /,
1 13 14 15
4
27 12 - /: : /:
/ / /
AV I I 2R I SR IS S
e, /g
2 4 2 Z
16 18 19
7 17 v 20
7 il 7 , 7 / -
, 7 4 , 7 , 7/ 255
’, ¢ /, /, 0
7 2 v v %
.2 2 2 2 3

Experimental Results

Comparison: objective trend (quality-of-solution), and run-

time.

1050 r
1000

(0]

=

L 950+

(O]

=

3 900} a—

0

O = 'Pinvolved
850 r p— 7Ddia,gonal -

Prior

800

Candidate Trajectory

Run-time

P

Pin‘uol‘ucd Pdmgon.a‘l

37 /50

Reward

Reward

1380 1

1360

1340

1320 1

1300

1280 |

1260

1240

2350 1

2300 |

2250 1

2200 1

2150 |

2100

P

= Pinvolved

— I diagonal
Prior

Action

— P

= = Pivolved

diagonal

Prior

Action

Run-time

Run-time

P Pin volved 7):]/:1_(/ onal

P PIHI'(}[!‘(‘(/ Pt]m_z/{mu[

38/50

Reward

Reward

2500 1

2450 1

2400 1

2350 1

2300 1

2250

2700 1

2650 1

2600 |

2550 1

2500 1

2450 1

2400

P

= Pinvolved

diagonal

Prior

Action

\

— P

= = Pivolved

diagonal

Prior

n n)

Action

Run-time

Run-time

P piu volved 7)1//11‘(/ onal

P P/ru'ulnr‘(/ Pt]m_z/{mu[

39/50

Belief Sparsification: What's Next?

* Evidently, very effective in reducing the planning cost!

* We calculate the sparsification “from scratch” at every
planning session

e Can we make it incremental?
e Can we make it even more efficient?

* These questions led us to another “simplification”:
PIVOT: Predictive Incremental Variable Ordering Tactic

[1] Introducing PIVOT: Predictive Incremental Variable Ordering Tactic for Efficient Belief Space Planning, K. Elimelech and V. Indelman, ISRR ‘19

[2] Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic, K. Elimelech and V.

Indelman, IJRR ’21 (invited)

40 /50

PIVOT: Basic Concept

* Like in sparsification: identify involved variables

5"

et

g*

I:.IIIIIIII. T

[T III.IIIII.:I

41 /50

PIVOT: Basic Concept

* VVariable reordering: simply push involved variables
forwards -- no sparsification, no “reordering back”

1L e . T s ara s nm "o HMHy=fln= =ami.

R

PEURENE B LA A Aoapt

@ EEEEEEEE | ANEE HENEE |
(T T T ITTT T
TTITIT EEEEEE EHE N

42 /50

PIVOT: Basic Concept

* Efficient updates: reducing the size of the affected blocks!

IIII.IIIII.

mjjanEnns 58§
v

43 /50

Basic PIVOT is comparable to uninvolved sparsification

 However, with PIVOT*, we suggest further order
optimizations:

First, we divide the variables to multiple classes:
 “More involved” are pushed “more forwards”

- - b -

- - s s mEm = s o= P m o s om o m om —

-
4
-
-- e o ow ow o-
r
-

2 variable classes 3 variable classes

44 44 /5o

* Further, PIVOT* is aware of fill-in (density), and
takes into consideration variable connectivity (node
degree)

For the full algorithm see:

[1] Efficient Belief Space Planning in High-Dimensional State Spaces using PIVOT: Predictive Incremental Variable Ordering Tactic, K. Elimelech and V.
Indelman, IJRR 21 (invited) 45 45 /5o

PIVOT Applied to the Prev. Scenario

* We solved the previous simulated experiment with variations of PIVOT.

Reordering the variables before each planning session (instead of spars.)

AT P s 3 -

! ! A | B T o

‘.._. = | 3 !xf_‘_| ’ E 1o 't . E a :

i M, g

£ It
& I i v

nz = 28842 nz = 69376 nz = 40882
R at the final planning session after applying PIVOT

after applying PIVOT*

* No approximation! Different representations for the same belief

46 /5o

PIVOT: Results

* We solved the previous simulated experiment with variations of PIVOT.

* Reordering the variables before each planning session (instead of spars.)

Ancsimulatad Planning Tima

] M
TR !
ni.
-
. 1l
L 20 | 1]
— e LN TTTI S
gl .
— L T
= B Jp
-
" T o=un s
a4 S TR T
=)

M a1 niny Sessizn

47 /50

PIVOT: More Benefits

* If we maintain the modified order after planning:

* Order can be updated incrementally on re-planning!
e PIVOT can also improve the efficiency of state inference!

Acuinuloled Slole Flumnbice Thowe

o L i

rig'w vy | 1INy
.
[

r

Lt A7) G utn

Sinln cTHmEI M S Ay

48 /50

Sparsification vs. PIVOT

* PIVOT = change of representation
 Sparsification = approximation

* Efficiency:

“full” spars. > PIVOT* > PIVOT = “uninvolved” spars. > original

e Quality-of-solution:

original = PIVOT(*) = “uninvolved” spars. > “full” spars.

49 /59

We covered:

 SLAM and estimation under uncertainty

* Beliefs over high-dimensional states

* Planning in the belief space

e Qur contributions:

1.
2.
3.

Theoretical framework for simplified decision making
Sparsification for efficient planning

Variable reordering for efficient planning (and
inference)

Efficient variable reordering algorithm

50/50

www.khen.io

