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Abstract

The fundamental goal of artificial intelligence and robotics research is to allow agents and robots
to autonomously plan and execute their actions. To achieve reliable and robust operation, these
agents must account for uncertainty; this may derive from dynamic environments, noisy sensors,
or inaccurate delivery of actions. Practically, these settings require reasoning over probabilistic
states, known as “beliefs”. At large, the focus of this work is to allow computationally efficient
decision making under uncertainty, which we formulate as decision making in the belief space.
To determine the optimal course of action, the agent should predict the future development
of its belief, considering multiple candidate actions. Examining beliefs over high-dimensional
state vectors (e.g., entire trajectories) can significantly improve estimation accuracy. Yet, it
also holds high computational complexity, which makes the real-time solution of this problem
extremely challenging. Inherently, solving a decision problem requires evaluation of the candidate
actions according to some objective function. In this work, we claim that we can often spare this
exhaustive calculation, and, instead, identify and solve a simplified decision problem, which leads
to the same (or similar) action selection. A problem may be simplified by adapting each of its
components – initial belief, objective function, and candidate actions – such that the objective
calculation becomes “easier”. In support of this concept, we present several contributions. We
begin by presenting a novel and fundamental theoretical framework, which allows to formally
analyze candidate optimality, and quantify the loss induced from possible sub-optimal action
selection. This analysis approach also allows us to identify actions which are guaranteed to be
sub-optimal, and can be eliminated. We then show how the idea of problem simplification can
be applied to decision making in the belief space. Practically, the belief is often represented
with a graphical model, or with the high-dimensional upper triangular “square root matrix”.
Thus, we suggest to simplify the problem by considering a sparse approximation of the initial
belief (graph or matrix), which can be efficiently updated, in order to calculate the candidates’
objective values. Accordingly, we present a scalable belief sparsification algorithm, and analyze
its effect on the decision problem using our suggested framework. We follow with another method
for reducing the computational complexity of the problem, by optimizing the order of variables in
the state vector before planning. This operation can help reducing the number of variables which
would be affected by the belief updates. We call this approach PIVOT: Predictive Incremental
Variable Ordering Tactic. Unfortunately, changing the order of variables modifies the matrix in
a non-trivial way, and implies its costly complete recalculation. Thus, in support of PIVOT, we
also present an efficient and parallelizable algorithm for modification of this matrix on variable
reordering, by manipulating it directly. We demonstrate the benefits of our methods to the
solution of active Simultaneous Localization and Mapping (SLAM) problems for mobile robots,
where we manage to significantly reduce computation time, with practically no loss in the quality
of solution. Other relevant tasks include autonomous navigation, sensor placement, and robotic
manipulation.
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Glossary

Table 1: Glossary.

Notation Definition

P .
= (ξ,A, V ) A decision problem, where ξ is the initial state, A is a set of candidate actions, and V

is the objective (value) function.
Ps A simplified decision problem.
loss(P,Ps) The simplification loss.
∆(P,Ps) / δ(P,Ps, a) The simplification offset / of an action a.
P1 ' P2 Action consistency (a relation between decision problems).

xk The agent’s pose at time-step k.
Xk The set of state variables at time-step k.
Xk The state vector at time-step k (given a certain variable order).
X∗k The MAP estimate of Xk.
nk

.
= |Xk| The state size at time-step k.

uk A control action taken from pose xk.
Uk:l The set of control action taken between time-steps k and l.
Xok The subset of state variables observed from pose xk.
zk An observation taken from pose xk.
Zk:l The set of observations taken between time-steps k and l.
bk(Xk)

.
= P(Xk | Uk,Zk) The agent’s belief over its state at time-step k.

FGk
.
= (Xk ∪ Fk, Ek) A factor graph representing the belief bk.

FGδk+1 A factor graph representing the update to the belief (i.e., new factors and state variables)
when moving from time-step k to time-step k + 1.

BNk
.
= (Xk,Dk) A Bayesian network (“Bayes net”) resulting from performing variable elimination on

FGk (given a certain variable order).
InvX (H) The subset of variables ⊆ X , which are involved in the hypothesis H.
¬InvX (H) The subset of variables ⊆ X , which are uninvolved in the hypothesis H.
Jk The “Jacobian matrix” of belief bk, containing the linearized Gaussian factors as its

rows.

Jδk+1 The “Jacobian matrix” of the update, containing the linearized Gaussian factors added
to the belief when moving from time-step k to time-step k + 1.

Λk
.
= JTk Jk The information matrix of bk.

Rk The square root matrix of the information matrix at time-step k, such that Λk
.
= RTkRk.

IM{j1 : j2} The set of indices of rows of M , in which the leading non-zero is between the j1-th and
j2-th columns.

NZ Non-Zero.

π A policy.
Π A set of (candidate) policies.
Hk:l A hypothesis – an assignment to the Markov chain [uk, zk, . . . , ul, zl].
ML Maximum Likelihood (observations).

Ṽ An information-theoretic objective function (expected information gain).

In The identity matrix of size n.
i1 : i2 The vector [i1, ..., i2].
end The last index.
qr QR factorization.
chol Cholesky factorization.
blkdiag{×, . . . ,×} Returns a matrix with the given inputs on its block diagonal.
C/COLAMD The respective fill-reducing variable order.
M(I,J ) The sub-matrix of elements (i, j) : i ∈ I, j ∈ J of M ; M1M2(×,×) marks the block of

M1M2, and M1 ·M2(×,×) marks the block of M2.
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Chapter 1

Introduction

1.1 Motivation

In this era, intelligent autonomous agents and robots can be found all around us. They are
designed for various functions, such as exploring remote domains, e.g., underwater and space;
imitating humans and interacting with them; performing repetitive tasks; and ensuring safety
of operations. They might be physically noticeable, e.g., personal-use drones, industrial robotic
arms, or space rovers; or less so, with the popularization of internet of things (IoT), smart
homes, and virtual assistants. Yet, the increasing demand for these “smart” systems presents
new challenges, as the integration of robotic agents into everyday life requires them to operate
in real time, using inexpensive hardware.

In addition, when deployed in the real world, such agents and robots must be able to robustly
handle uncertainty, in order to achieve reliable performance. For example, when solving tasks
such as localization, mapping, or manipulation, mobile robots should often infer their state in
the environment, while accounting for their inherent noisy actuation, and only relying only on
noisy sensing or partial observability. To allow long-term operation, they should also be able to
efficiently propagate their uncertainty-aware (and often) high-dimensional state representation
through time. This fundamental problem, known as sequential state estimation or inference, has
long been a major interest of the robotics and Artificial Intelligence (AI) research communities;
hence, over the years, various probabilistic techniques were suggested for its solution, as we
shall cover. An important instance of this problem is Simultaneous Localization And Mapping
(SLAM) (Cadena et al., 2016), in which we wish to estimate an agent’s location, while mapping
its surroundings, in real time.

The other important concern in allowing autonomous operation is the task of planning and
decision making under uncertainty. We may view state estimation as the “passive” part of the
problem, in which we are given a stream of information, and are asked to provide an estimate
(and possibly a confidence level) of a measure of interest. In contrast, planning may be viewed
as the “active” part of the problem: given the state estimation solution (the state estimate or
uncertainty-aware representation), we should determine the future course of action for the agent,
in order to achieve a certain objective. To make a reliable decision, which can be executed safely,
we should predict the propagation of uncertainty into the future, considering different candidate
actions or policies, and possible hypotheses for the outcomes of actions, future observations,
and the environment. Thus, while state estimation might be challenging for real-time solution,
planning and decision making are exponentially more demanding.

11
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At large, the focus of this work is to allow computationally efficient decision making
under uncertainty, which we will formulate as decision making in the belief space. Relevant
tasks include active-SLAM for mobile robots, autonomous navigation, sensor placement and
active sensing, robotic manipulation, and even cognitive tasks, such as dialogue management.

1.2 Background

Before formulating the decision making problem and its solutions, it is important to first discuss
the state inference problem, on which it relies.

1.2.1 Sequential Probabilistic State Inference

In this problem, as mentioned, given a set of probabilistic or noisy constraints or measurements
(also known as factors), we would like to find the best, i.e., the maximum-a-posteriori (MAP),
state estimate. In the context of mobile robotics, this state typically refers to the robot’s tra-
jectory of poses, and/or properties of elements in its environment. To be able to express our
confidence in the current estimate, and to allow fusion of information arriving from different
sources, we typically maintain a belief – a posterior distribution over the state, given the avail-
able information – rather than a single point estimate. By utilizing Bayes’ rule, we are able to
update (“propagate”) the belief through time-steps, at the arrival of new information, in what
is known as “Bayesian Inference”. To clear any possible confusion, note that when using the
term “belief propagation”, we mean “to update the belief through time-steps”, and do not refer
to the “belief propagation algorithm” (Yedidia et al., 2003) per se. Broadly, we can divide the
belief-based inference methods into two categories: filtering, in which we maintain the belief over
the present pose (or a subset of the variables of interest); and smoothing, in which we maintain
a belief over the entire high-dimensional state, which contains also past poses.

Text-book-standard filters, such as the Extended Kalman Filter (EKF), or the Extended
Information Filter (EIF) (Thrun et al., 2004, 2005), are in extensive use for systems in which
the dynamics are characterized with additive Gaussian noise. For the more general case, particle
filters (Sim et al., 2005) are often the effective choice. These filters maintain lower-dimensional be-
liefs, in comparison to smoothers, and, by such, their utilization in sequential estimation usually
enjoys lower computation times. On the other hand, smoothing approaches enjoy better accuracy
and robustness, as maintaining the belief over the entire trajectory allows us to: (1) perform
“loop closures”, and update the estimate of past poses, when re-observing scenes; (2) perform
re-linearization of past constraints, given the updated estimate, and, by such, further improve
accuracy; and (3) understand topological properties of the constraint graph. For these reasons,
we are encouraged to focus on this estimation paradigm, which is considered state-of-the-art.

The application of this smoothing paradigm to SLAM and robotics was established by Dellaert
and Kaess (2006), as “Smoothing and Mapping (SAM)”. The authors suggested to represent
the belief using a Probabilistic Graphical Model (PGM) – the factor graph, which describes
the topology of constraints (factors) (Koller and Friedman, 2009, Dellaert and Kaess, 2017).
They then showed that after performing variable elimination (Davis, 2006), the belief can be
re-factorized and represented with another PGM – the Bayesian Network (Ben-Gal, 2008); this
PGM describes the conditional dependencies between the state variables, and from which we can
easily derive the MAP estimate. If the factors are linearized, and the noise models are Gaussian
(as considered by the EKF), it was shown that this process of finding the MAP estimate is
equivalent to solving a linear least square problem; this problem can be solved by calculating the
Gaussian belief’s upper triangular “square root information matrix” R, given through the QR
or Cholesky factorizations (Golub and Loan, 1996).
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In sequential problems, as time progresses, new constraints, and possibly new variables, are
added to the system; then, the belief and state estimate shall be updated. However, propagation
of belief over high-dimensional states, has, at worst, cubical complexity (Dellaert and Kaess,
2006), and thus suffers from (what is known as) the “curse of dimensionality” (Bellman et al.,
1957). State-of-the-art SAM approaches, such as iSAM2 (Kaess et al., 2012), and SLAM++ (Ila
et al., 2017), partially alleviate this concern, by recognizing that that factorized representation
of the belief (given as R or as the Bayesian network), can be incrementally and efficiently
updated, instead of re-computed “from scratch”. In this case, we should only perform partial
re-factorization of the belief, starting the elimination from the first variable to receive a new
constraint, according to the variable order. Such incremental updates are very efficient when
new constraints involve only recent state variables, but can still be challenging when involving
variables from the past (i.e., on “loop closures”).

1.2.2 Decision Making under Uncertainty

Following the previous discussion, we can now confidently examine the problem of online decision
making under uncertainty (Kochenderfer, 2015), which is the actual interest of this work. When
solving this problem, we wish to select (online) an action sequence or a policy, out of a set
of possible candidates, which we predict to maximize some expected objective when applied
on the current state (considering the current belief). Since we consider stochastic (i.e., noisy)
actions and observations, this problem is often modeled as (a variation of) the Markov Decision
Process (MDP), or Partially Observable MDP (POMDP) (Kaelbling et al., 1998, Thrun et al.,
2005). Finding the optimal policy in a PO/MDP is not trivial, as the candidates’ rewards are
stochastic, and depend on the uncertain outcomes of the actions, and acquired observations.
While it might be theoretically possible to approximate the expected objectives by sampling and
propagating state particles along each predicted trajectory (Thrun, 2000, Stachniss et al., 2005),
achieving a sufficient representation of a belief over the high-dimensional state would require an
outstanding amount of such particles, making this approach unfeasible. We hence focus here
only on parametric belief propagation, as previously discussed. Also, examining the belief space,
instead of the state space, which is examined in standard PO/MDPs, allows us to consider belief-
based policies, and belief-based information-theoretic reward functions. This paradigm is thus
useful for solving tasks such as information gathering, and active-SLAM (Stachniss et al., 2004,
Kim and Eustice, 2014), where we wish to reduce the uncertainty over the entire maintained
trajectory and/or feature map.

Thus, to evaluate the candidates, and select the optimal one, we shall predictively propa-
gate the belief (usually) multiple time-steps into the future, according to (possibly) different
hypotheses for each candidate; in other words, we shall solve multiple “parallel” state inference
sessions, while predicting the future belief development, as if we were to follow each candidate.
Essentially, this process means performing a forward search in the belief space, and we thus refer
to this problem as Belief Space Planning (BSP) (Bonet and Geffner, 2000). Unfortunately, BSP
is computationally challenging for online solution, and reducing its cost is of great importance.

1.3 Contribution

The previous discussion leads us to our main goal – allowing computationally efficient decision
making in the belief space. Note that in this study, we differentiate between planning and
decision making. Planning is a broad concept, which takes into consideration many aspects,
such as goal setting and balancing, generation of candidate actions, accounting for different
planning horizons and future developments, coordination of agents, and so on. After refining
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these aspects, we eventually result in a decision problem: considering an initial state (or belief,
in BSP), and a given set of candidate actions (or action sequences), we use an objective function
to measure the scalar values attained by applying each action on the initial state; to solve the
problem, we shall identify the optimal candidate action, which generates the highest objective
value. With this rudimentary view-point, we dismiss problem-specific attributes, which allows
our formulation to address a wider range of problems.

As explained, the standard solution to the decision problem requires calculation of the ob-
jective function for each candidate action. In this work, we suggest to spare this exhaustive
calculation, and, instead, identify and solve a simplified decision problem, which leads to the
same action selection, or one for which the loss in quality of solution can be bounded. A problem
may be simplified by adapting each of its components – initial state (belief), objective function,
and candidate actions – such that the objective value derivation becomes “easier”.

In support of this concept, we present several contributions:

1.3.1 Simplified Decision Making: A Theoretical Framework

We begin by presenting a novel and fundamental theoretical framework, supporting the concept
of decision problem simplification. This framework allows us to formally analyze candidate opti-
mality, and quantify the loss induced from possible sub-optimal action selection. Since we address
the elementary process of action comparison and selection, the formulation is relevant to general
decision problems, and is not tied to decision making in the belief space. The analysis approach
relies on utilizing intervals, i.e., upper and lower bounds, over the values of the candidates, to
derive loss guarantees; in an extension, we also explain how to utilize confidence intervals, which
appear in probabilistic simplifications, to derive probabilistic guarantees. This analysis approach
also allow us to perform action elimination. Meaning, instead of exhaustively calculating the ex-
act values of the candidate actions, in order to select the best one, we can begin with their
“rough” approximation; our framework would allow us to identify actions which are guaranteed
to be sub-optimal, and quickly eliminate them. We could then refine the approximation only for
the remaining candidates.

1.3.2 Belief Sparsification

We then show how the idea of problem simplification can be practically applied to BSP problems
over high-dimensional states. In this case, we suggest to simplify the problem by considering
a sparse approximation of the initial belief, which can be efficiently propagated, in order to
calculate the candidates’ objective values. Accordingly, we present a scalable belief sparsification
algorithm, and analyze its effect on the decision problem using our suggested framework. We
even conclude conditions under which the sparsification is guaranteed to induce no loss at all.
Furthermore, while several works already utilize belief sparsification to allow long-term operation
and tractable state inference, the novelty in our approach is the exploitation of sparsification
exclusively and dedicatedly for efficient decision making. After solving the decision problem, the
selected action is applied on the original belief; by such, we do not compromise the accuracy of
the estimated state.

1.3.3 PIVOT

We follow by suggesting another method for reducing the computational complexity of planning
in the belief space, by optimizing the process of belief update required for candidate evaluation.
As explained, during sequential inference, the order of variables in the belief determines which
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variables will be affected by an upcoming update. Potentially, we wish the amount of these
affected variables, which are due for re-elimination, to be minimal. Thus, we suggest a simple
yet effective idea: before performing the updates during planning, modify the initial belief by
performing a precursory standalone variable reordering procedure; this reordering should “push
forwards” all loop closing variables, in order to minimize the total number of affected variables by
these updates. We call this approach PIVOT: Predictive Incremental Variable Ordering Tactic.

While belief sparsification and PIVOT are essentially related, they are logically different: the
first conveys belief approximation, while the latter conveys a change of representation; this makes
PIVOT inherently complementary to various planning methods. Also, while PIVOT is intended
to (and does) benefit the efficiency of planning, the tactic often benefits also the efficiency of
state inference. If the optimized order is maintain after planning, then the predicted loop closing
variables would remain “forwards” in the variable order. Thus, if our prediction coincides with
the ground truth during execution, we should similarly reduce the cost of loop closures during
inference, when they actually occurs. Further, this tactic is highly relevant when considering
sequential re-planning, as the PIVOT order can be applied incrementally before each planning
session.

1.3.4 Efficient Modification of the Square Root Matrix

Unfortunately, while new constraints can often be incrementally and efficiently incorporated,
changing the order of variables modifies the upper triangular square root matrix R in a non-
trivial way, and implies re-factorization of the entire system. The computational cost of such
operation is, hence, exceptionally high. Thus, in support of PIVOT, we present an efficient
parallelizable algorithm for modification of R on variable reordering. We suggest two algorithmic
variants: one, by manipulating the factor directly; and second, with partial (and minimal) re-
factorization. Each of the variants holds specific advantages, as we shall compare.

To clarify, with PIVOT we explain how to determine variable order, and with this algo-
rithm we address how to perform the appropriate modification to R practically and efficiently.
Nonetheless, we can use this method to apply any desired order. Specifically, even beyond the
relevance to real-time operation of autonomous agents, the introduced algorithm is especially
valuable for “large-scale” optimization problems (e.g., offline map optimization over extremely
large areas), in which full re-factorization is often practically impossible.

1.3.5 Thesis Structure

Each of the contributions is represented with a dedicated chapter. We begin by discussing
simplified decision making in Chapter 2 (and extend the discussion to probabilistic simplifications
in Appendix A). We follow with a thorough formulation of the BSP problem, in Chapter 3.
Chapters 4, 5, and 6 discuss belief sparsification, PIVOT, and square root matrix modification,
respectively; experimental demonstration of each of these methods is included at the end of its
respective chapter. Appendix B includes proofs to the lemmas an theorems which appear in the
main text.

Finally, since the presented belief simplification methods are applicable to general distribu-
tions, they can be described through manipulation of probabilistic graphical models (PGMs).
Since they are also specifically applicable to the (more limited, but arguably more practical)
linearized and Gaussian case, they can also be described through manipulation of matrices. To
sacrifice neither generality, nor applicability, the ideas throughout the thesis are presented and
explained in both contexts (PGMs and matrices), while pointing to their parallelisms. The
readers can follow both explanations, or focus on the variant that is more relevant to them.
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1.4 Related Work

Various works explore similar ideas to the ones presented here. In this section we do our best to
provide an extensive review of such works, in comparison to ours.

1.4.1 Planning under Uncertainty

First, we want to point out that planning is an “umbrella term” for various problems in the
fields of AI and robotics. Prominent “planning” problems, which are not the one discussed
here, include optimal control and motion planning, in which we search for feasible plans in the
configuration space, and often consider perfect knowledge on the world (LaValle, 2006).

When considering planning in the context of PO/MDPs, the research community has been
extensively investigating solution methods to provide better scalability for real-world problems.
PO/MDP solution approaches are generally divide into “offline” and “online” (Ross et al., 2008).
“Offline” methods generally perform global policy optimization, using dynamic programming
algorithms, such as, value and policy iteration (e.g., Porta et al., 2006, Pineau et al., 2006).
These methods are extremely computationally demanding, especially when considering high-
dimensional state space (i.e., search spaces). They are thus not suitable for “online” planning
problems, as we consider here, in which we want to infer a specific sequence of actions to be
executed immediately.

Instead, when considering “online” scenarios, we typically perform a forward search from
the current belief. As implied, standard online POMDP solvers (e.g., Silver and Veness, 2010,
Ye et al., 2017) perform search in the state-space, and not the belief space (as we care to do
here). Works which do consider planning in the belief space, typically focus on methods for
alleviating the search. For example, some solution methods perform direct (localized) trajectory
optimization (e.g. Indelman et al., 2015, Van Den Berg et al., 2012). Otherwise, while building
on established motions planners (e.g., Karaman and Frazzoli, 2011, Kavraki et al., 1996), works
such as the Belief Roadmap (by Prentice and Roy, 2009), FIRM (by Agha-Mohammadi et al.,
2014), SLAP (by Agha-mohammadi et al., 2018), and others (e.g., by Patil et al., 2014) rely
on sub-sampling a finite graph in the belief space, in which the solution can be searched. The
graph created by these methods conveniently preserves the optimal substructure property, which
allows to incrementally search for the (approximated) optimal candidate. However, such methods
are severely limited, by only allowing propagation of the belief over a single (most-recent) pose
through the graph; i.e., they perform low-dimensional pose filtering, rather than high-dimensional
belief smoothing, as we do. This forced marginalization of state variables surely compromises
the accuracy of the estimation, and limits the applicability to (problems such as) active-SLAM,
in which we often wish to examine the information (uncertainty) of the entire posterior state,
including the map and/or executed trajectory (Stachniss et al., 2004, Kim and Eustice, 2014).

Nonetheless, as mentioned, we do not focus on generation (or sampling) of candidate trajec-
tories, but, instead, focus on efficient comparison of their objective values, by lowering the cost
of belief propagation. Hence, our approach is complementary to the aforementioned graph-based
methods, which focus on generating feasible candidates. We demonstrated this compatibility in
our experimental evaluation, where we used a graph-based motion planner (from the most re-
cent pose) to simply generate a set of candidate actions; we then efficiently selected the optimal
candidate by propagating the simplified (high-dimensional) belief, and evaluating its posterior
uncertainty.
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1.4.2 Planning with Simplifications

Also, closely related to our approach, several other works examine approximation of the state or
the objective function in order to reduce the planning complexity. A recent approach (Bopardikar
et al., 2016) suggested using a bound over the maximal eigenvalue of the covariance matrix
as a cost function for planning, in an autonomous navigation scenario. Benefits of using this
cost function include easy computation, holding an optimal substructure property (incremental
search) and the ability to account to misdetection of measurements. Yet, the actual quality of
results in terms of final uncertainty, when measured in conventional methods, is unclear. Their
usage of bounds in attempt to improve planning efficiency reminds aspects of our work; however,
we use bounds to quantify the quality of solution. As they mention in their discussion, an
unanswered question is the difference in quality of solution between planning using the exact
maximal eigenvalue, and planning using its bound. Our theoretical framework might be able to
provide answer to this question.

Boyen and Koller (1998) suggested maintaining an approximation of the belief for efficient
state inference. This approximation is done by dividing state variables into a set number of
classes, and then using a product of marginals, while treating each class of variables as a single
“metavariable”. A k-class belief simplification cuts the original exponential inference complexity
by a factor of k. The study showed that in rapidly-mixing POMDPs the expectation of the error
could be bounded. This simplification method was later examined under a restrictive planning
scenario (McAllester and Singh, 1999). The planning was performed using a planning-tree search,
in which a constant amount of possible observations was sampled for each tree level, and again
assuming a rapidly-mixing POMDP. There, the error induced by planning in the approximated
belief space can be bounded as well. This method shares similar objectives with our work, but
examines a very specific scenario, which limits its generality.

In the approach described by Roy et al. (2005), the authors attempted to find approximate
POMDP solutions by utilizing belief compression, which was done with a PCA-based algorithm.
This key idea is very similar to ours, however, in that work, the objective value calculation (i.e.,
decision making) still relied on the original decompressed belief, instead of the simplified one.
Thus, no apparent computational improvement was achieved in planning complexity. The paper
also did not make a comparison of this nature, and only presented analysis on the quality of
compression.

1.4.3 Belief Sparsification

As mentioned, numerous methods consider sparsification for the probabilistic state inference
problem, in order to limit the belief size, and improve its tractability for long-term opera-
tion. Although being a well-researched concept, these methods do not examine sparsification
in the context of planning problems (influence over action selection, computational benefits,
etc.). Thrun et al. (2004), for example, showed that in a SLAM scenario, when using the infor-
mation filter, forcing a certain sparsity pattern on the belief’s information matrix can lead to
improved efficiency in belief update. However, they emphasized that the approximation quality
was not guaranteed and that certain scenarios could lead to significant divergence.

Also, since Dellaert and Kaess (2006) demonstrated the equivalence between sparse matrices
and (factor) graphs for belief representation, graph-based solutions for SLAM problems (which
is often a sparse problem) have become more popular. Accordingly, methods for graph spar-
sification have also gained relevance. For example, Huang et al. (2012) introduced a graph
sparsification method, using node marginalization. The resulting graph is notably consistent,
meaning, the sparsified representation is not more confident than the original one. Several other
approaches (e.g. Carlevaris-Bianco et al., 2014, Carlevaris-Bianco and Eustice, 2014, Kretzschmar
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and Stachniss, 2012) suggest to sparsify the graph using the Chow-Liu tree approximation, and
show that the KL-divergence from the original graph remains low. Hsiung et al. (2018) reached
similar conclusions for fixed-lag Markov blankets. Notably, our sparsification method, which is
presented both in matrix and graph forms, preserves the dimensionality of the belief, and only
modifies the correlations between the variables. It is also guaranteed to exactly preserve the
entropy of the belief.

The approach described by Mu et al. (2017) separated the sparsification into two stages:
problem-specific removal of nodes, and problem-agnostic removal of correlations. The authors
then demonstrated the superiority of their scheme over agnostic graph optimization, in terms of
collision percentage. This two-stage solution reminds the logic in our sparsification method: first,
identifying variables with minimal contribution to the decision problem, and then sparsification of
corresponding elements. Of course, we use sparsification for planning and not graph optimization.

The work presented by Indelman (2015, 2016) contained the first explicit attempt to use
belief sparsification to specifically achieve efficient planning. The papers showed that using
a diagonal covariance approximation, a similar action selection could usually be maintained,
while significantly reducing the complexity of the objective calculation. This claim, however, is
most often not guaranteed. Optimal action selection was only proved under severely simplifying
assumptions – when candidate actions and observations only update a single state variable, with
a rank-1 update of the information. Nonetheless, this attempt inspired our extensive research
and in-depth formal analysis.

1.4.4 Efficient Computation in the Belief Space

The work by Kopitkov and Indelman (2017, 2019) also focused on reducing the computational
complexity of planning with high-dimensional beliefs. It showed that when relying on the in-
formation gain as an information-theoretic objective for planning, we do not need to explicitly
propagate the belief, in order to derive the objective values; instead, we can utilize the matrix
determinant lemma, to efficiently update the determinant of the initial belief’s covariance matrix.
Of course, our method does not limit the objective function used in planning, nor the type of
belief distribution (which was, in their case, strictly Gaussian).

Similarly to PIVOT, another related work (Farhi and Indelman, 2017) also considers a system-
wide view, which jointly examines both the (belief space) planning and the inference processes.
There, the authors suggested to re-use calculation from planning during the following state in-
ference sessions, when applying the selected action. We note that while our approach is meant to
mainly benefit the planning (and as a “by-product” also the state inference), the intention of that
approach is to solely benefit the inference process (as a “by-product” of the planning). Further,
while both approaches lead to a reduction in the computational effort required in inference time,
their approach requires maintenance of an external cache; in contrast, our method reaches this
goal implicitly, by simply modifying the belief representation, and with no explicit intervention
in the inference process.

1.4.5 Variable (Re)ordering

One work, by Chaves and Eustice (2016), similarly examined variable ordering in the context
of planning, to allow reuse of calculations when examining similar candidate actions or between
similar planning sessions. This scheme is conceptually different from the one presented here, as
that reordering occurs during the evaluation of the candidates (instead of it being a precursory
step), and also requires external Bayes tree caching. Also, while their results are indeed impres-
sive, that work is significantly more restricted than the one we propose here: they consider a
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problem-specific scenario (active-SLAM), while we do not; they assume a certain belief structure
(“pose graph”), a certain belief distribution (Gaussian), and certain topological properties of the
candidate paths, while we make no assumptions of this nature; they also do not account for the
possibility of multiple predicted hypotheses per candidate, while we do; and, finally, they only
consider planning with predefined control sequences, while we also allow incrementally-evaluated
policies. Besides this attempt, we are not aware of other variable ordering approaches designed
specifically for planning, as we presented here.

Nevertheless, we recognize that variable ordering tactics (or heuristic) are used extensively
in the solution of the state inference problem. Due to the equivalence between graphs and
matrices, this concern lies in the intersection of sparse matrix algebra and graph theory (as
recognized in SAM and our formulation) (Kepner and Gilbert, 2011). As explained, to solve the
inference problem, we need to find the factorized representation of the belief, given either as an
“eliminated” Bayesian network, or equivalently, the “square root matrix”R (derived from the QR
of Cholseky factorizations). The amount of non-zero entries in R, which is known as its “fill-in”,
reflects the computational cost of this factorization, and relies heavily on the (elimination) order
of state variables. Thus, to reduce this cost, we often rely on fill-reducing variable reordering.
Although finding the optimal fill-reducing order is NP-complete (Yannakakis, 1981), various
heuristics – variations of the minimum degree algorithm, such as COLAMD (Davis et al., 2004),
or graph partitioning techniques, such as nested dissection (Gilbert and Tarjan, 1986) – provide
empirically good results. Problem-specific heuristics, e.g., for SLAM (Agarwal and Olson, 2012,
Krauthausen et al., 2006), which exploit the known state topology, are also applicable.

We recall that in sequential estimation, at each time-step, we shall appropriately update the
belief factorization, in order to refine our estimate. To efficiently keep up with such updates, in-
cremental smoothing and mapping methods, such as iSAM2 Kaess et al. (2012) and SLAM++ Ila
et al. (2017), apply such fill-reducing orders incrementally, (only) on the subset of re-eliminated
variables, during the partial re-factorization. Thus, although the resulting variable order may
not be globally optimal, in sequential estimation, variable reordering is usually not applied as a
standalone procedure. It should be mentioned that in an earlier version the incremental smooth-
ing and mapping algorithm (iSAM by Kaess et al. (2008)), application of a fill-reducing order
was indeed suggested in periodic standalone steps; yet, this approach was later neglected, as it
was not cost-efficient in comparison to the incremental application of such orders during updates.
Nonetheless, we should clarify that although the suggested PIVOT order is fill-aware, it is not
intended to be fill-reducing, but only to benefit the planning process. Also, unlike such ordering
tactics, which arrange the variables according to the current belief structure, we uniquely suggest
to order the variables based on its predicted future development.

1.4.6 Modification of the Square Root Matrix

We should first clarify that the order of variables in the state should match the order of columns in
the square root matrix R (and the “coefficient matrix” J , from which it may be derived); hence,
reordering of the variables is essentially expressed as column permutation. Numerous methods
(e.g., Gill et al., 1974, Davis and Hager, 1996, Chen et al., 2008) examined the modification of R
on low-rank updates and downdates, i.e., the addition or removal of rows from/to J . However,
column permutation is not a low-rank change, making such modification methods inapplicable.

A recent work Touchette et al. (2016) tried to address a similar problem. There, the authors
provided symbolic formulas for swapping the order of two consecutive variables. They showed
that in such instance, only the corresponding pairs of rows and columns in the square root matrix
are affected, while the rest of the matrix entries remain unchanged. They then proposed to use
the formulas in a “bubble sort”-like algorithm, to apply permutations involving more variables.
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However, this method is only suitable for simple permutations, as for extensive permutations,
this “bubble sort” might require up to O(n2) swaps. The authors even declared that beyond a
certain amount of such swaps, one should simply resort back to the belief’s information matrix,
and re-apply the Cholesky factorization on the permuted matrix. Another drawback of that
approach is that every such swap requires to explicitly update all the affected elements. Thus,
for extensive permutations, some rows might be completely recalculated over and over. As to be
explained, our algorithm is built to avoid this very problem.

As we mentioned, at the arrival of new constraints, the aforementioned incremental inference
techniques (Kaess et al., 2012, Ila et al., 2017) incorporate the new constraints by performing
partial re-factorization of the belief. During this re-factorization, these methods are able to utilize
the update as an opportunity to reorder the re-eliminated variables. We may recall that we also
utilize partial re-factorization in one of the two variants of the proposed modification algorithm,
similarly to these methods; but, as to be seen, in comparison to them, our algorithm requires
re-factorization of a significantly smaller sub-matrix of J . Further, these methods are only able
to reorder a subset of the variables, starting from the first variable to receive a new constraint.
Hence, overall, we are not aware of any approaches which allow to conduct a “standalone”
modification of R on global variable reordering, without completely re-factorizing the system.

We note that, like our approach, modern “multi-frontal” implementations of the QR factor-
ization (e.g., Dellaert et al. (2005), Agullo et al. (2013)) also utilize parallelization, by applying
multiple transformations (e.g., rotations) at once. However, generally speaking, the parallel
fronts are not independent; these fronts dynamically change, and new fronts are initiated ac-
cording to the results of former transformations. Such multi-frontal implementation requires
intricate synchronization. Our algorithm, on the other hand, yields a high-level block division of
the rows, such that, by definition, there are no dependencies between the blocks, and there is no
need for communication nor synchronization among them; each block of rows can theoretically be
processed on a different machine. This approach is also bandwidth efficient, as we do not initiate
factorization on the entire matrix, but only process blocks of it at a time. Under this division,
each block can be factorized using any implementation of QR, including the aforementioned
multi-frontal ones.

1.4.7 (Probabilistic) Action Elimination

Like us, several other works examined action elimination in the context of planning and decision
making. In the work by Nakhost and Müller (2010) actions are eliminated from a constructed
plan, comprised of a sequence of actions, in order to reduce its execution complexity, but not the
planning complexity. Other works (e.g., Rosman and Ramamoorthy, 2012, Sherstov and Stone,
2005, Abel et al., 2015) discuss how to remove actions from consideration, by transferring previ-
ously learned knowledge across tasks. Our approach makes no assumption on prior knowledge,
and does not even require the decision process to be sequential.

Furthermore, one may associate the probabilistic extension of our theoretical framework with
the PAC learning framework in machine learning, which allows formal analysis of the expected
generalization error of a learning-from-samples algorithm. This theory is often used in Rein-
forcement Learning (RL) in the context of the Multi-Armed Bandit (MAB) problem. This is
essentially an “exploitation vs. exploration” problem, in which the agent needs to balance learn-
ing the reward distribution of each candidate, and exploiting the most promising one. The agent
must act (i.e., pull arms) in order to derive reward samples. Various solution algorithms for
the problem (e.g., Kakade, 2003, Strehl, 2007, Strehl et al., 2009) define rules for creating such
policies. However, we shall emphasize that online planning and RL are two different problems:
in MAB, reward samples are generated by acting in the environment. On the other hand, we
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discuss model-based planning, in which we predict each candidates’ values, by propagating the
belief into the future. Further, sampling is an inherent part of RL and the MAB problem. As
the reward models are unknown, we inherently cannot determine the optimal actions with full
confidence. We use the PAC framework to analyze the reward-learning progress. In our prob-
lem of interest, we know the reward models, thus the solution is theoretically accessible. We
rely simplifications to alleviate the expensive calculation of the candidates’ values, and use our
framework to quantify this approximation error.

Nonethless, we shall specifically mention the works by Even-Dar et al. (2006) and Mannor
and Tsitsiklis (2004), which examined action elimination and optimality guarantees in MDPs us-
ing Confidence intervals (CIs), in the context of MABs. As mentioned, we also use (confidence)
intervals in our analysis; however, we do not utilize this analysis to create sampling strategies,
but perform it descriptively, to provide guarantees regarding a returned solution. Further, these
works suggest a relatively redundant usage of the CIs: they assume that the intervals are sym-
metrically positioned around the approximated values, and that the intervals of all candidates
are of the same size. This only allows conservative derivation of guarantees and elimination, in
comparison to our analysis. Most importantly, we we did not restrict our analysis to sampling-
based intervals, as inherently done in RL (and sampling-based POMDP solvers). Our approach
intentionally and notably detaches the interval derivation and guarantee formulation. Hence, it
can potentially be used to provide guarantees for solvers that rely on other “types” of simplifi-
cation, rather than sampling, or even when planning with other objectives, such as belief-based
or risk-aware rewards.





Chapter 2

Simplified Decision Making:
A Theoretical Framework

To begin with, let us consider a decision problem P, which we formally define in Definition 1.

Definition 1. A decision problem P is a 3-tuple (ξ,A, V ), where ξ is the initial state, from
which we examine a set of candidate actions A (finite or infinite), using an objective function
V : {ξ} × A → R. Solving the problem means selecting the optimal action a∗, such that

a∗ = argmax
a∈A

V (ξ, a). (2.1)

According to our suggested solution approach, we wish to generate and solve a simplified
yet analogous decision problem Ps

.
= (ξs,As, Vs), which results in the same (or similar) action

selection, but for which the solution is more computationally efficient. This can be achieved
by altering or approximating any of the problem components – initial state, candidate actions,
or objective function – in order to alleviate the calculation of the candidates’ objective val-
ues. Nonetheless, approximating each of these components represents a different simplification
approach. For example, there is a logical difference between simplifying the initial state (i.e.,
examining different states under the same objective function), and simplifying the objective func-
tion (i.e., examining the same state under different objectives); in the first case, we would like to
maintain a certain relation between states, and in the second one, a relation between functions.

Next, we will introduce additional ideas to help formalize our goal, and see how these can
guide us towards designing effective simplification methods, which are guaranteed to preserve
the quality of solution.

2.1 Analyzing Simplifications

2.1.1 Simplification Loss

Examining a simplified decision problem may lead to loss in the quality of solution, when the
selected action is not the real optimal action. We can express this loss with the following
simplification quality measure:

23
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Figure 2.1: Ps is a simplified version of a decision problem P; the graphs show the objective values
of each problem’s candidate actions. (a) a∗s is the optimal action according to the simplified problem,
and a∗ is the real optimal action; the difference between the (real) objective values of these two actions is
the loss induced by the simplification. (b) The offset measures the maximal difference between respective
objective values from the two problems, and does not require to explicitly identify a∗/a∗s .

Definition 2. The simplification loss between a decision problem P .
= (ξ,A, V ) and its simplified

version Ps
.
= (ξs,As, Vs), due to sub-optimal action selection, is

loss(P,Ps)
.
= V (ξ, a∗)− V (ξ, a∗s),

where a∗ = argmax
a∈A

V (ξ, a), a∗s = argmax
as∈As

Vs(ξs, as). (2.2)

To put in words, this loss is the difference between the maximal objective value, attained
by applying the optimal candidate action a∗ on ξ, and the value attained by applying a∗s (the
action returned from the solution of the simplified solution) on ξ. This idea is illustrated in
Fig. 2.1a. We implicitly assume that the original objective function V can accept actions from
the simplified set of candidates As. When the solutions to the problems agree loss(P,Ps) = 0.

Most often it is indeed possible to settle for simplified decision problem formulation (which
can lead to a sub-optimal action), in order to reduce the complexity of action selection; though,
it is important to quantify and bound the potential loss, before applying the selected action, in
order to guarantee that this solution can be relied on.

2.1.2 Simplification Offset

To asses the simplification loss, we suggest to identify the simplification offset, which acts as an
intuitive “distance” measure in the space of decision problems:

Definition 3. The simplification offset of a candidate a ∈ A, between a decision problem
P .

= (ξ,A, V ), and its simplified version Ps
.
= (ξs,A, Vs) is

δ(P,Ps, a)
.
= |V (ξ, a)− Vs(ξs, a)|. (2.3)

Overall, the simplification offset between P and Ps is

∆(P,Ps)
.
= max

a∈A
{δ(P,Ps, a)} . (2.4)



2.1. ANALYZING SIMPLIFICATIONS 25

Unlike the loss, the offset (which is illustrated in Fig. 2.1b) measures the maximal difference
between respective objective values from the two problems, and does not require to explicitly
identify the optimal actions. This means that the offset, in contrast to the loss, is a property of
the simplification method, and does not depend on the solution of P or Ps. It can thus potentially
be examined without solving either of the problems, nor calculating V or Vs, as we shall see.
Further, from the properties of the absolute value, it is easy to infer that the offset is a valid
metric (a distance measure) between decision problems. Intuitively, this means that when the
offset between a problem and its simplification is small, then the induced loss should also be
small, and the action selection should stay “similar”.

For each candidate a ∈ A, the offset also represents an interval for the real value V (ξ, a),
around the respective approximated value Vs(ξs, a), in which it must lie, i.e.:

Vs(ξs, a)− δ(P,Ps, a) ≤ V (ξ, a) ≤ Vs(ξs, a) + δ(P,Ps, a) (2.5)

Notably, the offset represents only the size of this interval, and not its location on the value axis
(around Vs(ξs, a)); this is demonstrated in Fig. 2.2a.

Asymmetric Simplification Offset

Surely, when the offset is zero, so is the loss; yet, this statement is not always true the other way
around. This practically means that restricting the offset is a more conservative requirement
than restricting the loss. To alleviate some of its conservativeness, we can generalize this basic
notion, by measuring the lower and upper offsets separately:

Definition 4. The lower and upper simplification offsets of a candidate a ∈ A, between a
decision problem P .

= (ξ,A, V ), and its simplified version Ps
.
= (ξs,A, Vs) are

δ(P,Ps, a)
.
= Vs(ξs, a)− V (ξ, a), (2.6)

δ(P,Ps, a)
.
= V (ξ, a)− Vs(ξs, a), (2.7)

respectively. Overall, the lower and upper simplification offsets between P and Ps are

∆(P,Ps)
.
= max

a∈A
{δ(P,Ps, a)}, (2.8)

∆(P,Ps)
.
= max

a∈A
{δ(P,Ps, a)}, (2.9)

respectively.

This extension surely allows us to be less conservative, and more expressive, when describing
the effect of simplification methods using the offset; e.g., if the examined simplification is known
to always over/underestimate the original objective values, then we know that the upper/lower
offset is guaranteed to be zero. Also, this time, for each action a ∈ A, the combination of the
lower and upper offset conveys (the size of) an asymmetric interval for the real value V (ξ, a),
around the respective approximated value Vs(ξs, a), such that

Vs(ξs, a)− δ(P,Ps, a) ≤ V (ξ, a) ≤ Vs(ξs, a) + δ(P,Ps, a). (2.10)

We hence loosely refer to this idea as the “asymmetric offset” (as demonstrated in Fig. 2.2b).
In the following sections, we will demonstrate how we can utilize the offset to infer loss

guarantees, through interval overlap analysis (Fig. 2.2c). Note that when defining the offset, we
implicitly considered that the two problems examine the same set of candidate actions; this will
be valid from now on, unless stated otherwise. Also, for brevity, we will no longer write the
initial state as input to V /Vs, nor V, Vs as input to δ/∆, whenever the context is clear.
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Figure 2.2: The offset of an action a represents the size of an interval (colored range) for its value
V (ξ, a), around the simplified (approximated) value Vs(ξs, a) (black bar); through overlap analysis of
such intervals, we are able to derive loss guarantees. (a) The conservative offset ∆ represents symmetric
and equally-sized intervals for all candidates. (b) By examining the lower/upper offsets δ/δ separately,
for each action, we allow the intervals to be asymmetric and of different sizes. (c) This allows us to
derive a tightener loss bound, which is determined by the (maximal) overlap between the interval of a∗s ,
and the intervals of each of the remaining actions.

Bounding the offset

Obviously, knowing the offset exactly for every action would be equivalent to having access to
the original solution. We would thus usually rely on a bound of the offset to infer loss guarantees.
As mentioned, the offset measures the difference between respective objective values from the
original and simplified problems, and is independent of their solutions. Thus, we can evaluate
and attempt to bound the offset before solving the problem; by utilizing the general structure
of problems in our domain, and knowing how they are affected by the nominative simplification
method, we can try to infer a symbolic formula for the offset, and draw conclusions from it.
This type of analysis often allows us to draw general conclusions regarding the simplification
method, rather than a specific problem. For example, in Chapter 4, we discuss a novel belief
simplification method, used to reduce the cost of planning in the “belief space”. By symbolically
analyzing the offset (for any decision problem in this domain), we could identify the conditions
under which its value is zero, and the simplification is guaranteed to induce no loss. This idea is
later demonstrated in Section 4.3.1. Still, we note that providing completely general guarantees,
which are valid for all the decision problems in the domain, is not always possible from pure
symbolic analysis. Sometimes, to draw decisive conclusions, we must assign the properties of the
specific decision problem we wish to solve.

If we failed to reach valuable conclusions from such “pre-solution” symbolic analysis of the
offset, we can try to bound it “post-solution”, by utilizing the calculated (simplified) values, and
(any) known bounds, or limits, for the real objective values; these limits should be selected based
on domain knowledge of the specific problem. Then, the following can be easily derived from the
definition of the simplification loss:

δ(a) ≤ Vs(ξs, a)− LB {V (ξ, a)} , (2.11)

δ(a) ≤ UB {V (ξ, a)} − Vs(ξs, a), (2.12)

where LB,UB stand for lower and upper bounds, respectively. We demonstrate how to practically
utilize this idea in Section 4.3.2.
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2.2 From Offset to Loss Guarantees & Action Elimination

As discussed, our goal is to guarantee that relying on a certain simplification would not induce
more than the acceptable loss. As with the offset, bounding the loss can be done on two occasions:
(i) pre-solution evaluation – this type of analysis occurs before solving the simplified problem
(based on the availability of “symbolic” offset bounds); and (ii) post-solution evaluation
– which occurs after solving the simplified problem (but before applying the selected action).
Surely, we prefer to know if the simplified solution would be worthwhile before investing in it;
for example, we may consider the case where action execution is costly (as measured with the
objective function), and beyond a certain loss, improving the decision making efficiency is not
worth the execution of a sub-optimal action. Nonetheless, post-solution guarantees are typically
tighter, as we can also rely on the calculated values.

The notion of offset allow us to seamlessly derive both types of guarantees, and easily improve
them when refining the solution, or given access to new information.

2.2.1 Post-Solution Loss Guarantees

For a coherent flow, let us first focus on deriving “post-solution” guarantees. Thus, assume we
have indeed solved the simplified problem Ps (i.e., calculated Vs(a), ∀a ∈ A), and now, before
applying the selected action, want to provide guarantees for the loss potentially induced by this
solution. As we recall, in our context, the loss is defined as: V (a∗)− V (a∗s), where a∗s is the
selected candidate. Surely, we do not have access to the real values, but let us consider that for
each a ∈ A, we know its (asymmetric) offset, δ(a)/δ(a), and, by such, the interval in which V (a)
lies (as defined in (2.10)). Given this knowledge, we wish to bound the loss of the solution.

By definition, the “highest” interval, i.e., the one located around the maximal Vs(a), corre-
sponds to the selected candidate a∗s (otherwise, it would not have been selected).

Now, let us assume the real optimal candidate a∗ is not actually the selected candidate a∗s,
but another candidate a. From the definition of the offset we know that

V (a∗s) ≥ Vs(a∗s)− δ(a∗s) (2.13)

V (a) ≤ Vs(a) + δ(a) (2.14)

Note that unlike before, these are the upper and lower interval limits of different candidates.
When the two inequalities hold simultaneously, we can infer that:

loss(P,Ps) ≤ max{εa, 0}, where εa
.
= δ(a∗s) + δ(a)−

(
Vs(a

∗
s)− Vs(a)

)
. (2.15)

As we may notice, the loss limit εa, is determined by the overlap of the interval of a, with the
interval of a∗s. Only if they overlap, i.e.,

Vs(a
∗
s)− δ(a∗s) ≤ Vs(a) + δ(a), (2.16)

then it is possible that the real value of a would be higher than this of a∗s, and we may experience
loss (εa > 0). Yet, in this case, this loss cannot be greater than the length of the overlapping
section. This is demonstrated in Fig. 2.2c. If the pair of intervals does not overlap, i.e., the
upper bound for the value of a is lower than the lower bound for the value of a∗s, i.e.,

Vs(a
∗
s)− δ(a∗s) > Vs(a) + δ(a), (2.17)
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then it implies that εa should be negative. Thus, a could not actually have been the real optimal
action in the first place, and we can infer that this candidate is guaranteed to be sub-optimal.

Surely, we do not actually know which candidate is the real optimal candidate a∗. We should
thus perform this interval overlap analysis for each candidate a 6= a∗s, assuming it is the optimal
candidate. When ∀a 6= a∗s, the pair of intervals do not overlap, it means the real value of a∗s
is higher than the value of any other action. a∗s would thus be classified as the optimal policy
also according to the original solution, and we may derive that the simplified solution optimal.
Otherwise, we may return only the most conservative guarantee:

Lemma 1.

loss(P,Ps) ≤ max{ε, 0}, where ε
.
= max
a 6=a∗s
{εa} = δ(a∗s)− Vs(a∗s) + max

a 6=a∗s

{
δ(a) + Vs(a)

)}
.

(2.18)

If we do not have access to a symbolic formula for the offset, and instead rely on the “post-
solution offset bounds” (2.11)-(2.12), this expression simplifies to:

ε ≤ max
a 6=a∗s

{UB {V (a)}} − LB {V (a∗s)} . (2.19)

Notably, this analysis allows us to understand not only what is the maximal possible loss, but
also which candidates are likely to cause it.

2.2.2 Pre-Solution Loss Guarantees

In the previous analysis we explained how to provide guarantees via post-solution analysis. Now,
assume instead that we want to perform pre-solution analysis. Thus, let us now assume that we
have access to the offset of each candidate, but not to a calculated solution. Looking back at
(2.15), we recall that the upper loss limit εa conveys the overlap of the intervals of a and a∗s.
However, now, we do not have access to the location of the intervals (around the respective Vs(a)),
as this information is only available after calculating the simplified solution. Hence, we have no
choice but be conservative, and assume the intervals are located around the same value, in order
to consider the maximal potential overlap for each pair of intervals. Meaning, we can (only) infer
that

εa ≤ δ(a∗s) + δ(a). (2.20)

From (2.18), we recall that since we did not know which action is actually a∗, in order to
provide the loss guarantee, we had to be conservative, and take the maximal εa, considering
every a 6= a∗s. Now, we also do not know which of the candidates is a∗s; we thus need to examine
the overlap between the intervals of every possible pair of candidates, i.e.,

εa′,a = δ(a′) + δ(a) (2.21)

Then, we can conservatively conclude that

loss(P,Ps) ≤ max
a′ 6=a
{εa′,a} ≤ max

a∈A
{δ(a)}+ max

a∈A
{δ(a)} ≤ ∆ + ∆. (2.22)

Indeed, since this conclusion depends only on the definition of Ps, and not on the calculated
values, we can reach this conclusion before calculating the solution. We summarize this claim in
the Lemma 2:

Lemma 2.

loss(P,Ps) ≤ ∆ + ∆ ≤ 2 ·∆ (2.23)
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From this discussion we can understand why pre-solution guarantees are always more conser-
vative than guarantees for specific solutions, which can take advantage of additional information
(the intervals’ locations and identification of the top interval). The offset intuitively allows us to
derive guarantees of both kinds.

2.2.3 Action Elimination

We explained how to use the simplification offset to bound the simplification loss. However,
sometimes, even after calculating the simplified solution and performing “post-solution” analysis,
we still cannot guarantee that the loss is below an acceptable threshold; this is especially true
when the available offset bound (i.e., interval size) is not tight enough, or the approximated
values (the location of the intervals) are too close to each other. In that case, we would have
to refine our solution and/or offset bound, by attempting to utilize a “finer” simplification, or
simply resort back to the original problem P (if no other simplification is available).

Yet, as implied beforehand, in the “post-solution” analysis, we can sometimes identify the
candidates which are guaranteed to be sub-optimal, i.e., candidates which cannot possibly be a∗.
Thus, before solving the refined (or original) problem, we shall attempt to utilize the current
solution to identify candidates which should not be evaluated anymore. In other words, we can
use the simplified solution to eliminate, or prune, sub-optimal actions.

As explained in (2.17), a candidate a can be eliminated if its interval does not overlap with
the interval of a∗s. Thus, we can formulate the following lemma:

Lemma 3. The simplified value of the optimal action a∗ must be above the following threshold(s):

τ1 ≤ τ2 ≤ τ3(a∗) ≤ Vs(a
∗), where

τ1
.
= Vs(a

∗
s)− 2 ·∆,

τ2
.
= Vs(a

∗
s)−∆−∆,

τ3(a)
.
= Vs(a

∗
s)− δ(a∗s)− δ(a).

(2.24)

An action which does not satisfy this condition is guaranteed to be sub-optimal.

Lemma 3 allows us to characterize the desired optimal candidate a∗, by providing a condition
that it must meet. Most importantly, this condition is based solely on the simplified solution and
the offset (which, as stated, can often be bounded without having to solve the original problem).
The inequality in (2.24) defines three (increasing) thresholds, τ1, τ2, τ3(a) above which Vs(a

∗),
the simplified value of the real optimal candidate action, must lie; if the simplified value of a
candidate appears below any of these thresholds, it can be eliminated. The three thresholds
differ by which “variation” of the offset they rely on: τ1 relies on the conservative symmetric
offset, taken over all actions; τ2 relies on the more expressive upper and lower offsets, taken over
all actions; and τ3(a) relies on the most expressive per-candidate upper and lower offsets. Surely,
the lower thresholds τ1, τ2 lead to the most conservative elimination; however, they can possibly
be derived more easily, since they do not require per-action evaluation. A visualization of this
concept is demonstrated in Fig. 2.3.

Sequential Elimination

This elimination process is especially useful when the simplification method (i.e., initial state
and/or value approximation) is scalable. As a rule of thumb, we consider that calculating a
rough approximation of the values (large offset) is easier than calculating a refined one (small
offset). Hence, given simplifications of different scale (with different offsets from the original
problem), one should balance between investing in minimizing the interval size, potentially lead-
ing to elimination of more actions, and faster approximation, which might lead to a more lenient
elimination.
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Figure 2.3: Using the solution of the simplified problem, we can eliminate candidate actions that
are guaranteed to be sub-optimal. First, we should calculate all the simplified values (in orange), and
infer the elimination thresholds (Lemma 3). Only actions for which the simplified value is above these
thresholds are viable candidates to be a∗; in this case, only three candidate remain (in red). We can then
refine the simplification or calculate the real value only for these non-eliminated candidates (in blue).

Sequentially refining the approximation (decreasing offset) is often the most cost-effective. In
that case, we should start with a rough simplification, and perform an elimination iteration. After
this iteration, we should try to reduce the size of the interval, using a more refined approximation
of the remaining actions’ values, and perform another elimination iteration. Each iteration would
potentially leave us with a smaller subset of candidates to select from. This way, actions which
are clearly sub-optimal are eliminated first, with minimal computational investment, and the
refined approximation is only used for the top candidates. Hopefully, after multiple iterations,
all candidates but one would be eliminated, as the interval size converges to zero.

If more than one candidate remains, and we cannot eliminate any more actions, we can either
solve the original problem considering the remaining actions, or simply return the best choice
based on the current approximation. This sequential method is summarized in Algorithm 1.
Note that whenever breaking on this anytime algorithm, the loss induced by the selected action
is still ensured to be bounded (according to Lemma 2).

Also, we should note that every iteration requires recalculation of the values according to
the new scale of approximation. Thus, if the convergence of the elimination interval is very
slow, then there is a risk that the overall solution cost might increase, due to the reevaluation
of candidates. This situation can be avoided if the approximation method allows to gradually
refine these values, instead of recalculating them “from scratch” on every iteration.

2.3 Reducing Simplification Bias

Previously, we suggested the simplification offset as a “distance measure” between decision prob-
lems, and recognized that it(s bound) can be used to bound the simplification loss. However,
this distance measure may be deceiving, as the problems may appear to be separated by a large
offset, even when the simplification induces a small loss. Specifically, this can be the case when
the simplification causes a large “bias” in the simplified objective values. In the following section
we introduce another concept, to help us handle such scenarios.
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Algorithm 1: Sequential action elimination – an “anytime” algorithm.

Inputs:
A decision problem P = (ξ,A, V )

Output:
A subset of possible candidates A′

1 A′ ← A
2 select a simplification of the initial state ξs and/or the objective function Vs, s.t. Ps = (ξs,A, Vs)

3 calculate or refine ∀a ∈ A′ its approximated value Vs(ξs, a)

4 bound or refine the simplification offset ∆(Ps,P)

// eliminate actions for which the approximated value is below the threshold

5 forall a ∈ A′ do

6 if a does not satisfy inequality (2.24) then

7 A′ ← A′/{a}

8 if |A′| = 1 or timeout then

9 return A′

10 else

11 Refine ξs and/or Vs

12 go to 3

2.3.1 Action Consistency

We point out a key observation: to solve the decision problem, we only need to sort (or rank)
the candidate actions in terms of their objective function value; changing the values themselves,
without changing the order of actions, does not change the action selection. Hence, when two
problems maintain the same order of candidate actions, their solution is equivalent. In this case,
we can simply say that the two problems are action consistent, as demonstrated in Fig. 2.4a.

Definition 5. Two decision problems, P1
.
= (ξ1,A, V1) and P2

.
= (ξ2,A, V2), are action consis-

tent, and marked P1 ' P2, if the following applies ∀ai, aj ∈ A:

V1(ξ1, ai) < V1(ξ1, aj) ⇐⇒ V2(ξ2, ai) < V2(ξ2, aj). (2.25)

If also V1 ≡ V2, we can simply say that ξ1, ξ2 are action consistent, and mark ξ1 ' ξ2.

This relation holds several interesting properties.

Lemma 4. Action consistency (') is an equivalence relation; i.e., any three decision problems
P1,P2,P3, satisfy the following properties:

1. Reflexivity: P1 ' P1.
2. Symmetry: P1 ' P2 ⇐⇒ P2 ' P1.
3. Transitivity: P1 ' P2 ∧ P2 ' P3 =⇒ P1 ' P3.

Lemma 4 implies that the entire space of decision problems is divided into separate equivalence-
classes of action consistent problems. Lemma 5 adds that we can transfer between action con-
sistent problems using monotonically increasing functions. We remind again that all proofs are
given in Appendix B.

Lemma 5.

P1 ' P2 ⇐⇒ the mapping f : V1(ξ1, a) 7→ V2(ξ2, a) is monotonically increasing. (2.26)
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Figure 2.4: (a) Each graph represents the objective values of the candidate actions of a certain decision
problem; although the values are different, all the graphs maintain the same trend among the actions,
and therefore the problems are action consistent. (b) The simplification offset ∆ between P and Ps is
the maximal difference between the values of respective actions. The offset can be reduced by utilizing
a monotonically increasing function f (here we used a constant-shift), which leads to an less biased yet
action consistent problem Pf

s .

Meaning, if the (scalar) mapping of respective objective values between the two problems
agrees with a monotonically increasing function (e.g. a constant shift, a linear transform, or a
logarithmic function), then the problems are action consistent. If this mapping is not monoton-
ically increasing, then the problems are not action consistent.

2.3.2 Unbiased Simplification Offset

The notion of action consistency can help us to achieve better guarantees when utilizing our
previously developed analysis approach. We now understand that when deriving loss bounds,
instead of examining a simplified problem Ps, we can, equivalently, examine any other problem
Pfs that is action consistent with it. Further, such a problem will necessarily be of the form
Pfs

.
= (ξs,A, f ◦ Vs), where f is monotonically increasing.
Accordingly, instead of examining the simplification offset, as considered thus far, we can

examine the unbiased offset :

Definition 6. The unbiased simplification offset between a decision problem P .
= (ξ,A, V ), and

its simplified version Ps
.
= (ξs,A, Vs) is

∆∗(P,Ps)
.
= min

{
∆(P,Pfs ) | f : R→ R is monotonically increasing ∧ Pfs

.
= (ξs,A, f ◦ Vs)

}
.

(2.27)

The unbiased offset is the minimal offset between P and any problem action consistent
with Ps. A demonstrative example appears in Fig. 2.4b. Specifically, P ' Ps, if and only if
the balanced offset is zero:

Lemma 6.

P ' Ps ⇐⇒ γ∗(P,Ps) = 0. (2.28)
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Thankfully, our previous conclusions still hold, and we can use the unbiased simplification
offset to bound the loss:

Lemma 7.
0 ≤ loss(P,Ps) ≤ 2 ·∆∗(P,Ps). (2.29)

Since ∆∗(P,Ps) ≤ ∆(P,Pfs ), for any monotonically increasing f . We can symbolically de-
velop ∆(P,Pfs ), for any such f that is convenient, in order to bound the loss; such a function
should help “counter” the effect of the simplification on the objective values. We may also
recognize that the unbiased offset satisfies the triangle inequality (like the standard offset):

Lemma 8. The balanced simplification offset satisfies the triangle inequality:

∆∗(P1,P2) + ∆∗(P2,P3) ≥ ∆∗(P1,P3). (2.30)

This property can potentially help in bounding the loss, when applying multiple simplifica-
tions. However, unlike the standard offset, the unbiased offset is scaled according to the original
objective values (like the loss), and is asymmetric in its input arguments. It is, therefore, not
considered a metric; still, the aforementioned properties, along with the obvious non-negativity,
make the unbiased offset a quasi-metric (or asymmetric metric), which induces an appropriate
topology on the space of decision problems, as explained by Künzi (2001).

Finally, in Appendix A we further extend our theoretical framework to allow derivation of
probabilistic guarantees, (e.g.) when facing probabilistic simplifications.

Related concepts We may also note that the notions of action consistency and simplification
offset are related to the concept of “rank correlation” – a scalar statistic which measures the
correlation between two ranking vectors (see Kendall, 1948). Yet, such ordinal vectors are obliv-
ious to the cardinal objective values, and, therefore, cannot be used to bound the simplification
loss. The rank correlation coefficient mostly serves for statistical analysis, as its calculation re-
quires perfect knowledge on the ranking vectors. Since the rank variables are not independent
of each other, a change or addition of a single vector entry may subsequently lead to change in
all other entries, and require complete recalculation of the correlation coefficient. On the other
hand, the concepts we introduced rely on a “local relation” between the problems: to check for
action consistency, we only examine pairs of actions at a time; and to evaluate the offset – only
pairs of respective objective values. Addition of candidates, for example, does not affect these
relations between the existing candidates. As we explain next, this locality can be utilized to
derive offset and loss bounds. It is also worth mentioning that the idea of examining only the
order of candidate actions, instead of their cardinal objective values, sometimes appears in the
context of economics under the term ordinal utility (e.g., Manski, 1988); this term, however, is
not prominent in the context of artificial intelligence.





Chapter 3

Decision Making in the Belief
Space: Problem Definition

3.1 Belief Maintenance: Graphical View

3.1.1 Probabilistic State Inference

We consider a sequential stochastic optimization process. In such a process, we wish to se-
quentially refine an estimate of a state vector of random variables, given a stream of stochastic
constraints over these variables (“factors”).

For example, in our context of mobile robots, we may consider the following system: at time-
step k, an agent at pose xk−1 transitions to pose xk, using a control uk, and then collects an
observation zk. The agent’s state Xk

.
= {x0, . . . , xk} ∪ Lk is comprised of its entire trajectory

up to that point, alongside (optionally) a collection of additional external variables Lk (such as
the positions of observed landmarks). We assume that the pose transition and the observations
comply to the following models, respectively:

xk = gk(xk−1, uk) + wk, (3.1)

zk = hk(X ok ) + vk, (3.2)

where X ok represents the subset of the state variables which were observed (“involved in the obser-
vation”); gk and hk are deterministic functions; and wk and vk are independent random variables,
representing stochastic noise. We may also assume access to prior probabilistic knowledge on
the initial pose, given as

x0 = x0 + v0, (3.3)

where x0 is an initial estimate, and v0 represents stochastic noise. Given these models, state
transitions and observations (and the prior) induce a set of probabilistic constraints among the
variables, which we refer to as factors:

fmotion
uk

(xk−1, xk)
.
= P(xk | xx−1, uk), (3.4)

fobs
zk

(X ok )
.
= P(zk | X ok ), (3.5)

fprior
x0

(x0)
.
= P(x0). (3.6)

35



36CHAPTER 3. DECISION MAKING IN THE BELIEF SPACE: PROBLEM DEFINITION

Figure 3.1: An exemplary factor graph representing the belief of a SLAM agent. The state contains
two types of variables: poses (blue nodes) and landmarks (yellow nodes). Motion and observation factors
(small black nodes) connect the variables.

At each time-step, the agent would like to maintain the posterior distribution over its state,
given the controls and observations taken until that time:

bk(Xk)
.
= P(Xk | Uk,Zk), (3.7)

where Uk
.
= {u1, . . . , uk} and Zk

.
= {z1, . . . , zk}. This high-dimensional joint distribution is

known as the agent’s belief. The estimation of this belief and its parameters is known as proba-
bilistic state inference. We can utilize Bayes’ rule and Markov assumption (“Bayesian inference”),
to represent the belief as the product of the prior, and the observation and pose likelihoods:

bk(Xk) ∝ P(x0) ·
k∏
i=1

P(xi | xi−1, ui) ·
k∏
i=1

P(zi | X ok ). (3.8)

Conveniently, this expression is exactly a multiplication of the factors defined by the afore-
mentioned models:

bk(Xk) ∝ fprior
x0

(x0) ·
k∏
i=1

fmotion
ui (xi−1, xi)

k∏
i=1

fobs
zi (X ok ) (3.9)

By looking at (3.9), instead of (3.8), we no longer explicitly consider Uk or Zk (whose values are
known); these are used implicitly to define the factors, which allow us to focus only on estimating
the (unknown) variables of interest. Further, this factorization of the belief can be represented
with a common Probabilistic Graphical Model (PGM) – the factor graph FGk

.
= (Xk ∪ Fk, Ek),

where the set of nodes is comprised of the set of state variables Xk, and the set of factors Fk;
and the undirected edges in Ek are used to connect state variables to the factors in which they
are involved. An exemplary factor graph is given in Fig. 3.1.

We are typically interested in evaluating the probabilities of different state estimates, and,
specifically, finding the maximum-a-posteriori (MAP) estimate X ∗k

.
= argmaxXk bk(Xk) (“MAP

inference”). To do so, we can re-factorize the belief bk(Xk) (from (3.9)) to a product of |Xk|
conditional factors, representing the conditional probabilities of each state variable, given (a
subset of) the other variables. This process is known as variable elimination.

While the order of state variables used in (3.9) (and the factor graph) is arbitrary, the
variable order now plays an important role, as it conveys the elimination order chosen for the
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variables. By setting a certain order, we can arrange the state variables into a state vector
Xk

.
= [Xk(1), . . . ,Xk(nk)]T , where nk

.
= |Xk| is the state size. Then, in short, this elimination

process is done as follows: we choose the first variable for elimination Xk(1), and select all
the factors in Fk, in which it is involved. Then, we shall utilize the chain rule to replace the
selected factors with two “new” factors: (a) the conditional probability of Xk(1), given all the
other variables involved in the selected factors P(Xk(1) | d(Xk(1))); and (b) a “marginal factor”

fmarginal
k,1

.
= P(d(Xk(i))), which connects all these variables (not including Xk(1)). We then

repeat this process according to the elimination order, examining at each step the remaining
factors from Fk, and the accumulated marginal factors. Finally, we shall be left with a product
of nk conditional factors:

bk(Xk) ∝
nk−1∏
i=1

P(Xk(i) | d(Xk(i))) · P(Xk(nk)), (3.10)

where d(x) denotes the set of variables x depends on (for the chosen variable order). Surely, a
variable may only depend on those which follow it according to the chosen order. Then, from this
hierarchical representation, we can derive the MAP estimate (or other marginal distributions),
by examining the variables in the reverse order.

Graphically, this factorization of the belief to conditional probabilities can be represented
with yet another PGM – a Bayesian network (“Bayes net”) BNk

.
= (Xk,Dk). In the Bayes net,

the directed edges (Dk) represent the conditional dependencies between the connected variables,
such that the edge’s destination depends on its origin. The elimination process can be seen as
building the belief’s Bayes net from its factor graph. The Bayes net, and the elimination process
are demonstrated in Fig. 3.2.

Choosing different orders for the variables has a significant influence on the resulting factor-
ization. As the Bayes net’s edges represent also indirect dependencies among the variables, it
is typically denser (i.e., has more edges) than the factor graph. Edges between variables in the
Bayes net, which did not have a connecting factor in the Factor graph, are known as “fill-in”.
The amount of fill-in reflects the computational cost of elimination, and different elimination
orders may result in vastly different fill-in, as we later review.

To clarify, any other factorization of the belief to a product of conditional probabilities, and,
specifically, the initial factorization given in (3.8), can also be represented with a Bayes net.
However, as mentioned, this network would: (1) also include nodes for the known variables (Uk
and Zk); (2) represent more than nk factors; and (3) not necessarily convey a unique order of
dependency. Such network does not serve us in the following discussion; hence, from now on,
whenever we mention “the belief’s Bayes net”, we will refer to the one matching the eliminated
representation given in (3.10).

3.1.2 Incremental State Inference

We recall that we consider a sequential problem, in which the system (i.e., sets of variables and
factors) may grow as time progresses. Hence, at the arrival of new factors, we would wish to
update the belief accordingly, and refine our estimate.

Formally, consider the initial belief bk(Xk), represented with FGk and BNk, and assume that
at time-step k+1 we wish to update the system with new factors, and possibly new state variables
(e.g., transition to a new pose). Such an update can be represented as a factor (sub-)graph,
which we wish to merge into the initial graph; i.e., FGδk+1

.
= (Xk ∪ X δk+1 ∪ Fδk+1, Eδk+1), such

that FGk+1
.
= FGk ∪ FGδk+1. Note that the set of nodes in FGδk+1 also contains the state

variables from the previous time-step k, as new factors can, of course, involve variables from
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(a) After eliminating variables x1 and l2. New “marginal” factors (in purple) might be added to the graph in
intermediate elimination steps.

(b) After elimination of all the variables.

Figure 3.2: Creating a Bayes net from the factor graph given in Fig. 3.1, by performing variable
elimination; this process depends on the elimination order, which here is chosen to be [x1, l2, x2, l1, x3, l3].
Arrows between the variable nodes represent conditional dependencies.
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the past (otherwise, the initial graph and the update would be disconnected). As mentioned,
re-observing variables from the (non-immediate) past is commonly known as “loop closing”.

Adding new factors to the belief (i.e., updating (3.9) or the matching factor graph) is trivial
when utilizing Bayes’ rule:

bk+1(Xk+1)
.
= P(Xk+1 | Uk+1,Zk+1) ∝ bk(Xk) · P(xk+1 | xk, uk) · P(zk+1 | X ok+1); (3.11)

yet, inferring the updated factorized belief representation at time k + 1 (i.e., updating (3.10)
or the matching Bayes net) is not, and requires re-elimination. Conveniently though, this can
be performed incrementally, given access to the elimination process of the belief at the previous
time-step k.

By looking at FGδk+1, we can identify the set of involved variables marked as Inv(FGδk+1):

these are the state variables which are directly involved in any of the factors Fδk+1. By definition,

all the newly added variables X δk+1 are involved, and also a certain subset of the “former” state
variables Xk. Now, assume that Xk(j) is the first variable in Xk, according to the elimination
order Xk, that is involved in any of the new factors (i.e., ∈ Inv(FGδk+1)).

According to the elimination algorithm explained before, we can conclude that starting the
elimination process with variables Xk(1) to Xk(j − 1) would be equivalent in both FGk and
FGk+1, and result in the same conditionals (and marginals factors); the addition of the new
factors would only affect the elimination of the remaining variables. So, instead of performing
full elimination of bk+1/FGk+1, we can potentially reuse the conditionals (and marginals factors)
calculated in the elimination process at time-step k, and incrementally update the factorization.
In other words, we can (re)start the elimination process from the elimination of the first involved
variable:

bk+1(Xk) ∝
j−1∏
i=1

P(Xk(i) | d(Xk(i))) ·
∏

f∈Fmarginal
k,j−1

f ·
∏

f∈Fremain
k,j−1

f ·
∏

f∈Fδk+1

f, (3.12)

where the first product contain the first j − 1 conditionals calculated at time-step k; Fmarginal
k,j

are the (remaining) marginal factors accumulated after eliminating the first j − 1 variables (at
time-step k); F remain

k,j−1 are the subset of factors Fk, which involve only variables Xk(j) to Xk(nk),

and are left for elimination after eliminating the first j − 1 variables (at time-step k); and Fδk+1

are the added factors at time-step k + 1. A graphical demonstration of this concept is provided
in Fig. 3.3. Of course, such incremental calculation requires caching of the marginal factors at
each step.

We refer to the variables which are left for re-elimination, i.e., Xk+1(j) to Xk+1(nk+1), as the
“affected variables” (by this update). Of course, to take advantage of such incremental updates,
the (elimination) order of the first j − 1 variables in Xk+1 (the “unaffected variables”) must
match the one set in Xk – otherwise, they would become affected too. Nonetheless, as we shall
later discuss, we may, and often do, “shuffle” the order of the affected variables (which, in any
case, include the new variables) during this re-elimination. It is hence sensible that the order of
variables would dynamically change over time.

We should also mention that by using more advanced graphical structures, such as the Bayes
or Junction tree (Kaess et al., 2010), it is sometimes possible to avoid re-elimination of some of
the variables we defined as “affected” (i.e., all the variables following the first involved). Since
this aspect is not essential to the discussion, we choose not to over-complicate this formulation,
and assume all affected variables are due to re-elimination.
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(a) The factor graph from Fig. 3.1, after addition of a new landmark, and a new factor (in green).

(b) We can “restart” the original elimination process from the elimination of the first involved variable (here,
x2), and add the new factors.

(c) The only variables affected by the update (in orange) are the first involved variable, and those which follow
it, according to the elimination order.

Figure 3.3: Incrementally updating the Bayes net (i.e., belief factorization) after addition of new factors
and/or variables to the factor graph.
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3.2 Belief Maintenance: Matrix View

3.2.1 Square-Root SAM

In the previous discussion we made no assumptions on the type of distributions of the probabilistic
factors. Nonetheless, a particularly interesting case, which we will focus on in this paper, is when
assuming Gaussian prior and model noise, such that

wk ∼ N (0,Wk), (3.13)

vk ∼ N (0,Vk), (3.14)

v0 ∼ N (0,V0), (3.15)

where ∀k ∈ N, Wk,Vk are the covariance matrices of the respective zero-mean Gaussian noise
variables wk,vk, and V0 is the covariance matrix of the prior over the pose x0.

Assigning Gaussian probability density functions in (3.8) yields

bk(Xk) ∝ exp

[
−1

2
‖x0 − x0‖2V0

]
·
k∏
i=1

exp

[
−1

2
‖xi − gk(xi−1, ui)‖2Wi

]

·
k∏
i=1

exp

[
−1

2
‖zk − hk(X ok )‖2Vi

]
, (3.16)

where ‖�‖Σ
.
=
√
�TΣ−1� marks the Mahalanobis distance. Then, to find the MAP estimate of

this belief at time-step k, we shall solve:

X ∗k = argmin
Xk

{
‖x0 − x0‖2V0

+

k∑
i=1

‖xi − gk(xi−1, ui)‖2Wi
+

k∑
i=1

‖zk − hk(X ok )‖2Vi

}
. (3.17)

This is a (generally non-linear) least squares problem. To solve it, if the factors are not linear,
we can utilize iterative local optimization. We begin by linearizing the non-linear functions,
by calculating their Jacobian matrices, around an initial state estimate Xk (typically the MAP
estimate from time-step k−1, with proper initialization for new variables). Note that to calculate
these Jacobians, the order of variables, which matches the order of columns in the matrices, can
no longer be arbitrary; we again use Xk to mark the state vector, which represents the order of
state variables. Given these linearized models, we can easily derive that the belief at time-step
k (from (3.16)), is also (approximately) Gaussian:

bk(Xk) ≈ N (X∗k ,Λ
−1
k ), (3.18)

where Λk is the information/precision matrix, achieved by calculating Λk
.
= JTk Jk, where

Jk≥1
.
=


J0

Jδ1
...
Jδk

 , J0
.
=
[
V
− 1

2
0 P0

]
, Jδk≥1

.
=

[
W
− 1

2

k Gk

V
− 1

2

k Hk

]
, (3.19)

g′k(xk−1, uk, xk)
.
= −xk + gk(xk−1, uk), Gk

.
= ∇|Xk

g′k, Hk
.
= ∇|Xk

hk, P0
.
= ∇|Xk

p0. and �−
1
2

marks the Cholesky factor of the matrix.
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Also, it can then be shown (as thoroughly examined by Dellaert and Kaess (2006)) that, in
this case, the MAP estimate is given as X∗k = Xk+η∗k, where η∗k – the “correction” to the initial
estimate – is achieved by solving the following system of linear equations:

Jk · ηk = ζk, (3.20)

with the Right Hand Side (RHS) vector ζk, given as

ζk≥1
.
=


ζ0

ζδ1
...
ζδk

 , ζ0
.
=
[
x0

]
, ζδk≥1

.
=

[
xk − g(xk−1, uk)
zk − h(X ok )

]
. (3.21)

After finding the solution, we may repeat the process by re-linearizing (some of) the factors
around the updated estimate, and re-solving the linear system, until sufficient convergence.

We note that since every linear constraint (i.e., row in the Jacobian matrix Jk) represents
a factor from Fk, and the order of columns in the matrix matches the variable order in Xk,
the sparsity pattern of Jk matches the structure of the factor graph FGk: looking at each
row of the matrix, entries in it are Non-Zero (NZ), if and only if the variables matching the
column-index of these entries are involved in the corresponding factor. Further, the solution
of this system is achieved by calculating the upper triangular square root information matrix
Rk, and then performing “backwards/forwards substitution” (see Golub and Loan, 1996). This
matrix is given by the Cholesky factorization (marked chol) of Λk, such that Λ

.
= Rk

TRk, or,
equivalently, the QR factorization (marked qr) of Jk, such that Jk = QkRk for an orthogonal
matrix Qk; these factorizations are visualized in Fig. 3.4.

When considering linear(ized) Gaussian models, there is a duality between the factorization
of bk(Xk) from a product of |Fk| factors, to a product of nk conditional probabilities, and the
factorization of Jk (|Fk| rows) to Rk (nk rows). Each conditional probability corresponds to
the respective row of Rk, such that the sparsity pattern of this matrix represents the Bayes net
BNk: the variable at index i is dependent on the variable at index j, if and only if Rkij is NZ.

Accordingly, NZ entries in the square root matrix Rk, which were zero entries in the in-
formation matrix Λk, are (also) known as “fill-in”. The amount of fill-in is directly related to
the computational cost of the factorization, and hence we care to minimize it. As previously
implied, this fill-in is determined by the variable (column) order, which we set in Xk. Thus,
to minimize it, we can try to reorder the state variables, and perform an appropriate pivot-
ing of the Jk’s columns. While finding the optimal fill-reducing order is NP-complete, various
heuristics – variations of the minimum degree algorithm – exist, and most prominently, COLAMD
(Davis et al., 2004). The amount of fill-in also determines the computational cost of perform-
ing back-substitution, though this cost is normally less significant than that of the factorization
itself.

QR Factorization as Variable Elimination

As we mentioned, application of the QR factorization algorithm (marked qr) decomposes a
matrix to a product of an orthogonal matrix and an upper triangular matrix (Golub and Loan,
1996). To better understand the duality between belief and matrix factorizations, let us briefly
cover a variation of this matrix factorization algorithm, which can be seen through the eyes of
variable elimination.

When calculating the factorization of Jk, we gradually build Rk from it, in ascending order
of rows. We shall first categorize blocks of rows according to the index of their leading NZ;
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that is, the column-index of the first entry on the row, in which the value is NZ. We recall that
the NZ entries represent the variables involved in the respective factor; thus, we, in fact, group
factors according to their first involved variable.Then, by applying an appropriate orthogonal
transformation on it, each block of rows (in order) is reduced to the respective row of R, repre-
senting the conditional, and possibly new rows, representing the “marginal factors”; these rows
are to be processed in the next factorization steps. Each such transformation thus represents the
elimination of the respective variable.

After going through all block of rows, the algorithm terminates, and returns Rk. This
algorithm is described in Algorithm 2, and visualized in Fig. 3.4. We use IJk{j1 : j2} to mark
the set of indices of rows of Jk, in which the leading NZ is between the j1-th and j2-th columns.
Note we often do not need to calculate the orthogonal matrix Qk explicitly; instead, we can
gradually apply the orthogonal transformations (Qblock’s) directly on the RHS vector of the
system, while factorizing the coefficient matrix. If still needed, we can form Qk from its blocks
through row-index tracking, or by simply calculating Qk = Jk ·Rk

−1.
Also note that to process each block of rows, we should actually perform an “internal” qr

step, to find the appropriate orthogonal transformation. In practicality, to simply find the square
root matrix, we could just apply qr on the entire Jacobian matrix at once (or apply chol{Λk}).
However, the essence of this qr variation is its gradual application; this gradualness allows us
to “cache” the marginal factors, and by such, return to intermediate steps in the factorization
process. This is a useful property for sequential estimation problems, as we shall explain ahead.

Algorithm 2: Gradual qr factorization with marginal factor caching.

Inputs:
J ∈ Rm×n

Output:
upper triangular factor R

marginals – a set of n matrices, each containing the marginal rows remaining after eliminating the

respective column

1 R ← zeros(n, n) ; // init. matrix

2 marginals ← {} ; // init. empty set

3 Marginal ← zeros(0, n) ; // init. empty matrix

4 for j to 1 to n do

5 {Qblock,Rblock} ← qr

{[
Marginal

A(IJ{j}, j : n)

]}
6 R(j, j : n) ← Rblock(1, 1 : end) ; // j-th row of R

7 Marginal ← Rblock(2 : end, 2 : end)

8 marginals{j} ← Marginal

3.2.2 Incremental State Inference

According to the former explanation, incorporation of new factors can be seen as adding new
linear equations to the system. Hence, to update the Jacobian matrix from time-step k, to time-
step k+1, after performing a control uk+1, and receiving an observation zk+1, we need to simply
add new rows to Jk, such that

Jk+1
.
=

[
Jk 0
−Jδk+1−

]
. (3.22)

Note that since controls and observations may introduce new variables to the state vector, its
size at time-step k, often does not match its size at time-step k + 1. In order for the columns
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Figure 3.4: Derivation of the belief’s “square root” matrix R (on the right) from its “Jacobian matrix”
J (on the left). The sparsity pattern of J matches the structure of the factor graph from Fig. 3.1;
the sparsity pattern of R matches the structure of the Bayes net from Fig. 3.2b. We may derive R by
applying the Cholesky factorization on the information matrix Λ (top center). Alternatively, we may
apply a “gradual” QR factorization on J directly (bottom center): the sub-matrix left for factorization is
marked in blue; new “marginal” rows (in purple) may be added to the matrix in intermediate factorization
steps; the sparsity pattern of the intermediate matrix matches the structure of the graph from Fig. 3.2a.

in the “old” and “new” rows to match, this addition of rows also requires proper augmentation
of Jk with zero-columns, accounting for newly introduced variables X δk+1. Adding new variables
is possible at any index in the state, as long as we make sure the placement of the augmented
columns is according to their index in the state vector Xk+1; here we assumed the new variables
were added to the end of the state.

Then, the belief at time-step k+ 1, which remains (approximately) Gaussian, is provided as:

bk+1(Xk+1) ≈ N (X∗k+1,Λ
−1
k+1), (3.23)

where
Λk+1

.
= JTk+1Jk+1 = Λ̆k + Jδk+1

T
Jδk+1 (3.24)

is the updated information matrix, and Λ̆k is the augmented prior information matrix; for
example, if new variables were added to the end of the state, this matrix would be of the
following form:

Λ̆k
.
=

(
Λk 0
0 0

)
. (3.25)

To perform MAP inference, and update our estimate, we shall re-solve the updated system,
by calculating the square root matrix Rk+1 of Λk+1. Continuing the duality between PGMs
and matrices, this matrix factorization can also be computed incrementally; i.e., Rk+1 can be
efficiently calculated using Rk, instead of calculating the factorization of Jk+1 or Λk+1 “from
scratch”. First, we should identify the index of the first NZ column in Jδk+1; we mark it as
j. According to the QR algorithm, as described before, calculation of the top j − 1 rows of
Rk and Rk+1 is equivalent, and we only need to calculate the bottom right block of Rk+1,
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Figure 3.5: Incrementally updating the square root matrix R (top left) in the addition of new Jacobian
rows (bottom left). Here, the Jacobian row has two non-zero columns (in green). We shall first recognize
the first non-zero column (here, the third column). Then, we can “restart” the previous factorization
process from the factorization of that column, add the new rows, and continue the process (center); the
sparisity pattern of this intermediate matrix matches the structure of the graph from Fig. 3.3b. The
updated square root matrix is shown on the right; the square bottom-right block, starting from the index
of the first non-zero column in the update (in orange), contains the entries affected by the update. The
sparsity pattern of this matrix matches the structure of the Bayes net from Fig. 3.3c.

starting from the j-th row/column (the “affected block”). Hence, given access to the marginal
rows accumulated after calculating the top j − 1 rows of Rk (i.e., elimination of the first j − 1
variables in time-step k), we can “restart” the factorization from that intermediate stage. Then,
to derive the remaining rows of Rk+1, we can continue with factorizing these marginal rows,
marked as Mk,j−1; the remaining un-processed rows of Jk (all rows with a leading NZ ≥ j),
marked as Jk,j ; and the “new” rows Jδk+1. Overall, Rk+1 is given as follows:

Rk+1 =

[
Rk(1 : j − 1, 1 : nk) 0

0 − qr(Ak+1(1 : end, j : end)) −

]
, where Ak+1 =

 Mk,j−1 0
Jk,j 0

− Jδk+1 −

 , (3.26)

where qr marks upper triangular matrix returned by applying the QR factorization.
This idea, which is visualized in Fig. 3.5, is utilized by state-of-the-art SAM algorithm iSAM2

(Kaess et al., 2012). Again, to take advantage of such incremental updates, the order of the
“unaffected” first j − 1 variables in Xk+1 must match the one set in Xk; i.e., the order of the
first j − 1 columns of Jk+1 must match those of Jk. It is possible, and sensible, to reorder
columns j to nk+1 of Ak+1 before continuing the re-elimination; e.g., to apply a fill-reducing
order. In this case, we also need to make sure to reorder the top j− 1 rows of Rk+1 accordingly.
Such incremental application of fill-reducing ordering tactics is likely to be inferior, in terms of
the resulting fill-in, than if we were to consider reordering of all the variables, but proves to still
be effective. To clarify, it is not possible to reorder the variables in order to make the affected
block (which is due to re-factorization) smaller.

Of course, this idea is only applicable if we cache the marginal rows (and the RHS vector)
while calculating the prior factorization, as suggested before. An alternative method, as used in
the SLAM++ algorithm (Ila et al., 2017), suggests to calculate the affected block using Cholesky
(re-)factorization, and without marginal caching. It is even possible to update Rk with Jδk+1

directly, using “QR update”, as identified in iSAM1 (Kaess et al., 2008). Though the latter two
methods are arguably easier to implement, they might lead to accumulation of fill-in in R, due
the inability to properly utilize fill-reducing ordering during such updates. After re-factorizing
the system, we shall again perform back substitution, in order to update the MAP estimate.
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3.3 Planning with High-Dimensional Beliefs

Up until now, we examined a “passive” problem, in which we cared to estimate an agent’s state,
given known actions and observations. We now wish to actively seek the next course of action
for the agent. We formulate this planning problem in compliance to the Partially Observable
Markov Decision Process (POMDP) model.

Assume the agent currently has the belief bk over its state Xk. The goal is to select (online)
the optimal policy π ∈ Π – a mapping from beliefs to actions – which, when applied T times
(“the planning horizon”), starting from bk, would maximize the expected accumulated discounted
reward (“the expected return”), as measured with the value or objective function:

V (bk, π)
.
= E
Zk+1:k+T−1

[
T∑
t=1

γt · [ρ (bk+t−1, uk+t) | π,Zk+1:k+t−1]

]
, (3.27)

where, for t ≥ 1, Zk+1:k+t−1
.
= {zk+1, . . . , zk+t−1}; uk+t = π(bk+t−1); and the belief bk+t−1 is

recursively defined as in (3.11), for a given pose transition and observation models, as defined
in (3.1)-(3.2). Note that for generality, we mark the discount factor γt ∈ [0, 1] as a function of
the index, to not force reward diminishment. We may also consider an arguably easier case, in
which we examine predefined action sequences, instead of policies. In such case, we do not need
to propagate the belief in order to determine the next action(s).

3.3.1 Reward Definition

The definition of the reward (and discount factor) must be specified by the system designer.
Most often, we are interested in maximizing a state-based reward. Thus, we can define an
immediate-reward function r(Xk+t−1, ut+1,Xk+t) to measure the reward (scalar) of moving from
state Xk+t−1 to state Xk+t, using uk+t. Then, we can measure the expected reward of applying
uk+t from bk+t−1:

ρ (bk+t−1, uk+t)
.
= E
Xk+t−1

R(Xk+t−1, uk+t), (3.28)

where

R(Xk+t−1, uk+t)
.
= E
Xk+t|Xk+t−1,uk+t

r(Xk+t−1, uk+t,Xk+t). (3.29)

Alternatively, we may care to define a belief-based reward, and perform planning in the
belief space. Then, we can define an(other) immediate-reward function r, to measure the reward
of moving from belief bk+t−1 to bk+t, using uk+t, and overall measure the expected reward of
applying uk+t from bk+t−1:

ρ (bk+t−1, uk+t) =

E
bk+t

[r (bk+t−1, uk+t, bk+t)] =

E
zk+t|Xk+t

[r (bk+t−1, uk+t, bk+t | uk+t, zk+t)]

(3.30)

Note that since for every control and/or observation, belief transition is deterministic, the ex-
pected reward is calculated by only considering the possible realizations for the observation zk+t.

Specifically, in information-theoretic belief space planning (BSP), we often wish to minimize
the uncertainty in the posterior belief. We can use the differential entropy as an uncertainty
measure, which, for a Gaussian belief b, over a state of size n, with an information matrix
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Λ = RTR, is

H (b) =
1

2
· ln
[

(2πe)
n

|Λ|

]
= −1

2
·
(

ln|R|2 − n · ln (2πe)
)

= −1

2
·

(
n∑
i=1

ln(Rii)
2 − n · ln(2πe)

)
,

(3.31)

where the subscript �ij marks the matrix element in the i-th row and j-th column.
We can thus define the following information-theoretic immediate-reward function:

r (bk+t−1, uk+t, bk+t)
.
= H(bk+t−1)−H(bk+t), (3.32)

which represents the information gain between time-steps. With no reward discounting, this
would lead to the following objective function:

Ṽ (bk, π)
.
= E
Zk+1:k+T

[H(bk)−H(bk+T | π,Zk+1:k+T )] , (3.33)

which measures the expected information gain between the current and final beliefs.

3.3.2 Predicting Observations

Evidently, to calculate the objective function, the prior belief should be propagated (updated)
according to the candidate policy. Yet, utilization of each policy may lead to different outcomes,
considering the observations received during the execution. We thus seek to calculate for each
candidate the expected return, considering different predicted hypotheses for the observation set.
In practice, when the observation space is infinite or too large to handle, we must use an empirical
estimation(s) of V for decision making, by predicting (sampling) a finite subset of hypotheses
for Zk+1:k+T (for each candidate). Surely, it is sometimes possible to approximate the return
by also sampling and propagating state particles along each predicted trajectory; however, a
“good” representation of the belief over the high-dimensional state would require an outstanding
amount of such particles, making it unfeasible. We hence focus here only on parametric belief
propagation, as extensively covered in the previous sections.

To appropriately predict observation realizations according to the generative model (i.e.,
sample them according to their likelihood), we can examine an “hypothesis tree”, for every
candidate policy, as seen in Fig. 3.6. When following a certain path from the root down to
a leaf, the policy is incrementally executed, and control actions and observations are selected
(given the latest belief) and incorporated (into that belief) in alternation. Thus, every path in
this tree represents a hypothesis – an appropriate assignment to the Markov chain Hk+1:k+T

.
=

[uk+1, zk+1, . . . , uk+T , zk+T ]. After “completing” each step, we can calculate its reward.
Beyond affecting the high cost of belief propagation in high dimensional states, the “curse of

dimensionality” also plays an important role in cost of predicting observations. Generally, if the
state is small (e.g., a single pose), or the entire state is observed each time, then we only need to
contemplate about the observation value, considering the observation stochastic noise. However,
when the observations may involve only a subset of the state variables, as we considered before,
we actually have to ask two questions before predicting each observation: “which state variables
(if any!) are observed?”, and (only then) “what is the observation value?”.

We thus need to “pass” two layers in the hypothesis tree, in order to sample an observation
in each time-step. The branching in the first layer represents variation in the topology of the
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Figure 3.6: The tree of predictable hypotheses of a policy π, starting from belief bk. Though belief
transition is deterministic, the uncertainty of the future observations leads to hypothesis branching. The
“maximum likelihood” hypothesis (in black) is single well-defined path in tree, which is inferable without
explicit belief updates.
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observation, where all observations derived from each of these branches involve the same subset
of state variables; the branching in the second layer represents variation in the observed value.
This double branching means that the breadth of the hypothesis tree can quickly “explode”
beyond our computation ability. This is especially problematic in our case, since: (1) we want
to solve the planning online; (2) for each hypothesis, we need to perform high-dimensional belief
update (and not, e.g., simple particle propagation), which is computationally demanding; and
(3) the process of (realistic) observation generation is typically not trivial; e.g., in vision-based
navigation, we would have to calculate landmark observability from our current pose (i.e., which
landmarks are in our field of view), considering multiple realizations for the state value.

Luckily, it was shown that using only a single hypothesis per candidate is often enough to
achieve sufficient accuracy, by assuming “Maximum Likelihood (ML)” observations (see Platt
et al. (2010)); it is hence a common assumption taken to practically solve the online planning
problem. According to this assumption, we should only consider the “most likely” observation
zk+t in each time-step k+ t. Such observation relies on the MAP estimate of the belief, which is,
in the Gaussian case, its mean Xk. Given this realization for the state variables, we can deter-
mine which variables would be observed (involved) X ok+t, and infer the ML observation from the
observation model. When the model noise is a zero-mean Gaussian, as considered before, this ob-
servation would simply be zML

k+t = hk+t(X ok+t). So, the “ML observations assumption” translates
every candidate policy into a specific “action and observation sequence” (i.e., a single hypothesis
Hk+1:k+T from the hypothesis tree), according to which the initial belief should be propagated.

Further, it is clear that updating the belief b−k+t (derived from the belief bk+t−1 after perform-
ing the action uk+t, but before incorporating the observation zk+t) using the ML observation
zML
k+t , would not change its MAP estimate – since we used this exact value to generate the obser-

vation. Thus, assuming the policy function depends only on the belief’s MAP estimate, the next
action to be taken uk+t+1 = π(bk+t) can be determined without calculating the updated belief
bk+t, but just using the MAP estimate of b−k+t. Also, updating bk+t’s mean, after applying the
action uk+t+1 (which has a zero-mean noise model), is done by simply calculating the noiseless
transition function: xk+t+1 = gk(xk+t, uk+t+1); thus, we can conveniently generate the next ML
observation zML

k+t+1, without actually calculating the updated belief bk+t+1. Overall, this means
that the entire “ML hypothesis” (and the posterior MAP estimate) is known in advance, before
performing any belief updates, and by only iteratively applying the deterministic transition and
overvaluation function.

3.3.3 Problem Definition

Since solving this planning problem requires to perform belief propagation considering multiple
candidates, and over long horizons, the computational cost of the solution can turn exceptionally
high. The goal of this work is to help alleviate the computational cost of this problem’s solution.
As implied, this problem is comprised of many sub-problems, e.g., candidate action generation
(or motion planning, in the case of mobile robots); proper motion and observation prediction;
reward engineering; and more. Yet, in this work we focus on the specific sub-problem of candidate
comparison, in which plainly wish to decide what is the best candidate out of a given set of
candidates, and given a certain quality measure. Thus, overall, we aim to allow efficient solution
to the following decision problem: given an initial belief bk over the state Xk, with known
transition and observation models, a set Π of candidate policies, and a chosen objective function V
(such as Ṽ ), return the optimal candidate π∗, such that

π∗ = argmax
π∈Π

V (bk, π) . (3.34)

As stated before, we mark such a decision problem with the 3-tuple P .
= (bk,Π, V ).





Chapter 4

Belief Sparsification

In Chapter 2, we examined the concept of decision problem simplification. We now wish to

practically apply this idea to the decision problem P =
(
b,Π, Ṽ

)
, which relies on the information

theoretic objective (3.33), as defined at the end of Chapter 3, to allow efficient decision making
in the belief space. As explained, in this domain, the “initial state” of the problem is actually a
belief, and the “candidate actions” are actually control policies for the agent. Here, we choose
keep the same objective function and set of candidates, and focus on simplifying the initial belief.

To evaluate the candidates and solve this problem, we are inherently required to perform
multiple updates on the (same) initial belief “in parallel”, propagating it according to various
predicted hypotheses. Hence, let b(X) mark the initial (“prior”) belief, and FG

.
= (X ∪ F , E)

mark its corresponding factor graph; in the Gaussian case, this belief is represented with the
mean vector X∗, and information matrix Λ

.
= JTJ , such that b ≈ N (X∗,Λ). Also, let H .

=
{H1, . . . ,Hm} represent the set of all predicted hypotheses (of all candidates); in the BSP case,
as we defined before, the hypotheses are of the form H

.
= [a1, z1, . . . , at, zt]. For the coherency

of the discussion, in this chapter, one can assume that each candidate policy corresponds to
one of the predefined hypotheses in H, e.g., by utilizing the “ML observations” assumption;
yet, this assumption is not essential to our suggested approach(es). This planning scenario
is later visualized in Fig. 4.5. Each hypothesis H can be matched with its own factor graph
FGδH

.
= (X ∪ X δH ∪ FδH , EδH) (“update”), containing the variables and constraints we wish to

integrate into the initial belief, and with which we wish to extend the initial factor graph, such
that FGH

.
= FG ∪ FGδH ; in the Gaussian case, each update H is matched with a matrix JδH

containing the new rows with which we want to extend the matrix J ; we refer to this matrix as
the “collective Jacobian” of the hypothesis. The posterior belief, after performing the respective
update, is marked bH .

We should note that in many problems, especially in navigation problems, the collective
Jacobians are inherently sparse, and as the state grows, involve less variables in relation to its
size. Hence, we may conclude that the cost of belief update depends mainly on the density (or
sparsity) of the initial belief, and shall be significantly lower for sparse ones. Thus, we suggest
to simplify the decision problem by considering a sparse approximation bs of the initial belief b.
To clarify, when referring to a “sparse” belief, we mean that it is represented with a sparser
factor graph, i.e., which contains less edges (and factors), in comparison to the original one; or
equivalently, in the Gaussian case, a sparser information matrix (and square root information
matrix), i.e., which contains less NZ entries.

Fig. 4.1 summarizes the paradigm of belief sparsification for efficient decision making in the
belief space; clarification regarding its steps is to follow.

51
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Identify uninvolved variables

Select a subset S of state variables to sparsify

Find a sparse approximation bs of
the initial belief using Algorithm 3

Pre-solution analysis

Calculate the objective values
for all candidates using bs

Select the “optimal” candidate

Post-solution analysis:
derive loss bounds, to guarantee the quality of solution

Apply the selected policy on the original belief b (or refine the solution)

Initial
belief b

Predicted hypothese for
each candidate policy

(“collective Jacobians”)

Figure 4.1: Belief sparsification for efficient decision making in the belief space. Essential steps are
in dark blue; optional steps, in order to provide guarantees, are in light blue. Here, candidate actions
represent control policies for the agent.

4.1 The Sparsification Algorithm: Gaussian Beliefs

For practical reasons, we start by providing an algorithm for sparsification of a Gaussian Belief
(Algorithm 3). The algorithm may receive as input, and return as output, a belief represented
using either the information matrix, or its square root. This scalable algorithm depends on a
pre-selected subset S of state variables, and wisely removes elements which correspond to these
variables from the matrix. Approximations of different degrees can be generated using different
variable selections S, as to be explained in Section 4.3.1. For a clear discussion, when S contains
all the variables, we say this is a full sparsification; using any other partial selection of variables
is a partial sparsification. Fig. 4.2 contains a visual demonstration of the algorithm steps. In
the following section (Sec. 4.2), we provide an extended probabilistic analysis of the algorithm,
using PGMs, and explain how it can also be applied to general (non-Gaussian) beliefs.

Let us break down the algorithm steps:
First, we should check if the variables are ordered properly, i.e., such that the variables we

wish to sparsify (variables in S) appear first in the state. If not, we should reorder the variables
accordingly. This requires appropriate modification of the input matrix. If the algorithm input is
the symmetric matrix Λ (line 2), we shall simply permute its rows and columns by calculating the
product P TΛP of the information matrix with an appropriate (column) permutation matrix P 1

(line 3). After this permutation, we can derive Rp, the square root matrix of the permuted

1Formal definition of the permutation matrix appears in Section 6.1.
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Algorithm 3: Scalable belief sparsification.

Inputs:

A belief b = N (X∗,Λ−1), such that Λ = RTR

A subset S of state variables to sparsify

Output:

A sparsified belief bs
.
= N (X∗,Λ−1

s ), such that Λs
.
= RT

s Rs

// reorder the state variables such that the variables in S are first in the state vector

1 P ← an appropriate (column) permutation matrix

2 if the algorithm input is Λ then

3 Λp ← P T ΛP

4 Rp ← chol(Λp)

5 else if the algorithm input is R then

6 Rp ← modify R to convey appropriate variable reordering, e.g., by applying Algorithm 6

7 Rp
s ← zero off-diagonal elements from Rp in rows matching variables in S // sparsify Rp

8 Rs ← PRp
sP

T // return to the original variable order

9 if the algorithm output is Λ then

10 Λs ← RT
s Rs // reform the information matrix

information matrix, using the Cholesky decomposition (line 4). If the algorithm input is the
matrixR (line 5), the task of variable reordering is not trivial, as trying to modifyR by permuting
its rows and columns would break its triangular shape. Instead, this task (typically) requires
re-factorization of Λ (or J) under the new variable order. Fortunately, in Chapter 6 we provide
an efficient modification algorithm forR (Algorithm 6), which is intended for this exact task, and
can spare the matrix re-factorization; we can use it to derive Rp (line 6). Note that if needed, the
“re-factorization” variant of that algorithm also allow us to properly modify the marginal factor
cache, which can be used when updating the modified matrix, as explained in Section 3.2.2.

If no reordering is required, and the algorithm input is Λ, we may directly calculate the
Cholesky decomposition (line 4); if no reordering is required, and the input is R, we may skip
directly to line 7. Specifically, when all of S is already at the beginning of the state, no reordering
is needed. This situation particularly occurs when sparsifying all the variables (i.e., full sparsi-
fication). Next, in line 7, we zero off-diagonal elements in the permuted square root matrix Rp,
in rows corresponding to variables in S, to yield the sparsified square root matrix Rp

s .
Since the prior belief should be updated according to the predicted hypotheses, the variable

order in the sparsified information matrix (or its square root) must match the variable order
in the collective Jacobians. Thus, we should reorder the variables back to their original order
(line 8). Though, we notice that after the sparsification this permutation can be performed on the
square root matrix directly, without resorting to the information matrix, and without breaking
its triangular shape, by calculating PRsP

T (note the reverse multiplication order). This claim
is formalized in Corollary 1 (and proved in Appendix B).

Corollary 1. After sparsification of the square root matrix (line 7 of Algorithm 3), permutation
of the variables back to their original order can be performed on the square root matrix directly,
without breaking its triangular shape.

Finally, we may return the sparsified belief, represented either with Rs or Λs. In the latter
case, this requires to (easily) reconstruct the sparsified information matrix from its sparsified
root (line 10). After the sparsification, the value of the NZ entries in the sparsified information
matrix may be different than the corresponding entries in the original matrix (including the
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(a) (b) (c) (d) (e) (f)

Figure 4.2: The steps of Algorithm 3 (from left-to-right), for sparsification of a Gaussian belief (shown in
Fig. 4.3a); the state variables are X

.
= [x1, l1, l2, x2, x3, l3]T (in that order), and the subset of variables

selected for sparsification is S = {x1, l2, x2} (in green). (a) The sparsity pattern of the symmetric
information matrix of belief. (b) Reordering the variables, such that all the variables in S appear
first; this is done by simply permuting the rows and columns of the matrix. (c) Calculating the upper
triangular square root matrix chol(Λp) of the permuted information matrix; each row corresponds to a
state variable. (d) Removing off-diagonal elements from rows corresponding to variables in S. (e) After
the sparsification, we may permute the variables back to their original order directly in the square root
matrix, without breaking its upper triangular shape. (f) Reforming the sparsified information matrix
Λs

.
= RT

sRs; note that the process affects the values in the matrix, and may also introduce new non-
zeros (marked in purple).

diagonal), and new NZs may be added in compensation for the removed entries (factors). Also,
note that the permutation of variables back to their original order can potentially be skipped,
by equivalently permuting the columns of all the candidate collective Jacobians, to match the
altered order.

The derivation ofRp (in line 4 or line 6), when conducted, is the costliest step of the algorithm,
which defines its maximal computational complexity; we may recall that the complexity of the
Cholesky decomposition is O(n3), at worst, where n is the state size (Hämmerlin and Hoffmann,
2012). In comparison, the computational cost of the remaining steps, i.e., matrix permutation
(lines 3 and 8), removal of matrix elements (line 7), and reconstruction of the information matrix
(line 10), is usually minor. Still, it should be noted that depending on the configuration, many
of the steps are often not necessary. For example, as mentioned, when the input matrix is
already in the desired order, the permutations can be skipped; this is specifically correct in
full sparsification. In that case, if given the square root matrix as input, the algorithm holds
an almost negligible complexity – we only need to extract the matrix’ diagonal. Also, in full
sparsification, the sparsified information matrix, if required, can be reconstructed from its root
in linear complexity, as both Rs and Λs are diagonal.

Nonetheless, we remind that the approach is meant to overall reduce the decision making
time, as the time spent on performing the sparsification (performed once) is lower than the time
saved in performing (the multiple) belief updates. For example, since full sparsification leads
to a diagonal approximation (information or its root), considering the collective Jacobians are
sparse, belief updates can be performed with an almost linear complexity. Also, since the cost
of sparsification does not depend on the number of candidates or hypotheses, as this number
grows, the relative “investment” in calculating the sparsification becomes less significant.

Fig. 4.4 shows a comparison of an information root matrix (taken from our experimental
evaluation, as to be seen) and its sparse approximations generated with Algorithm 3, for different
variable selections S.



4.2. THE SPARSIFICATION ALGORITHM: PROBABILISTIC ANALYSIS 55

(a) Factor Graph (c) Bayes Net (e) Factor Graph(d) Bayes Net(b) (Partial) Variable Elimination

Figure 4.3: Visualizing the steps of Algorithm 3 (from left-to-right), for sparsification of a general belief
with probabilistic graphical models. (a) The factor graph of the prior belief b (matching Fig. 4.2a); the
state variables are X

.
= [x1, l1, l2, x2, x3, l3]T , and the subset of variables selected for sparsification is

S = {x1, l2, x2} (circled in green). (b) Eliminating the variables in the factor graph in order to derive
the corresponding Bayes net; the figure describes an intermediate step of the elimination process, after
eliminating the variables in S: x1, l2, x2 (in this order); note the added marginal factor (in purple).
(c) The final Bayes net of b, after eliminating all the variables. (d) Removing all edges which lead to
variables in S (green arrows); this is the Bayes net describing the sparsified belief bs. (e) Reforming the
factor graph of the sparsified belief bs; variables in S are now independent, and each one is connected to a
modified prior factor (in green); the remaining variables are inter-connected with the same factors which
connected them originally (in black), alongside the marginal factors, which were added after elimination
of S (in purple).

4.2 The Sparsification Algorithm: Probabilistic Analysis

Let us analyze the suggested sparsification approach from a wider perspective, using probabilistic
graphical models, and explain its implications on general, and not necessarily Gaussian, beliefs.

As explained, a belief is constructed as a product of factors – probabilistic constraints between
variables, and can be graphically represented with a factor graph. In Fig. 4.3a, we can see an
exemplary factor graph (the same one brought in Fig. 3.1), which represents a belief b with six
variables and eight factors:

b(X) ∝ fx1
· fx1l1 · fx1l2 · fx1x2

· fx2l1 · fx2l2 · fx2x3
· fx3l3 , (4.1)

where the state X
.
= [x1, l1, l2, x2, x3, l3]T contains three poses and three landmarks, and fij is

a factor between i and j. In our example, we chose the variables for sparsification to be S =
{x1, l2, x2}. In the linear(ized) Gaussian system, the belief b can be described with an information
matrix Λ, as shown in Fig. 4.2a. Off-diagonal non-zero entries in the information matrix indicate
the existence of factors between the corresponding variables. As further explained, the belief b can
be factorized to a product of conditional probability distributions, through “variable elimination”
(see (3.10)):

b(X) ∝
5∏
i=1

P(X(i) | d(X(i))) · P(X(6)), (4.2)

where d(x) denotes the set of variables x depends on. Graphically, this elimination transforms
the factor graph into a directed Bayes net, as shown in Figs. 4.3b-4.3c.

We want to start the sparsification process with elimination of the variables in S. By doing
so, we would force conditional separation of the variables for sparsification and the remaining
variables ¬S, i.e.,

b(X) ∝ P(S | ¬S) · P(¬S). (4.3)

This means that no variable in ¬S would be conditionally dependent on a variable in S. Let us
look again at our exemplary belief (4.1), and practically perform this elimination. First, x1:

b ∝ P(x1 | x2, l1, l2) · f ′x2l1l2 · fx2l1 · fx2l2 · fx2x3
· fx3l3 . (4.4)
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Then, l2:
b ∝ P(x1 | x2, l1, l2) · P(l2 | x2, l1) · f ′x2,l1 · fx2l1 · fx2x3

· fx3l3 . (4.5)

Finally, x2:
b ∝ P(x1 | x2, l1, l2) · P(l2 | x2, l1) · P(x2 | l1, x3) · f ′x3l1 · fx3l3 . (4.6)

This partial elimination is visualized in Fig. 4.3b (and continued Fig. 4.3c). As we can see, after
elimination of variables, new “marginal” factors (f ′x2l1l2

, f ′x2,l1
, f ′x3l1

) may be introduced to the
belief, representing new links among the non-eliminated variables; in our case, after eliminating
all the sparsified variables, one marginal factor still remains: f ′x3l1

.
Practically, in the linear(ized) Gaussian system, variable elimination is equivalent to factor-

ization of Λ to its square root, and the elimination order is conveyed by the order of variables
in the state vector X. Hence why, according to Algorithm 3, we start the sparsification process
by reordering the state variables, such that all variables in S appear first; this step requires us
to permute the information matrix accordingly (as shown in Fig. 4.2b). After this permutation,
we can perform a factorization of the (permuted) information matrix Λp to its square root Rp

(Fig. 4.2c), whose sparsity pattern matches the structure of the eliminated belief’s Bayes net.
According to the next step in the algorithm, we shall now zero off-diagonal entries in Rp, in

the rows which correspond to variables in S (Fig. 4.2d). We recall that the i-th row of this square
root matrix corresponds to the i-th conditional factor in the factorization of b (the conditional
probability distribution of the i-th variable): if the off diagonal entry Rp

ij is non-zero, then
X(j) ∈ d(X(i)), and X(j) is a parent of X(i) in the Bayes net. Thus, this algorithm step can
more generally be seen as removing edges from the Bayes net (Fig. 4.3d).

By removing all the off-diagonal entries from the i-th row, we replace the conditional proba-
bility distribution with an independent probability distribution over X(i). In the Gaussian case,
this means replacing the factor

P(X(i)|d(X(i))) = N
(
µ(d(X(i))), (Rp

ii
T
Rp
ii)
−1
)

(4.7)

with
Ps(X(i))

.
= N

(
µi, (R

p
ii
T
Rp
ii)
−1
)
. (4.8)

Essentially, we fix the MAP estimate (i.e., mean) of X(i) to a constant value, which is no longer
dependent on other variables. We, of course, would like to preserve the estimate of the overall be-
lief, and therefore shall select µi = X∗i . It should be mentioned that this independent probability
distribution is not the marginal distribution over X(i), which is given as N (X∗(i),Σii).

The sparisified belief is thus given as the product

bs(X) ∝
∏
x∈S

Ps(x) · P(¬S). (4.9)

The chosen elimination order makes sure that the inner dependencies among the non-sparsified
variables remain exact. Notably, the suggested sparsification is performed by manipulating the
the Bayes net, in contrast to traditional belief sparsification methods (as we reviewed), which
perform sparsification directly on the factor graph.

Still, to understand how the factor graph of our sparsified belief looks like, let us consider
again our exemplary belief after performing partial elimination (4.6). According to the previous
analysis, in the sparsification, each of the conditional distributions on the sparsified variables is
replaced with an independent distribution. These are, in fact, unitary factors over the variables;
here, we mark those as f ′′x1

, f ′′l1 , f
′′
x2

. The sparsified belief can thus be given as a product of these
unitary factors on the sparsified variables, the marginal factors introduced after eliminating these
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variables, and the remaining non-eliminated factors (here, fx3l3). Overall, in our example, this
product is:

bs ∝ f ′′x1
· f ′′l1 · f

′′
x2
· f ′x3l1 · fx3l3 (4.10)

The factor graph matching this belief is shown in Fig. 4.3e; the matching sparsified information
matrix, which can be reconstructed from its sparsified root, is shown in Fig. 4.2f. It is hence
clear that the sparsification does not affect the elimination of the remaining variables (variables
in ¬S). Continuing the elimination process from either b (4.6) or bs (4.10) would result in the
same distribution P(¬S).

To complete the analysis, we shall note that this sparsification method does not change the
diagonal entries in the square root matrix, and, thus, the determinants of Λ and Λs remain the
same:

|Λ| = |Λp| =
∣∣∣RpTRp

∣∣∣ =

|Rp|2 =

n∏
i

(Rp
ii)

2 = |Rp
s |

2

=
∣∣∣Rp

s
TRp

s

∣∣∣ = |Λp
s | = |Λs|. (4.11)

Hence, the sparsification method preserves the overall entropy of the belief (3.31), no matter
which variables are sparsified. This is usually not guaranteed in the aforementioned traditional
sparsification methods. Still, when incorporating new factors in the future, divergence in entropy
between the original and sparsified beliefs (i.e., offset) might indeed happen. This offset depends
on the variables selected for sparsification, and can even be zero, as we shall discuss next. Since
the sparsified variables become independent, if we wish to update our estimation after applying
new actions, or after acquiring a new observation of an existing variable (i.e., loop closure),
information will no longer propagate from a sparsified variable to another variable, or vice-versa,
unless they are observed together. Though, notably, unlike simply marginalizing the sparsified
variables out of state, as done in filtering, they can still be updated in the future.

Figure 4.4: A square root matrix (taken from our experimental evaluation) and its sparse approxima-
tions generated with Algorithm 3, for different variable selections S. On the left – the original matrix; in
the center – the matrix after partial sparsification, of only the uninvolved variables (here, about half of
the variables); on the right – the matrix after full sparsification, which results in a convenient diagonal
approximation. The beliefs represented by the matrices on the left and in the center are guaranteed to
be action consistent.
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4.3 Optimality Guarantees

4.3.1 Variable Selection and Pre-Solution Guarantees

Next, we wish to present conclusions derived from symbolic evaluation of this simplification
method, as we previously suggested in our theoretical framework for simplified decision making,
in Chapter 2. In this evaluation, we utilized our knowledge on the decision problem formulation,
and on Algorithm 3, in order to derive general guarantees for the simplification loss.

Variable Selection

We remind again that according to Lemmas 1 and 2 (in Section 2.2), we can use (a bound of)
the offset between the problem and its simplification, to bound the induced loss. Thus, we shall
begin by explaining which variables should be sparsified, such that the effect on the objective
value for each candidate (i.e., the simplification offset) is minimal.

As previously defined, the involved variables in each hypothesis (update) H are defined as
the variables which are connected to at least one of the factors introduced by this update FδH .
In the Gaussian case, these are identified by NZ columns in the collective Jacobian matrix JδH ,
where each of the columns corresponds to a state variable, and every row represents a constraint;
a variable is involved if at least one of the entries in its matching column is NZ. For example,
in a navigation scenario, the landmarks we predict to observe by taking the action (along with
the current pose) are involved; variables referring to landmarks from the past, which we do not
predict to observe, are uninvolved. An illustration of this example is given in Fig. 4.5.

By definition, all the newly added variables in the update are necessarily involved; yet, in
our analysis, we only care for variables which are a part of the prior state, i.e. ⊆ X . For each
hypothesis H, we mark the subset of involved prior-state variables as InvX (H). The remaining
variables are uninvolved in this update, and marked ¬InvX (H). Accordingly, the variables which
are involved in at least one update H ∈ H are marked InvX (H), and the variables which are
uninvolved in any of the updates are marked ¬InvX (H). We use the subscript X, instead of X ,
to refer to the respective subset of variables, ordered according to the variables’ index in X.

We claim that for any predicted hypothesis, sparsifying its uninvolved variables from the prior
belief b, before updating it, does not affect the posterior entropy (which defines our objective
function Ṽ ). Hence, for a set of candidate policies Π, we can sparsify from the prior belief all
variables which are uninvolved in any of the hypotheses predicted (for the candidates), and use
this sparsified belief bs to compute the objective function, without affecting its values. Specif-
ically, this means that the simplification offset is zero, and that this sparsified belief is action
consistent with the original one: b ' bs. This claim is formally expressed in Theorem 1. A proof
for this claim is given in Appendix B.

Theorem 1. Consider a decision problem P .
=
(
b,Π, Ṽ

)
, where b is a (Gaussian) initial belief,

and Ṽ is the information-theoretic objective function from (3.33). Considering a set S of state
variables, which are uninvolved in any of the (hypotheses predicted for the) candidates in Π,

Algorithm 3 returns a belief bs, such that ∆(P,Ps) = 0, where Ps
.
=
(
bs,Π, Ṽ

)
.

Since sparsifying uninvolved variables does not affect the objective values, when they can be
identified, they should always be included in the set S of variables for sparsification. As explained
in Section 3.3.2, when assuming ML observations, the entire predicted hypotheses, and, by such,
the variable classification (un/involved) can be determined in advance. We emphasize that since
this is a planning problem, the variable classification is determined based on our prediction,
which can only be based on our current belief, and not the ground truth (as it is unknown).
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Figure 4.5: An exemplary factor graph representing an “active-SLAM” planning scenario. The factor
graph from Fig. 3.1 represents the initial belief. At time of planning, the agent is at pose x3, and wishes
to infer which of the candidate paths Π = {left, right} is the optimal one. For each candidate we predict
a certain hypothesis for the future. If taking the right path, the agent predicts augmenting its state
with two new poses xright

4 , xright
5 , with motion factors connecting them to the current pose; based on its

current state estimation, it also predicts observing landmark l3 from xright
4 (i.e., adding an observation

factor between l3 and the new pose). The variables (from the prior state) involved with this action are
those directly connected to any of the predicted new factors – x3, l3. If taking the left path, the agent
predicts augmenting its state with two new poses xleft

4 , xleft
5 , and observing landmark l1 from xleft

4 . The
variables involved with this action are x3, l1. The involved variables (in any of the actions) are marked
with black circles. Note that x1, x2, l2 are never involved; these are marked with dark green circles. To
solve the problem, we shall update the initial belief, according to each of these hypotheses.

In general, only a single sparsification process should be conducted for each decision problem
(i.e., planning session), regardless of the number of candidate actions. Selecting variables which
are uninvolved in any of the hypotheses allows to keep action consistency considering the entire set
of candidates. Still, it is possible to break the set of hypotheses to several subsets of similar ones,
and consider the uninvolved variables in each subset. For each subset we would create a custom
prior approximation, and use it to when updating the belief according to that hypothesis. This
can result in a more adapted sparsification for each subset. Yet, calculation of the sparsification
itself has a cost, which needs to be considered when trying to achieve the best performance.

Surely, we may consider multiple predicted hypotheses for each candidate, each determining
its own set of involved variables. However, in that case, as we recall, the prediction and variable
classification might not be fully accessible in advance. Then, if we wish to still rely on Theorem 1,
and guarantee action consistency, it is possible to consider a “gradual” simplification, as the
candidate policies are incrementally evaluated. This approach is explained in depth later in
this thesis, in the context of another suggested simplification method – PIVOT (in Section 5.2).
Nonetheless, it is surely possible to forfeit this “zero offset” guarantee, and sparsify involved
variables, or variables with an undetermined classification. Intuitively, selecting more involved
variables to S results in a sparser approximation, and improved performance, but potentially a
larger divergence (offset) from the original objective values.
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Pre-Solution Guarantees for Rank-1 Updates

We proved that sparsification of the uninvolved variables always results in zero offset, and hence
zero loss. Now, we show that under additional restrictions, we can symbolically derive offset
(and loss) bounds also when sparsifying involved variables; these bounds are only applicable for
“rank-1” updates, i.e., when the updates’ collective Jacobians are limited to a single row.

Assume that for a candidate π ∈ Π we derived a (single) hypothesis, for which the corre-
sponding collective Jacobian is the row vector U ∈ R1×N . This can be the case, for example,
in sensor placement problems with scalar measurements (like temperature). Now, let us analyze
the simplification offset2:

δ(P,Ps, π) = (4.12)∣∣∣Ṽ (b, π)− Ṽ (bs, π)
∣∣∣ = (4.13)∣∣ln∣∣Λ +UTU

∣∣− ln
∣∣Λs +UTU

∣∣∣∣ = (4.14)

(Matrix determinant lemma (see Harville, 1998))

|ln
(
|Λ| ·

(
1 +UΛ−1UT

))
− ln

(
|Λs| ·

(
1 +UΛ−1

s U
T
))
| = (4.15)

(from (4.11))∣∣ln (1 +UΛ−1UT
)
− ln

(
1 +UΛ−1

s U
T
)∣∣ = (4.16)

|ln
(
1 +UΛ−1

s U
T +U(Λ−1 −Λ−1

s )UT
)
− ln

(
1 +UΛ−1

s U
T
)
| = (?) (4.17)

The logarithm is a monotonously increasing concave function; thus, every a, b ∈ R and c ≥ 0
satisfy

|ln(a)− ln(b)| ≥ |ln(a+ c)− ln(b+ c)|. (4.18)

In other words, the difference in the function value between a pair of inputs decreases, when the
inputs equally grow. Surely, 0 ≤ UΛ−1

s U
T , since Λ−1

s is positive semi-definite. Thus, we may
choose a = 1 +U(Λ−1 −Λ−1

s )UT , b = 1, and c = UΛ−1
s U

T . Therefore,

(?) ≤
∣∣ln (1 +U(Λ−1 −Λ−1

s )UT
)
− ln (1)

∣∣ = (4.19)∣∣ln (1 +U(Λ−1 −Λ−1
s )UT

)∣∣ ≤ (4.20)∣∣∣∣∣∣ln
1 + α ·

∑
i,j∈InvX (π)

(Λ−1 −Λ−1
s )ij

∣∣∣∣∣∣, (4.21)

where InvX (π) is the set of variables involved in (the hypothesis for) π, and the scalar α complies
to α ≥ maxiU(i)2. We recall that X(i) is uninvolved in the hypothesis ⇐⇒ U(i) = 0.
Thus, we can easily consider additional hypotheses for π, and update this bound, by considering
the involved variables, and the maximal value for α, among all the hypotheses. Further, by
considering the involved variables and the maximal value of α, among the hypotheses of all
candidates, this bound becomes independent of any specific action, and only a single expression
needs to be calculated. Overall, we can conclude the following bound on the offset:

∆(P,Ps) ≤

∣∣∣∣∣∣ln
1 + α ·

∑
i,j∈InvX (Π)

(Λ−1 −Λ−1
s )ij

∣∣∣∣∣∣. (4.22)

2For ease of writing, we will not explicitly mark matrix augmentation, whenever the context is clear
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As we may notice, this symbolic bound depends on the initial belief of the original and
simplified problems, yet not on their solution; it hence can be utilized before actually solving the
problem. When calculating this bound, we considered only single-row collective Jacobians, but
otherwise arbitrary. Guaranteed action consistency for the case of single-row Jacobians, which
are also limited to a single non-zero entry, was previously shown by Indelman (2016).

4.3.2 Post-Solution Guarantees

For a more general scenario, when sparsifying involved variables, and with actions possibly having
multi-row collective Jacobians, we can try to bound the loss by performing post-solution analysis,
as discussed in Section 2.2. Unlike before, such guarantees are derived after solving the simplified
problem (but before applying the selected action). As explained in Section 2.1.2, we can utilize
the calculated (simplified) objective values, and domain-specific lower and upper bounds of the
objective function (LB,UB, respectively), to yield offset bounds (2.11)-(2.12); from these offset
bounds, we can then easily derive loss bounds (2.19).

Let us provide a couple of examples for the derivation of LB and UB. Note that we will again
assume that π corresponds to a single hypothesis. If this is not the case, we can simply calculate
the bounds for every hypothesis, and take the most conservative bound among those.

Using Topological Properties

As our decision problem domain relies on beliefs, which, as we know, can be represented with
factor graphs, we can potentially exploit their topological properties to derive the desired bounds.

For example, we can utilize conclusions from a recent work by Kitanov and Indelman (2019),
which extends a previous work by Khosoussi et al. (2018). There, the following bounds on the
information gain were proved, for when the corresponding factor graph contains only the agent’s
poses, and each pose consists of the position and the orientation of the agent (i.e., pose-SLAM):

LBtop

{
Ṽ (b, π)

}
.
= 3 · ln t(b, π) + µ+ H(b),

UBtop

{
Ṽ (b, π)

}
.
= LBtop {J(b, π)}+

n∑
i=2

ln(di + Ψ)− ln
∣∣∣L̃∣∣∣,

(4.23)

(4.24)

where t(b, π) stands for the number of spanning trees in the factor graph of the posterior belief
(b after applying π); n marks the graph size; L̃ is the reduced Laplacian matrix of the graph; and
di’s are the node degrees corresponding to L̃. They also assume that the factors between the poses
are described with a constant diagonal noise covariance; µ and Ψ are constants which depend on
this noise model, and the posterior graph size (i.e., the length of the action sequence). In their
demonstration, they show that when the ratio between the angular variance and the position
variance is small, these bounds are empirically tight. This case can happen, for example, when
a navigation agent is equipped with a compass, which reduces the angular noise. For a detailed
derivation of these bounds please refer to Kitanov and Indelman (2019).
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Using Determinant Inequalities

For different problem domains, it is possible to use various other objective bounds in a similar
manner. For example, we present next additional bounds, which are relevant for Gaussian beliefs,
and exploit known determinant inequalities.

For the lower bound, we can use Minkowski determinant inequality, which states that for
positive semi-definite matrices M1,M2 ∈ RN×N

|M1 +M2|
1
N ≥ |M1|

1
N + |M2|

1
N , (4.25)

ln|M1 +M2| ≥ N · ln
(
|M1|

1
N + |M2|

1
N

)
. (4.26)

Let us assign M1
.
= Λ and M2

.
= Jδπ

T
Jδπ, where Jδπ marks the collective Jacobian of (the

hypothesis for) π, where nπ is the posterior state size. When Jδπ
T
Jδπ is not a full rank update,∣∣∣JδπTJδπ∣∣∣ = 0, and we are left with

ln
∣∣∣Λ + Jδπ

T
Jδπ

∣∣∣ ≥ ln|Λ|. (4.27)

For the upper bound, we can use Hadamard inequality, which states that for a positive semi-
definite matrix M ∈ RN×N

|M | ≤
N∏
i=1

(M)ii. (4.28)

Let us assign M
.
= Λ + Jδπ

T
Jδπ; then∣∣∣Λ + Jδπ

T
Jδπ

∣∣∣ ≤ nπ∏
i=1

(Λ + Jδπ
T
Jδπ)ii, (4.29)

ln
∣∣∣Λ + Jδπ

T
Jδπ

∣∣∣ ≤ nπ∑
i=1

ln[(Λ + Jδπ
T
Jδπ)ii]. (4.30)

Overall, by assigning this expressions in the objective function (3.33), we may conclude the
following bounds:

LBdet

{
Ṽ (b, π)

}
.
=

1

2
(ln|Λ| −N · ln(2πe)) + H(b),

UBdet

{
Ṽ (b, π)

}
.
=

1

2

(
nπ∑
i=1

ln[(Λ + Jδπ
T
Jδπ)ii]− nπ · ln(2πe)

)
+ H(b),

(4.31)

(4.32)

where Λ is the information matrix of b, Jδπ is the collective Jacobian of π, and nπ is the posterior
state size.

Unlike the topological bounds, these bounds are extremely general, as they make no assump-
tions on the state structure nor actions, besides the standard problem formulation. As expected,
this advantage comes at the expense of tightness. Nonetheless, they may especially be useful
when the matrix Λ is diagonally dominant.
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Figure 4.6: A Pioneer 3-AT robot in the simulated indoor environment. The robot is equipped with a
lidar sensor, Hokuyo UST-10LX, as visible on top of it.

4.4 Experimental Evaluation

Next, we demonstrate the advantages of the solution approach, and present an in-depth analysis
of it, in a highly realistic active-SLAM simulation.

4.4.1 Simulation Overview

In this simulation, a ground robot autonomously navigates through a sequence of goal points in
an unknown indoor environment. We used the Gazebo simulation engine (Koenig and Howard,
2004) to simulate the environment and the robot (Pioneer 3-AT), which is equipped with a lidar
sensor (Hokuyo UST-10LX), providing point-cloud observations; these components can be seen in
Fig. 4.6. A grid-based map of the environment is incrementally approximated by the robot from
the scans during the navigation. Robot Operating System (ROS) is used to run and coordinate
the system components – state inference, decision making, sensing, etc.

The robot’s state Xk
.
= {x0, . . . , xk} consists of discretized poses kept along its entire executed

trajectory. Its belief over this trajectory is represented as a factor graph, and maintained using
the GTSAM C++ library (Dellaert, 2012). Each pose xk consists of three variables, representing
the 2D position and the orientation (in a global coordinate frame). The robot’s initial location is
provided to it as a prior factor over x0 (with white Gaussian noise). After passing a set distance,
a new pose is added to the state, and a lidar scan (in a range of approximately 30 meters) is
taken. A motion constraint (pose transition factor), with white Gaussian noise, matching the real
hardware’s specs, is added between the new pose and the previous one. The observed point-cloud
is then matched to scans taken from key past poses using ICP matching (Besl and McKay, 1992).
If a match is found, a Gaussian loop closure constraint (factor) is added between these poses.
After adding the new motion and observation constraints, the agent incrementally updates its
belief and state estimate; we refer to this belief update process as a “state inference session”. It
is important to explicitly mention that despite examining a 2D navigation scenario, and relying
on the “pose-SLAM” paradigm, our suggested approach does not impose any restrictions on the
pose size nor on the state structure.

To initiate the simulation, and build a rudimentary map, the robot is set to follow a short
predefined path, given as a sequence of way-points. To follow a desired path, the robot uses a
“pure pursuit” controller Coulter (1992), which yields an appropriate sequence of control actions,
based on the robot’s estimated position (the mean of the belief).
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Figure 4.7: The entire indoor environment from a top view. Walls are colored in light blue. The PRM
graph, from which trajectories are built, is colored in red and green. Each square on the map represents
a 1m×1m square in reality.

4.4.2 Planning

After completing the initial predefined path, the robot is tasked to safely go through a a sequence
of goal points in the environment; the robot should autonomously plan its path.

Based on its latest belief b (with a matching factor graph FG), the robot performs a “planning
session”, towards the first goal. It begins by generating a set Π of twenty collision-free candidate
paths (sequences of way-points) from its current estimated location to the goal: it starts by
executing the Probabilistic RoadMap (PRM) algorithm (Kavraki et al., 1996) to sample the
map, and then executes the K-diverse-paths algorithm (Voss et al., 2015) on the sampled PRM
graph, to return a set of topologically diverse paths. The full indoor map is unknown to the
robot, and it is incrementally approximated by it using the scans during the navigation. We
do, however, rely on the full and exact map to produce collison-free candidate trajectories. This
usage of the map is irrelevant to the demonstration, since, in our formulation, we consider the
candidate actions are given. The complete indoor map is shown in Fig. 4.7, with the sampled
PRM graph on it.

We wish to select the safest (i.e., most “informative”) path to the goal. To evaluate and
compare the “safety” of taking each path, we use the previously-defined belief-based information-
theoretic objective function Ṽ (3.33), which conveys the expected posterior belief entropy (un-
certainty over the trajectory). As explained, to evaluate this function, we shall predict the future
belief development for each candidate, if we choose to follow it. Surely, when executing a path
which passes through a previously explored area, certain loop closures would be added to the
belief, reducing its uncertainty; hence, taking different paths might lead to different loop clo-
sures, different posterior entropy, and different objective values. For tractability, we evaluate
each candidate by predicting only a single future hypothesis, as explained in Sec. 3.3.2. Hence,
each candidate path π ∈ Π is pre-matched with a single factor graph FGδπ, containing the factors
and poses to be added to the prior belief graph FG, after following the path.

For each candidate, loop closure factors are predicted between future and past poses, simply if
their estimated location is within a close range (i.e., where we expect to add them when following
this path); thus, we do not need to predict the raw laser scans, but only which poses would be
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connected with a factor. The observed value, i.e., the transformation between these poses, is
determined according to the ML observation assumption, i.e., the transformation between the
estimated poses. After updating the initial belief according to each of the candidate hypotheses,
the value of each candidate is computed, and the optimal path is selected (marking the end of
this planning session), and then followed. After reaching the goal at the end of the selected path,
the robot conducts a new planning session, towards its next goal, until all goals are reached.
Meaning, the robot conducts a series of planning sessions, which are separated by sequences of
state inference sessions.

4.4.3 Utilizing Belief Sparsification

To evaluate our method, in each planning session, we solved three decision problems, with each
problem relying on another version of the initial belief. The robot’s original initial belief accounts
for the trajectory of poses executed up to that point (the entire inferred state). The other two
versions are generated by sparsifying the original belief using Algorithm 3 – one considering
partial sparsification, and one considering full sparsification. Overall, in each session, the three
configurations of the decision problem are as follows:

1. P =
(
b,Π, Ṽ

)
– the original decision problem;

2. Pinvolved =
(
binvolved,Π, Ṽ

)
– after sparsification of the uninvolved variables, which is guar-

anteed to yield an action consistent problem. We remind again that uninvolved variables
correspond to columns of zeros in the collective Jacobians.

3. Pdiagonal =
(
bdiagonal,Π, Ṽ

)
– after sparsification of all variables, leading to a diagonal

information matrix, but not necessarily action consistent.

For each configuration, we measured the objective function calculation time per candidate
(which includes the proper belief update), along with the one-time calculation of the sparsification
itself for the latter two. For a fair comparison, we chose to the detach the timing of the belief
update and sparsification processes from any framework-specific implementation overhead. As
explained in Section 3.2, since the system is Gaussian, the belief update process can actually be
seen as updating the square root information matrix, using new Jacobian rows, representing new
factors. Thus, from our GTSAM implementation, at each planning session, we extracted the
square root matrix R of the initial belief, and each candidate’s “collective Jacobian” matrix Jδπ.
Then, using Algorithm 3, we created the two sparsified versions of the prior matrix, Rinvolved

and Rdiagonal, as detailed before. For each version of the prior square root matrix, and for each
candidate, we performed (and timed) an incremental update of the matrix, using the standard
MATLAB implementation of “qr update” (in agreement with the iSAM algorithm (Kaess et al.,
2008))3; we could then easily extract the determinant of these triangular matrices, and calculate
the objective values. Throughout the process, the variables (poses) maintained the order by
which they were added to the state, and were not explicitly reordered.

On the whole, in each planning session, we measure the total decision making time for each
of the three configurations. At the end of each session, we applied the action selected by con-
figuration 1. Of course, in a real application we would only solve the problem using a single
configuration; here we present a comparison of the results for different configurations. We also
did not invest in smart selection of variables for sparsification, as even full sparsification achieved
very accurate results.

3Since the calculated posterior matrices are discarded after each planning session, we did not care here to
maintain their sparsity (by performing the update via partial re-factorization).
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Table 4.1: Numerical summary for all sessions. “Uninvolved var. ratio” represents the percentage of
uninvolved variables in the prior state. “Run-time” represents the reduction in decision making time in
the specified configuration, in comparison to the original problem. “NNZ” represents the reduction in the
number of non-zero entries in the prior square root matrix, after using the sparsification. “Sparsification
time” represents the cost of this one-time calculation, out of the entire problem run-time.

Session |X | Pinvolved Pdiagonal
Uninvolved
var. ratio

Run-time Sparsifica-
tion time

Non zeros Run-time Sparsifica-
tion time

NNZ

1 567 46% -23% 3% -76% -55% 1% -97%
2 762 74% -34% 4% -77% -67% 1% -98%
3 1182 60% -66% 1% -83% -85% 1% -99%
4 1269 69% -70% 2% -86% -86% 2% -99%
5 1341 65% -67% 2% -84% -82% 2% -99%
6 1392 44% -52% <1% -61% -80% <1% -99%

4.4.4 Results

In this section we present and analyze the results from a sequence of six planning sessions.
Each of the Figs. 4.8-4.12 showcase a summary of one of the planning sessions; these summaries
include several components:

(a) A screenshot of the scenario, which includes: the estimated map (blue occupancy grid);
the current estimated position (yellow arrow-head) and goal (yellow circle); the trajectory taken
up to that time-step (thin green line); the candidate trajectories from the current position to the
goal (thick lines in various colors); and the selected trajectory (highlighted in bright green).

(b) A comparison of the objective function values of the candidate paths, considering each of
the versions of the initial belief: P with the original belief in red; Pinvolved after sparsification of
the uninvolved variables in blue; and Pdiagonal after sparsification of all the variables in green.
For scale, the values are presented in relation to the prior differential entropy, before applying
any action. This prior value is not affected by the sparsification, and is the same for the three
configurations (according to (4.11)).

(c) A comparison of the the solution time for the three decision problems: P in red, Pinvolved

in blue, and Pdiagonal in green. The highlighted parts of the blue and green bars mark the cost
of the sparsification calculation out of the total solution time.

(d) A comparison of the three versions of the upper triangular square root matrixR,Rinvolved,
and Rdiagonal. The figures showcase the NZ entries in each matrix, i.e., their sparsity pattern.

(e) The sparsity pattern of the collective Jacobians of the examined hypotheses. Again,
uninvolved variables (in each hypothesis) are identified by columns of zeros in the Jacobian.

For the first and last sessions we provide an in-depth inspection, including all the components.
Since the structure of the belief and Jacobians in all the sessions is similar, for the intermediate
sessions we only present a summarized version, with components (a)-(c). The square root ma-
trix and its approximations, given previously in Fig. 4.4, are extracted from the third session.
Additionally, the numerical data shown in the figures is summarized in Table 4.1. Further data
regarding the loss is later given in Table 4.2.
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(a) The scenario: estimated map (blue occupancy grid);
the current estimated position (yellow arrow-head) and
goal (yellow circle); the executed trajectory (thin green
line); the candidate trajectories from the current posi-
tion to the goal (thick lines in various colors); and the
selected trajectory (highlighted in bright green).
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(d) Original prior information root matrix and its
sparse approximations.
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(e) Collective Jacobians of the candidate trajectories.

Figure 4.8: Results of planning session #1.

(a) The scenario.
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Figure 4.9: Results of planning session #2

(a) The scenario.
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Figure 4.10: Results of planning session #3
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(a) The scenario.

Candidate Trajectory
2250

2300

2350

2400

2450

2500

O
b
je

c
ti
v
e
 V

a
lu

e

(b) Objective value comparison.

0

1.0

2.0

3.0

R
u
n
-t

im
e

(c) Run-time.

Figure 4.11: Results of planning session #4

(a) The scenario.
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Figure 4.12: Results of planning session #5

(a) The scenario: estimated map (blue occupancy grid);
the current estimated position (yellow arrow-head) and
goal (yellow circle); the executed trajectory (thin green
line); the candidate trajectories from the current posi-
tion to the goal (thick lines in various colors); and the
selected trajectory (highlighted in bright green).
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(e) Collective Jacobians of the candidate trajectories.

Figure 4.13: Results of planning session #6.
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Efficiency

As expected, the sparsification leads to a significant reduction in decision making time. The
simplified problem Pdiagonal consistently achieves the best performance, followed by Pinvolved,
while both are vastly more efficient than the original problem P. Surely, a higher degree of
sparsification (S containing more variables) leads to a greater improvement in computation
time. As discussed in Section 4.1, full sparsification of the square root matrix has a particularly
low cost – we only need to extract its diagonal. From Table 4.1 and the run-time comparison
bar diagrams, it is clear that the cost of partial sparsification is also minor in relation to the
entire decision making; in some of the diagrams, the highlighted section of the bar, which stands
for the cost of the sparsification, is hardly visible. Also, since the sparsification cost does not
depend on the number of candidate actions, the larger the set of actions is, the less significant
the sparsifcation should become.

We see a correlation between the ratio of uninvolved variables and the reduction in run-time
with Pinvolved. Variables (poses) corresponding to the executed trajectory become involved when
a loop closure factor is created between them and variables in the predicted trajectory. Hence,
the ratio of uninvolved variables represents the overlap of the predicted trajectories with the
previously executed trajectory. In session one, the executed trajectory is short, resulting in a
relatively small state size, and sparse square root matrix, since not many loop closures were
formed. As the sessions progress, the prior matrix becomes larger and denser, due to new loop
closures, as apparent in session six.

In principle, we also notice a correlation between the state size and relative improvement
in performance, for both sparsification configurations. As we may recall, updating the square
root matrix (belief factorization), has, at worst, cubical complexity in relation to the number
of affected variables. An update to a variable from the past, which appear at the beginning
of the state (e.g., a loop closure) may force us to recalculate the entire factorization, baring
this maximal computational cost. Sparsification of variables reduces the number of elements to
update, and thus should be more beneficial when handling larger and denser beliefs.

Accuracy

Alongside the undeniable improvement in efficiency, we can also examine the “quality” of the
selected candidates. According to Theorem 1, not only P and Pinvolved are action consistent,
but they produce exactly the same objective values. Hence, solving Pinvolved always leads to
the optimal action selection, and induces no loss. Pdiagonal is not necessarily action consistent
with the original problem, and therefore maintaining the same action selection is not guaranteed;
however, it is evident from Figs. 4.8-4.13 that even when sparsifying all the variables using our
algorithm, the quality of solution is maintained. Not only does the difference (offset) between the
graphs of P and Pdiagonal is slim, but they also maintain a very similar trend, leading practically
to the same action selection, and no loss. This is also evident by examining the Pearson rank
correlation coefficient ρ (which we mentioned in Section. 2.3) between the solutions of the original
and simplified decision problems. A value of ρ = 1 represents perfect correlation of the candidate
rankings (i.e., action consistency), and ρ = −1 represents exactly opposite rankings. Clearly, the
calculated coefficients, presented in Table 4.2, indicate that Pdiagonal indeed resulted in an action
consistent solution (or very close to it). We emphasize again, that regardless of the configuration,
the state inference sessions remain unchanged, as the selected action is always applied on the
original belief.
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Table 4.2: The actual loss induced by the two simplified configurations, alongside bounds on the loss
(for the diagonal configuration), for different noise models. The specified ratio for each bound represents
the ratio between the angular variance and the position variance. No bound is calculated for the other
configuration, since it is guaranteed to induce no loss. The loss and its bounds are brought as a percentage
of the maximal approximated value in that session. Also shown is Pearson rank correlation coefficient ρ.

Session ρ(P,Pinvolved) ρ(P,Pdiagonal) loss(P,Pinvolved) loss(P,Pdiagonal) Bound
“0.01:1”

Bound
“0.25:1”

Bound
“0.85:1”

1 1 0.99 0% 0% 2% 16% 46%
2 1 1 0% 0% 2% 16% 47%
3 1 1 0% 0% 1% 13% 39%
4 1 0.99 0% 0% 1% 15% 43%
5 1 1 0% 0% 1% 16% 43%
6 1 0.99 0% 0% 1% 15% 41%

Guarantees

Throughout the experiment, after each (simplified) planning session, it was possible to guarantee
the quality of solution for Pdiagonal, by bounding loss(P,Pdiagonal) in post-solution analysis
(before applying the selected action). Obviously, no bound should be calculated for Pinvolved,
since the loss was guaranteed to be zero in our pre-solution “offline” analysis. As explained in
Section 2.2, we can derive a loss bound using the solution of the simplified problem (which is
available), and some domain-specific bounds/limits for the objective function. Here, we used the
topological bounds (4.23)-(4.24), which we covered in Section 4.3.2, and assigned them in (2.19),
in order to derive the appropriate guarantees.

The tightness of these topological bounds, which affects the tightness of the loss bound,
depends on the ratio between the angular variance, and the position variance, with which we
model the noise in factors between poses; the smaller the angular noise is, in relation to the
latter, the tighter the bounds are (as analyzed by Khosoussi et al. (2018) and by Kitanov and
Indelman (2019)). Hence, we calculated the loss bound assuming different noise models (different
such ratios), and examined their effects. Such a change to the noise model has a minor effect
on the objective evaluation, since it does not change the sparsity pattern of the matrices; thus,
we only present the effect on the inferred loss bound, and not on the entire planning process.
The bounds, which were calculated assuming different noise ratios, are given in Table 4.2. The
loss and its bounds are brought as a percentage of the maximal approximated objective function
value in that session, to allow a correct comparison. In the scenario showcased before, the angular
variance to position variance ratio was 0.25:1.

Indeed, changing the noise model has a significant influence on the tightness of the loss bounds.
A ratio of 0.01:1 yields a very tight bound. It is not far-fetched that the angular variance would
be this low in a navigation scenario, for example, by having a compass, as mentioned before.
Raising this ratio results in more conservative bounds, especially in comparison to the exact loss,
which is zero. Yet, they can still be used to guarantee that the solution stays in an acceptable
range. Developing tighter bounding methods for the objective function shall help making these
guarantees less conservative.

To clarify, this discussion, alongside any assumptions on the noise or state structure, is only
brought in order to examine our ability to provide guarantees, using this specific topological
approach. It is not essential in any way to the applicability of this belief sparsification.
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Figure 4.14: Uncertainty levels in a temperature grid – before (left) and after (right) sensor placement.
Higher values indicated higher uncertainty levels in that junction. We wish to find the optimal sensor
placement on the grid junctions.

4.5 Experimental Demonstration: Action Elimination

As we recall, our belief sparsification algorithm (Algorithm 3) relies on a selection of a set S
of variables for sparsification. By selecting which and how many variables to sparsify, one can
control the “scale” of the simplification. Further, as explained in Section 4.3.1, for an initial belief
approximation generated using Algorithm 3, and considering candidate actions which reflect
rank-1 updates, the simplification offset can be bounded with a symbolic expression. This bound
depends solely on the initial belief and a bound on the candidates’ Jacobian entries, and can be
derived ahead of planning. These properties makes the sparsification algorithm an appropriate
match to the sequential action elimination algorithm (Algorithm 1), provided in Section 2.2.3.
We would like to practically demonstrate this concept here.

4.5.1 Sensor Placement Simulation

In this simulation, we demonstrate the application of belief sparsification on another common
example of sequential decision making under uncertainty – the sensor placement problem – which
can also be modeled as decision making in the belief space. Here, we wish to place 10 sensors on
the junctions of a 5 × 5 grid, in order to measure its temperature in the most informative way.
This stochastic grid state is represented as a Gaussian belief b over the state vector X ∈ R25,
which represents the current temperature measurement in the 25 grid junctions. The problem is
visualized in Fig. 4.14.

The scenario is initialized with a random belief over the grid, including randomized corre-
lations between the junctions; such a belief is hence expressed with a dense prior information
matrix Λ. At each of the 10 planning sessions, we wish to greedily choose a junction from
those available, and place a sensor on it (meaning, measure the temperature from that position).
Since the measurements are scalar, each candidate (placement) can indeed be described with a
“rank-1” update to the belief, i.e., a single-row collective Jacobian; such a Jacobian is a binary
(0/1) row-vector, indicating the location of the sensor. The objective is, as before, to select the
candidate which would minimize the belief’s entropy (3.33).
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(a) (b)

Figure 4.15: (a) The elimination process from the third planning session. The approximated values
and the (unknown) exact values are shown in turquoise and green, respectively. Actions for which the
approximated value is not within the elimination interval can be eliminated. (b) The number of candidate
actions to examine in each planning session, before and after the elimination process.

At each planning session, we performed a single candidate elimination iteration, according to
the previously described approach: we started by performing a full sparsification of the belief’s
information matrix, according to Algorithm 3, which left us with a diagonal matrix. We then
used it to approximated the values of all candidates (free junctions). Based on these values, and
the offset bound for rank-1 updates (4.22), we could then infer the elimination threshold τ1 (2.24).

Fig. 4.15a shows a single elimination process from the third planning session. The approx-
imated values and the (unknown) exact values are shown in turquoise and green, respectively.
The horizontal blue lines stand for the limits of the elimination interval (between the maximal
approximated value and τ1); actions for which the approximated value is not between these lines,
can be eliminated. In this iteration, only 3 candidates passed the elimination. We could then
solve the problem by calculating the exact values for only these candidates, or perform another
elimination iteration, using a refined belief approximation (sparsification of less variables).

Fig. 4.15b shows the number of remaining candidates after the elimination, in comparison to
the original number of candidates, in each planning session. In a few cases, all candidates besides
one were eliminated, hence leaving us with the optimal candidate, without calculating any of the
values exactly. Note that in the later sessions, the most informative sensors were already placed,
and the remaining candidates yield similar values (i.e., no dominant actions); therefore, more
candidates managed to pass the elimination.



Chapter 5

PIVOT: Predictive Incremental
Variable Ordering Tactic

Evidently, using belief sparsification as a simplification method proved to be very effective in
reducing the cost of planning in the belief space. However, one of the main weaknesses of that
method is that the sparsified belief is discarded after every planning session; thus, whenever re-
planning is due, we need to re-calculate the sparsification “from scratch”. To address this issue,
we explore next another simplification approach – one which can be updated incrementally.

5.1 PIVOT

Consider a prior belief b(X), and a set of future hypotheses H .
= {H1, . . . ,Hm}, as we defined

before, in Chapter 4. As discussed, we wish to update b according to each of these hypotheses,
i.e., calculate bH , ∀H ∈ H. Yet, we recall that to perform state inference, we are actually
interested in updating the factorized representation of b, which depends on the initial variable
order expressed in X. This representation is graphically represented as the Bayes net BN in the
general case, or as the square root information matrix R in the Gaussian case. We previously
explained how these updates can be performed via incremental re-factorization – only considering
the variables starting from the first variable involved in the update (the “affected variables”).
Notably, the initial variable order determines the index of the first involved variable in each of
the future updates, and, by such, which variables would be affected by each of them. We should
consider that updating the square root factorization has, at worst, cubical complexity in relation
to the number of affected variables (Hämmerlin and Hoffmann, 2012); hence, for computational
efficiency concerns, we wish this number, in each update, to be minimal.

We thus suggest the following concept: optimize the initial variable order predictively – i.e.,
before and in preparation to performing these updates – in order to increase their efficiency. In
practice, we wish to perform a precursory and standalone modification to the factorized belief
representation, to convey reordering of the variables. This reordering (which may require partial
re-factorization) surely comes at a cost, but, as to be seen, this small investment in the current
time should be overall beneficial in the long run, by reducing the cost of future belief updates. We
shall clarify that, performing this standalone reordering only makes sense when facing multiple
“parallel” updates, as happens, e.g, in the context of planning. If we face only a single update,
e.g., as occurs in regular state inference updates, then both the update and the reordering can
been performed together during the same re-factorization; such re-factorization would, anyway,

73



74CHAPTER 5. PIVOT: PREDICTIVE INCREMENTAL VARIABLE ORDERING TACTIC

affect the variables starting from the first involved/reordered variable.
The question remaining is how to actually determine the optimal variable order in b, con-

sidering multiple future updates for it. Next, to answer this question, we will examine several
“predictive variable ordering tactics”. Though, beforehand, to avoid confusion, we wish to clarify
that the discussion to follow only comes to answer the question “what should be the new variable
(elimination) order?”. The question “how to modify the existing square root matrix R (or Bayes
net BN), after the new order is determined?” is extensively discussed in Chapter 6, and one
should refer to it for full details.

5.1.1 Pushing Forwards Involved Variables

We note that for each update, the set of affected variables, those which should be re-eliminated
when performing the update, may include also uninvolved variables, which appear after the first
involved variable (according to the initial variable order); such variables are only (unnecessarily)
affected due to their index in the state. We wish to determine our variable ordering tactic such
that we avoid such scenarios. Beforehand, let us clarify our terminology, as used throughout this
chapter: pushing a variable forwards means increasing its index in the state vector, bringing it
closer to the vector’s end; accordingly, pushing a variable backwards means decreasing its index,
bringing it closer to the vector’s start.

Thus, according to our ordering tactic, we suggest to push backwards all the uninvolved
variables ¬InvX (H), to appear before InvX (H), or equally, push the involved variables
forwards; this verifies that variables that are uninvolved in all the hypotheses, are never affected
while planning. This approach, which we refer to as PIVOT: Predictive Incremental Variable
Ordering Tactic, can be represented with the permutation

PIVOT1(X)
.
=

[
¬InvX(H)
InvX(H)

]
, (5.1)

which separates the variables according to their class: involved or uninvolved. Optimally, for
each hypothesis, we would like to update only the involved variables, and make all the uninvolved
variables unaffected. However, since we wish to perform the reordering only once (per planning
session), some of the affected variables, for each hypothesis, might still not actually be involved.
Nonetheless, such reordering maximizes the number of unaffected variables, and, by such, the
overlapping sub-matrix of the prior square root matrix/sub-graph of prior Bayes net, which can
best be reused when calculating all posteriors. This concept is demonstrated in Fig. 5.1.

We note that the separation of variables maintains the relative order of variables in each
category. I.e., if a variable x initially came before a variable y, and they both are in the same
class, then even after the reordering, their relative order is kept. This means that involved
variables may only be pushed forwards (compared to their original index), and the number of
affected variables in each planning hypothesis may only decrease.

Nonetheless, while maintaining the relative variable order in the “involved” class presumably
makes sure that the performance of each update it bettered, this property is not always desirable
when considering the overall planning performance point of view. For example, if a variable is
only involved in one hypothesis, it might not be sensible to keep it ahead of another variable
which is involved in all actions, as it would cause the first variable to unnecessarily be affected
in all updates. Instead, we (might) want the order among the affected variables to convey their
“involvement level”, i.e., the number of hypotheses in which a variable is involved. In this
case, pushing “more forwards” variables which are “more involved”, may increase the number of
affected variables in some of the updates, but the total number of affected variables, considering
all the updates, would be minimized.
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Candidate constraints to incorporate

(a) On the left are the sparsity pattern of the square root matrix R of a belief b, and the Jacobians of three
candidate updates; these may generally contain multiple rows, and also reflect addition of variables. Each state
variable corresponds to a row/column in R, according to the variable order. The colored cells in each update’s
Jacobian matrix signifies non-zero columns, which in turn represent the involved variables in the update. Accord-
ing to PIVOT1, we should reorder the state variables, and push forwards the involved variables, towards the end
of the state. The modified matrix, after variable reordering appears on the right; of course, we must reorder the
new Jacobians appropriately, such that the order of their columns matches the new variable order.

(b) Updating the original matrix according to each of the candidates. The orange blocks in each posterior matrix
represent the affected (i.e., recalculated) entries; this block is determined according to the index of the first
involved variable (column).

(c) By applying a precursory reordering step, and using the modified matrix, we are able to reduce the size of
affected block in each update.

Figure 5.1: A conceptual demonstration of PIVOT1. Please note that we do not assume dense matrices;
gray or orange-colored cells only indicate entries which may be non-zero.
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(a) (b)

Figure 5.2: The block structure of the modified prior square root matrix R, after applying PIVOT1 (a)
and PIVOT2 (b), in the planning scenario presented Fig. 4.5. PIVOT1 places all involved variables (l1, x3, l3)
in the same class; PIVOT2 separates the involved variables into two classes, as x3 is involved in both
candidates, while l1 and l3 are involved in one candidate, each.

We thus suggest a generalization of PIVOT1, in which we subdivide the involved variables into
c ∈ N (sub-)classes, according to their involvement level:

PIVOTc(X)
.
=

class0
X

...
classcX

 , (5.2)

where

classiX
.
=

{
x ∈ X | (i− 1) · M

c
< level(x) ≤ i · M

c

}
(5.3)

M
.
= max

x∈X
level(x) (5.4)

level(x)
.
=
∑
H∈H

1 (x ∈ InvX (H)) (5.5)

For example, when c = 1, the class separation is based on a binary indicator of involvement –
this matches the definition of PIVOT1 from before, where all the involved variables are in the
same class. When c = 2, we subdivide the involved variables into two classes – those which are
involved in at most M

2 updates, and those who are involved in more than that amount (where
M is the maximum number of updates in which any variable is involved). We can similarly
continue to increase c for a finer division. We may also explicitly require c = max, to treat every
involvement level as a distinct class. For any choice of c, class0

X ≡ ¬InvX (H) always contains the
uninvolved variables. Algorithm 4 summarizes the steps for calculating PIVOTc. Further, for any
chosen c, we can break the modified prior square root matrix into a block structure, according
to the variable class division, as demonstrated in Fig. 5.2.

5.1.2 Fill-Aware Ordering

As reviewed, pushing the involved variables forwards is an ordering tactic, intended to keep the
cost of future belief updates (during planning) low; however, this tactic is not always optimal.
Indeed, when handling dense matrices (beliefs), then the cost of re-factorization (updates) is
determined solely by the number of variables in the affected blocks. Yet, in sparse systems, the
cost of such updates also tightly depends on the density of these blocks.
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(a) (b) (c)

Figure 5.3: (a) A factor graph representing a small belief; the graph contains a “highly connected”
variable (in blue). We can examine the sparsity pattern of the belief’s square root matrix, which
represents the structure of its Bayes net, after variable elimination: (b) shows the sparsity pattern, if the
“highly connected” variable is eliminated last; (c) shows the pattern if the variable is eliminated first.
Evidently, to reduce fill-in, “highly connected” variables should (typically) be placed forwards.

It is theoretically possible that applying the previous tactic, and reducing the size of an
affected block, would actually make the cost of re-factorization higher, if this operation introduced
more fill-in in this block (i.e., made it denser). Of course, we refer here to the density of the
affected block in the prior square root matrix; yet, this acts as the baseline for the fill-in in the re-
calculated block in the posterior matrix, which can only increase after adding new constraints.
In other words, a dense (block in the) prior would lead to a dense (block in the) posterior,
which conveys high re-factorization cost. This fill-in would also affect the cost of performing
back-substitution, which is needed in order to update the MAP estimate. Further, the fill-in
in the prior also conveys the cost of the reordering process itself, which also typically requires
re-factorization. Thus, we would like to optimize the variable order such that we find balance
between reducing the size of the affected blocks, and keeping the system density low. Taking
this aspect into account, we shall reconsider the rules for class separation.

As a rule of thumb, to reduce fill-in, “highly connected” variables should be placed forward,
after the variables it is connected to; placing it behind these variables (i.e., eliminating it first,
which is equivalent to its marginalization) would add new factors involving all the connected
variables, and lead to a dense block. This property (which is demonstrated in Fig. 5.3) is the
key to “minimum degree” fill-reducing ordering strategies.

Thus, considering a certain update, having a “highly connected” (uninvolved) variable pushed
back, above its first involved (i.e., outside of the affected block), can make the affected block
dense, and actually decrease the re-factorization efficiency! To avoid such scenarios, we want
to identify these “highly connected” variables, and push them further forward in the variable
order, by bumping them to higher classes. We thus consider the following adjustment to the
original involvement-level-based class separation rule: if a variable has more factors connecting
it to (variables in) higher classes, than factors connecting it to (variables in) its own class or
lower ones, then forcefully bump it to a higher class. We mark this fill-optimized variable
reclassification as ∗class.

As another treatment for the fill-in issue, we may combine PIVOTc with a fill-reducing order,
such as CCOLAMD. This order is the constrained version of the famous COLAMD, which can be
used to enforce the relative order among groups of variables, by specifying a certain value ∈ N
(“constraint”) for every variable. Then, for example, all variables with value 1 will appear before
variables with value 2, which will appear before variables with value 3, and so on. The internal
ordering of variables with the same constraint will match the fill-reducing COLAMD. In our case,
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Algorithm 4: PIVOT

Inputs:
1 An initial belief b (with state vector X), and a set H of future hypotheses, as described in Sec. 5.1
2 c (chosen number of classes),
3 FILL AWARE (boolean flag),
4 FORCE INCREMENTAL (boolean flag)

Output:

5 A permuted state vector X̃

// calc variable involvement levels

6 class,level← zeros(1, n) // init zero vectors

7 forall x ∈ X do
8 forall H ∈ H do
9 if x ∈ InvX (H) then

10 level(x) + +

// divide involved vars into c classes

11 if c = 1 then
12 forall x ∈ X do
13 class(x)← max{1, level(x)}

14 else if c = max then
15 class(x) = level(x)

16 else
17 M ← maxx∈X {level(x)}
18 forall x ∈ X do

19 class(x)← min
{
i ∈ [0, . . . , c] | level(x) ≤ i · M

c

}
20 if FILL AWARE = false then

// sort variables by class

21 X̃ ← sort(X, class)

22 else
// utilize fill-aware optimizations

23 if FORCE INCREMENTAL = true then
24 jfirst ← min {j ∈ [1, . . . , n] | level(xj) > 0} // first involved var

25 else
26 jfirst ← 1 // first state var

// push forward highly connected vars

27 ∗class ← class
28 Λ← JTJ
29 forall j ∈ [jfirst, . . . , n] do

// count how many factors connect xj to each class

30 connections ← zeros(1, c)
31 forall i ∈ [1, . . . , j − 1, j + 1, . . . , n] do
32 if Λ(i, j) 6= 0 then

// add a connection between xj to the class of xi

33 connections(∗class(xi)) + +

34 current class ← class(xj)
35 while

∑
connections(1 : current class) <

∑
connections(current class + 1 : c) do

// bump var to a higher class

36 current class ++

37 ∗class(xj)← current class

// utilize a fill-reducing order

38 new order ← CCOLAMD(J , ∗class)
39 if FORCE INCREMENTAL = true then

// keep original order of vars preceding the first involved

40 new order(1 : jfirst − 1)← [1 : jfirst − 1]

41 X̃ ←X(new order)
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clearly, the variable constraints would match the fill-optimized variable classes, as defined before,
to yield the fill-optimized PIVOT order:

PIVOT∗c(X)
.
= CCOLAMD(J , constraint),

where constraint(x)
.
= i,

such that x ∈ ∗classiX (5.6)

The steps for calculating PIVOT∗c are (also) provided in Algorithm 4.
Note that using this tactic, the relative order of variables in each class is no longer maintained.

We need to take into account that although considering more classes (larger c) shall lead to
smaller affected blocks while planning, it also means adding more constraints to CCOLAMD, which
can potentially lead to more fill-in. In contrast, choosing a small c may result in having numerous
(involved) variables in each class; as the variables in each class can now be “shuffled” according
to the fill-reducing order, this may counteract the minimization of the affected blocks. We thus
expect the “optimal” selection of c to often be some middlepoint between 1 and max.

5.1.3 Incremental Reordering

Maintaining the relative order in the “uninvolved” class, as occurs in PIVOTc, means that if the
current variable order (i.e., X) begins with uninvolved variables, they would keep their position,
and not be reordered, i.e.,[

PIVOTc(X)
]
(1, . . . , j − 1) ≡X(1, . . . , j − 1), (5.7)

where
j
.
= min
x∈X
{index(x,X) | x ∈ InvX (H)}, (5.8)

marks the index of the first involved variable (in any of the updates). As later clarified in
Chapter 6, this property means that the PIVOTc order can often be applied incrementally, with
only partial modification of the belief.

This property (which is demonstrated in Fig. 5.4) is especially important for large systems,
where performing “full” reordering may not be feasible in real time. However, it is not necessarily
kept in the fill-aware variation of PIVOT, where variables in each class might be “shuffled” to a fill-
reducing order. If we want to make sure the returned order can still be applied incrementally, we
should consider certain adjustments to it. To begin with, we shall divide class0

X (the uninvolved
variables) into two sub-classes:

class0
X = class0

X<j ∪ class0
X>j (5.9)

where
class0

X<j
.
= {x ∈ class0

X | index(x,X) < j} (5.10)

contains all the uninvolved variables that already appear at the beginning of the state, before
the first involved; and

class0
X>j

.
= {x ∈ class0

X | index(x,X) > j} (5.11)

contains all the uninvolved variables that appear after first involved, and should be pushed back.
This division is also demonstrated in Fig. 5.4. Then, to avoid affecting the order of the first
j variables, our fill-aware optimizations should be adjusted as follows: first, the reclassification
of “highly connected variables” should ignore the variables in class0

X<j ; second, when applying

CCOLAMD, the constraint value used for the variables in class0
X<j should be set to −1, to force
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them backwards; third, after the application of CCOLAMD, we should “cancel” the internal ordering
of those variables, by forcing:[

PIVOT∗c(X)
]
(1, . . . , j − 1) = X(1, . . . , j − 1) (5.12)

These steps are explicitly formulated as part of Algorithm 4.
Note that, although such incremental application of PIVOT∗c is more efficient, it can lead to

slightly inferior fill reduction in comparison to the standard counterpart. Still, the sub-optimal
fill-in in the “uninvolved” rows does not affect the efficiency of the updates, as they involve
variables with higher indices.

Figure 5.4: On the left – a visualization of a certain variable order, where white cells represent
uninvolved variables, and blue cells represent involved variables (according to some hypotheses). On the
right – two modified orders, returned from PIVOT1 (bottom), and its fill-aware counterpart PIVOT∗1 (top).
We can see that PIVOT1 does not change the order of uninvolved variables that appear at the beginning
of the state (before the first involved variable at index 4); it can thus be applied incrementally. On the
other hand, PIVOT∗1 may cause reordering of all variables (marked with black overlay).

5.2 Utilizing PIVOT for Efficient Planning

Now, say we are interested solving the decision problem P = (b,Π, V ), as described before in Sec-
tion 3.3 (note that here, we do not necessarily consider the information-theoretic objective Ṽ ).
At this point in time, to calculate the candidate policies’ values, we should perform multiple
updates to the initial belief, propagating it according to the predicted hypotheses for the candi-
dates. Suitably, the concept of PIVOT explains how to modify (simplify) a belief representation
whenever facing multiple updates, in order to reduce their computational cost. Thus, let us
bridge the gap, and explain how we can practically utilize PIVOT as a simplification method that
allow to efficiently solve this decision problem.

5.2.1 True Classification

As explained, to determine the PIVOT order, we need access to the predicted updates, in order
to determine the variable involvement levels and classification.

ML Observations

We recall that assuming “maximum likelihood (ML)” observations contributes to planning in
two manners: (1) each candidate policy is represented with only a single hypothesis, and can be
evaluated with a single update; (2) this hypothesis (along the entire planning horizon) can be
inferred ahead of planning, without propagating the belief. Both of these properties are beneficial
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for PIVOT, as they allow us to infer the “true” variable involvement levels in the long-horizon
future updates, ahead of planning time; in other words, they allow us to “prepare” in advance
for all the updates due in the planning process. Thus, in this case, we can determine a PIVOT

order and apply it once on the initial belief, ahead of performing the updates (similarly to belief
sparsification); this is demonstrated in Fig. 5.5a.

Note that, generally, we might still need to perform these predetermined updates “gradually”
(step-by-step), in order to calculate the intermediate rewards. If we only measure the reward at
the final time-step, then, for every hypothesis, we would calculate a single update, representing
the entire hypothesis.

General Observations

When not relying on ML observations, each candidate is matched with multiple hypotheses.
Further, for each candidate, and at each time-step, we have access only to the (multiple) im-
mediately upcoming updates, taking the belief to the next time-step. Meaning, we do not have
access to the “complete” hypotheses (over the entire horizon) in advance, but must “build” them
gradually, by actually performing the belief updates.

Hence, we also cannot infer the involvement levels of the variables in these hypotheses ahead
of time, but only infer the involvement levels in the upcoming myopic updates. Thus, we shall use
PIVOT myopically and incrementally, when examining the multiple hypotheses of each candidate,
by calculating and applying a PIVOT order on the intermediate beliefs at each time-step. In
other words, we shall apply PIVOT before each “observation branching” of the hypothesis tree,
as demonstrated in Fig. 5.5b.

We may recall that at each time-step, only the “first observation branching” determines the
topology of the observations, i.e., which variables are involved in them (see Section 3.3.2). The
observed value, which is determined in the “second branching”, does not affect this aspect. Also,
regardless of this value, any action to be applied after the observation, would only involve the
last pose, by definition. Thus, we can indeed determine the myopic variable involvement levels
(and the PIVOT order) between time-steps.

5.2.2 Heuristic Classification

In the previous two scenarios, we relied on the “true” variable classification, which we can derive
unmistakably from the (accessible) future updates. It is also possible to try and heuristically
estimate the variable involvement levels, even if we do not have full access to the future updates in
advance. For example, we can use the “ML hypotheses” just to estimate the variable involvement,
even if we consider planning with multiple hypotheses per candidate. We can also try to perform
a precursory visibility or reachability analysis, to identify variables that are (almost) certainly
involved or uninvolved in the future updates. In some cases, we may even know in advance that
a certain subset of the state variables can never be involved by definition; e.g., past poses are
never involved in landmark-based SLAM – where only landmarks can be re-observed.

In this case, we shall infer an apply a PIVOT order on the initial belief, in preparation for
the long-horizon future updates, based on this estimated classification. We note that even if this
variable classification does not match the “true” classification, inferred from the “real” updates
(when they become available), this does cannot lead to any sacrifice in accuracy; at worst, such
misclassification can lead to an increase in the computational cost of the updates.
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(a) (b)

Figure 5.5: Planning trees, built by connecting the hypothesis trees (as presented in Fig. 3.6) of three
candidate policies at the root (the initial belief). PIVOT is applied on belief nodes marked in purple.
(a) A planning tree when relying on ML observations. The entire tree is known ahead of time; hence,
we shall apply PIVOT once on the initial belief, given the updates over the entire planning horizon.
(b) A planning tree with general (not ML) observations. The hypothesis trees are not fully known ahead
of time, and we must calculate the belief updates in order to reveal the next tree levels; hence, we shall
apply PIVOT on the beliefs at each time-step, given only the myopic updates (i.e., before each observation
branching). It is also possible to apply PIVOT on the initial belief considering heuristic knowledge on the
expected variable involvement levels.
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5.3 Influence of PIVOT on State Inference and Re-Planning

Consider that in planning session at time-step k, we applied PIVOT on the initial belief (i.e., bk).
After planning and policy selection, we have the option to continue to the following inference
and planning sessions with the belief in the original order (assuming it was cached), or continue
with the belief in the PIVOT order. Let us examine the benefits (and possible shortcomings) of
continuing with the modified order.

First, consider another re-planning session is due in the future. Since PIVOT can be applied
incrementally, if the variable order is kept after the current planning session, then in the next
planning session, the PIVOT order can simply be incrementally updated, according to the change
in variable classification (and addition of new variables). In this case, the “fixed” variable class
class0

X<j would contain the uninvolved variables which kept their order and classification since

the previous planning session; and class0
X>j would contain the uninvolved variables which were

shuffled forward in inference, and new uninvolved variables, whether they were added since the
previous planning session, or simply changed their classification. Assuming the classification of
variables usually does not change much between consecutive planning sessions, then keeping the
PIVOT order shall make class0

X<j bigger, and the cost of applying PIVOT again can be reduced.

Second, we can examine the influence on future state inference updates. As explained, incor-
porating updates to variables from the past (i.e., loop closures) is expensive, when these affect
numerous variables. When applying PIVOT during a planning session, we push forward predicted
loop closing variables, i.e., variables from the past, which we believe to be re-observed when ex-
ecuting the policy. We explained how doing so can reduce the computational cost of performing
the predicted updates during planning. Now, if we are to actually perform the selected policy, it
is likely that we indeed face the same (or similar) loop closures we have previously predicted, and
have to update the belief accordingly. Hence, in this case, keeping the predicted loop closing vari-
ables forward (i.e., maintaining the PIVOT order after planning) can reduce the computational
cost of the following state inference updates, just like it did during the (predicted) planning
updates. As mentioned, when considering “pure” state inference, and ignoring the planning
problem, there is no point in actively pushing forward loop closing variables, as the cost of such
reordering is equivalent to actually performing the loop closure. However, since we conduct the
reordering procedure anyway, as part of the planning, we gain this indirect benefit to the state
inference process. This conclusion is derived from a wider view of the system, which considers
both the state inference and planning processes.

Nonetheless, PIVOT is designed to benefit the overall update cost considering the identification
of involved variables from the entire set of candidates; it is thus possible that the cost of specific
updates would increase (in order to benefit the other updates). So, to decide if we should keep
the PIVOT order, it is important to verify that the selected candidate – the one which we shall
now apply – is not one of those specific updates. Thus, for the selected candidate, we shall check
if the number of NZs (i.e., the density) in the affected block of the receptive update(s) under
PIVOT is indeed smaller than under the original order. If this is the case, we shall continue with
PIVOT. Note that in this verification, we implicitly assume that the prediction will coincide with
the reality when performing the action. It is indeed possible that when performing the action, the
actual realized hypothesis, and hence the updated variables, can be different than the predicted
ones. However, there is no way to prepare for such a case, and our “best bet” is to assume the
prediction represents the future reality (otherwise we should not have used it for planning in the
first place).
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Finally, we should also consider that PIVOT is intended to increase planning efficiency, in
the ways indicated, and is not inherently fill-reducing. Typically, maintaining the constrained
variable order after planning, would result in a sub-optimal fill-in in the belief during state
inference, and increase the memory footprint. Also, although the cost of inference updates should
actually improve, as we explained, the added fill-in in the square root matrix might increase the
cost of back-substitution, which is solved when updating the state MAP estimate. The frequency
of back-substitution in the system is a matter of design. For example, one may compute it after
every state inference session, or only before planning. We also do not always need to calculate
the entire back-substitution solution; updating the estimate of the last pose, which is usually at
the end of the state, can be achieved almost immediately. Thus, overall, even if we expect some
sacrifice in back-substitution cost, we expect the gains in performance to prevail.

5.4 PIVOT vs. Belief Sparsification

For good measure, let us compare PIVOT to belief sparsification, as formulated in Chapter 4.
Clearly, both approaches are related, as they suggest to perform a certain modification to a
high-dimensional belief, which serves as the initial belief of a decision problem. Since belief
sparsification intrinsically requires a variable reordering step, the two methods (at times) have a
similar influence of the belief update process.

Specifically, if we consider (1) sparsification of only uninvolved variables; (2) the sparsification
algorithm (Algorithm 3) to operate on the square root matrix; and (3) no requirement to maintain
the original variable order after the sparsification (by instead, reordering the collective Jacobians);
then, the initial reordering is sufficient to make sure that the rows of the “sparsified” variables
would not be updated when (incrementally) incorporating new constraints. Meaning, there is no
need to actually zero entries in these rows, and this sparsification is computationally equivalent to
application of PIVOT1. Yet, the approaches are still different, as, from these basic variations, both
approaches are “scalable” in different manners: sparsification – by selecting more variable for
spasification; and PIVOT – by dividing the variables into more classes, and considering fill-aware
optimizations.

Further, the two approaches are logically different, as sparsification conveys approximation of
the belief, while reordering conveys merely a change of representation. By such, application of
PIVOT (in all its variations) inherently does not influence the accuracy in any stage of the decision
making process, and, specifically, does not compromise the quality of solution nor induces any
loss. On the other hand, depending on the sparsified variables, calculating the objective values
of the candidates using a sparsified belief may affect their accuracy, and by such compromise
action consistency, and lead to simplification loss. As we saw, in that case, we should perform
pre- or post-solution analysis to verify the quality of the yielded solution. Nonetheless, this sac-
rifice in accuracy can lead to additional increase in performance; performing “full” sparsification
(potentially) leads to the highest solution efficiency, since it means planning with a “diagonal”
(square root) information matrix.

Overall, although the basic variant of each approach (“uninvloved” sparsification and PIVOT1)
can have a similar effect on the updates, when extended, each approach enjoys it own unique
strengths. To summarize, let � mark the relation “better than”; then, in terms of efficiency:

“full” sparsification � PIVOT∗c � PIVOT1 ≡ “uninvolved” sparsification � original solution;

and in terms of quality of solution:

original solution ≡ PIVOTc/PIVOT
∗
c ≡ “uninvolved” sparsification � “full” sparsification;
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Finally, we shall mention a few more advantages that are exclusive to planning with PIVOT,
over belief sparsification: since the first is just a change of representation, we do not have to
discard the modified belief after planning. This allows us to (i) improve the inference process,
and (ii) efficiently update the order during re-planning; also, with PIVOT, unlike sparsification,
(iii) we are not limited to information theoretic objectives.

5.5 Experimental Evaluation

To demonstrate the advantages of PIVOT, we applied it in the solution of the same active-
SLAM simulation described in Section 4.4, which was previously solved using belief spar-
sification. Note that while the previous experiment focused solely on the solution of the planning
sessions, here, we also examine the influence of PIVOT on the state inference sessions.

5.5.1 Utilizing PIVOT

In the considered scenario, the state size grows quickly as the navigation progresses, making
planning more computationally challenging. Hence, we wish to examine how utilizing PIVOT can
help reducing the planning cost. To do so, throughout the simulation, we maintained in parallel
multiple versions of the (factorized) belief, using different ordering tactics, and performed the
appropriate belief updates on all versions of the belief, during each planning and state inference
session. We shall recall once again that changing the order of variables only conveys a change of
representation, and does not affect the accuracy of the solution.

This time, the baseline ordering tactic we considered matches the one suggested by the
state-of-the-art SAM algorithm iSAM2 (Kaess et al., 2012). According to this tactic, at each
incremental update of the factorization, we shall calculate and apply a constrained fill-reducing
order (CCOLAMD) on the affected variables; the constraint forces the involved variables forward, to
the end of the state. While the reasons for applying a fill-reducing order as part of this tactic are
obvious (reducing fill-in and the update cost), the added constraint leads to a sacrifice in fill-in,
and does not contribute to the current inference session. However, the constraint is added with
the intention to contribute to the following inference session: if the variables are to be updated
again, then the affected block in the next session would be smaller. In their experiments, the
authors demonstrated that this claim is well worthwhile for incremental state inference; however,
it might not be the optimal one for planning.

Thus, we also considered utilizing (several variations of) PIVOT during planning. Since we
rely on ML observations, this simply means performing an additional standalone reordering of
the (initial) belief before calculating the objective values in each planning session. This comes in
contrast to the baseline tactic, where (incremental) reordering is only performed during updates,
and never as a standalone step. For comparison, we considered PIVOT1, PIVOT5, and PIVOTmax,
which are the basic PIVOT orders, with varying numbers of classes, and their fill-aware coun-
terparts PIVOT∗1, PIVOT∗5, and PIVOT∗max. Although it is not obligatory, for this comparison, we
chose to always continue to the following state inference sessions (after the planning is completed)
with the modified orders; nonetheless, all updates during the state inference sessions were always
conducted according to the baseline tactic. Overall, we maintained seven versions of the belief,
according to seven ordering tactics: the baseline – in which we performed reordering only during
updates, and six other tactics, in which we additionally applied a PIVOT variation in standalone
reordering steps during planning sessions.

For each version, we measured and compared the total state inference and planning times.
For each inference session, we measured the time of performing the belief factorization update
and the back-substitution (to refine the MAP estimate); for each planning session, we measured
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(a) Baseline R. (b) R after applying PIVOTmax. (c) R after applying PIVOT∗max.

Figure 5.6: A comparison of the sparsity pattern of three variants of the agent’s square root matrix R,
at the final planning session.

the belief update time according to the predicted hypothesis of each candidate, along with the
time of applying the PIVOT order, when it was used. As mentioned, when planning assuming ML
observations, there is no need to perform back-substitution to infer the posterior state estimate.

Similarly to the previous experiment, from our GTSAM implementation, at each state infer-
ence session, we extracted the Jacobian rows, representing the newly added (linearized) factors,
and performed (and timed) the incremental update of the belief’s square root matrix, as formu-
lated in (3.26), using the standard MATLAB implementation of qr. At each planning session,
we extracted the collective Jacobian matrices representing the predicted hypotheses of each of
candidates, and performed (and timed) a similar square root matrix update for each one. Of
course, the columns of the extracted Jacobians were reordered appropriately before each up-
date, to match the variable order of that version of the belief. The modification of the square
root matrix in the variable reordering steps was performed according to Algorithm 6 (the “re-
factorization” variant). The sparsity pattern of the square root matrices under different orders
is presented in Fig. 5.6 (and analyzed in the next section); the candidates’ collective Jacobian
matrices can be re-examined in Section 4.4.

One might note that by extracting the new Jacobian rows from the GTSAM-based (non-linear
and Gaussian) belief at each time step, we are not concerned by the possibility of re-linearization
of the system in our analysis. In events of re-linearization, the belief’s Jacobian matrix J (or
parts of it) is recalculated, around an updated estimate, and must then be re-factorized (i.e.,
R must be recalculated). This means that re-linearization of the system (which, in our case, is
handled internally by GTSAM) does not affect the belief update times we cared to measure in
our experiment, as such an event would always happen after the update is completed. In fact, we
could even use a re-linearization event to our advantage, by using it as an opportunity to reorder
the system, and apply the new PIVOT order. Then, the cost of reordering would be “absorbed”,
and applying PIVOT would be “free”. Since we do not wish to make assumptions on how often,
and to which extent, one should perform re-linearization, we counted all reordering steps as if
they were explicitly performed.

5.5.2 Results and Discussion

Next, we present and analyze the results of using each ordering tactic to solve the described
scenario. Fig. 5.7 presents the accumulated planning time (belief updates and reordering), using
each ordering tactic, throughout eight planning sessions. Fig. 5.8a similarly presents the accu-
mulated state inference time (belief update and back-substitution), using each ordering tactic,
throughout (∼)1, 000 inference sessions. Fig. 5.8b presents the number of non-zero entries in
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Figure 5.7: The accumulated planning time throughout the eight planning sessions of our experiment,
using different variable ordering tactics: baseline (“iSAM2”), three variants of PIVOTc, and three variants
of PIVOT∗c ; lower is better. The dashed line represents the accumulated reordering time out of the
measured time.

the square root matrix, which represents the fill-in of the factorization, in each state-inference
session, using each ordering tactic. All the numerical results presented in these figures are also
summarized in Table 5.1.

Several conclusions can be made: first, it is clear to see that using any variation of PIVOT
managed to substantially reduce the planning time in comparison to baseline tactic (50 − 66%
reduction), as intended. We can also see that the reordering time (i.e., time of applying the PIVOT
order) gradually becomes minor, in comparison to the update time in each planning session, as
the state grows. Further, all variations of PIVOT managed to reduce the state inference time –
verifying our claims in Section 5.3 – and, by such, the total solution time of the scenario (30−50%
reduction). To explain the contribution of PIVOT to the inference process, in comparison to the
constrained baseline tactic, we may recall that with that tactic, we pushed forwards the loop
closing variables only after they were met; when applying PIVOT, we pushed forwards (predicted)
loop closing variables before meeting them, in the preceding planning sessions. This resulted in
more efficient loop closing during state inference, compared to the baseline.

Of course, the relative improvement in planning time tightly depends on the number of
candidates, the topology of their updates, and the size of the state; the improvement in total
solution time is also a parameter of the planning to inference session ratio. Nonetheless, these
results surely encourages us to utilize (a variation of) PIVOT in the solution of high-dimensional
planning problems.

More specifically, we can see that each variation of PIVOT lead to different results. Generally,
whether examining the per-session or accumulated results, the fill-aware variations of PIVOT

resulted in lower planning time, inference time, and fill-in, in comparison to their “standard”
counterparts; even the belief reordering time is lower in the fill-aware variations, as expected.
Also, while, generally speaking, using PIVOT/PIVOT∗ led to increase in fill-in (number of NZs
in R), in comparison to the baseline, the fill-aware variants resulted in much lower fill-in, in
comparison to their standard counterparts, as expected. These results encourages us to always
utilize the PIVOT∗ over PIVOT.

We may also notice that the added fill-in led to a slight increase in the back-substitution time
during the inference sessions; yet, the cost of this step is insignificant in relation to the update
cost. As mentioned, Fig. 5.6 shows the difference in fill-in in three variations of the square root
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Figure 5.8: Comparing the solution of the state inference sessions in our experiment, using different
variable ordering tactics: baseline (“iSAM2”), three variants of PIVOTc, and three variants of PIVOT∗c .
(a) Accumulated state inference time throughout the (∼)1,000 inference sessions; lower is better. The
dashed line represents the accumulated back-substitution time out of the measured time.
(b) Accumulated fill-in (number of non-zeros in R).

matrix, at the final planning session: the baseline, after the applying PIVOTmax, and PIVOT∗max.
In most cases, increasing the number of classes (as determined by the parameter c), lead to

lower planning and inference times, as this caused the involved variables to be pushed “further
forwards”. Yet, with both PIVOT and PIVOT∗, this also resulted in increased fill-in. When using
only a single PIVOT class (i.e., c = 1), we can see that the fill-in was hardly impacted. In fact,
by applying PIVOT∗1 in the final planning session, we even managed to reduce the fill-in below
the baseline level. Interestingly, we can see that in the last planning session, the added fill-in
induced by PIVOT5 and PIVOTmax was so significant, that it actually made the planning cost
higher, in comparison to the baseline; this might occur when the number of NZs (NNZ) in the
affected block (of a candidate update) grows more significantly than the decrease in block size.
Fortunately, this is not an issue when considering the fill-aware PIVOT∗ tactics. In fact, it is
evident that PIVOT∗max achieved the best performance in both planning and inference.

We can see that between planning sessions 3 and 4, which were seprated by numerous state
inference sessions, the fill-in induced by the PIVOT variants decreased back to the baseline level. It
appears that the incremental reordering that takes place in those inference sessions has gradually
“canceled out” the PIVOT constraints, and realigned the order back to the baseline. In contrast, in
the latter planning sessions, which occurred more frequently in between the inference sessions, we
can see that the fill-in accumulated. Overall, we may conclude that frequent re-planning, and/or
a higher number of classes, can amplify both PIVOT’s disadvantages (relative added fill-in), and
benefits (relative reduction in computation time).

As mentioned, here we maintained the PIVOT order(s) after every planning session. Although
we saw this can indeed help reducing the state inference cost, if we wanted, we could also revert
back to the original variable order (before the standalone reordering) after each planning session.
That way, the state inference process (and the fill-in in R) is not influenced by PIVOT, which
only affects the planning process. As explained in Section 5.3, we can also analyze the fill-in in
the affected block of the selected action, to verify that the state inference is indeed expected to
improve by keeping the PIVOT order, before making such decision.
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Table 5.1: Summary of the accumulated planning time (as presented in Fig. 5.7), inference times
(as presented in Fig. 5.8), and fill-in at the final planning session (as presented in Fig. 5.6). Best values
in bold.

Tactic Baseline PIVOTc PIVOT∗c
# of classes N/A 1 5 max 1 5 max

Planning Session #1
Reordering time / 00.05 00.06 00.06 00.07 00.08 00.07
Update time 0.56 00.39 00.30 00.30 00.26 00.29 00.28

Planning Session #2
Reordering time / 00.11 00.06 00.06 00.26 00.20 00.16
Update time 01.02 00.64 00.64 00.56 00.57 00.52 00.52

Planning Session #3
Reordering time / 00.05 00.21 00.22 00.23 00.18 00.18
Update time 03.40 03.36 02.52 02.53 03.72 02.78 02.64

Planning Session #4
Reordering time / 00.63 00.45 00.45 00.48 00.42 00.45
Update time 19.12 03.20 02.77 02.56 02.78 02.54 02.33

Planning Session #5
Reordering time / 00.90 00.66 00.59 00.76 00.79 00.75
Update time 18.12 01.88 01.71 01.71 02.22 01.37 01.35

Planning Session #6
Reordering time / 00.84 00.85 00.88 01.02 01.02 01.03
Update time 07.90 02.00 01.61 01.54 02.27 01.69 01.70

Planning Session #7
Reordering time / 01.01 00.92 00.86 00.89 00.79 00.78
Update time 31.20 08.89 05.92 06.67 08.58 05.26 04.95

Planning Session #8
Reordering time / 01.15 01.40 01.42 01.09 00.75 01.20
Update time 35.70 33.49 39.52 35.98 34.91 22.30 21.23

Total planning time
Sec. 117.05 58.69 59.68 56.45 60.21 41.07 39.70
Relative 100% 50.14% 50.98% 48.22% 51.43% 35.08% 33.91%

Total inference time
Update time 73.19 72.60 65.27 65.08 72.69 60.71 57.62
Back-sub. time 00.24 00.25 00.28 00.31 00.24 00.25 00.26

Total solution time
Sec. 190.49 131.55 125.24 121.82 133.16 102.05 97.57
Relative 100% 69.00% 65.74% 63.95% 69.90% 53.57% 51.22%

Fill-in (NNZ in R)
Before reordering 28842 28842 48372 50472 28842 35029 38749
After reordering / 31571 62091 69376 27662 32737 40882





Chapter 6

Modification of the Square Root
Matrix on Variable Reordering

Figure 6.1: J (top) and
R, given from qr{J}.

As covered, utilization of belief sparsification (Chapter 4) and appli-
cation of PIVOT (Chapter 5) require to perform reordering of the state
variables. As we learned, in the practical linear(ized) and Gaussian
case, the order of variables must match the order of columns in the co-
efficient matrix of the system, which we factorize to derive the “square
root matrix”. Hence, reordering the variables implies expensive re-
factorization of the system (under the new variable order), in order
to derive the “new” square root matrix. Instead, in this chapter, we
bring a new algorithm, which allows to efficiently modify an existing
square root matrix to appropriately convey reordering of the variables.

6.1 Problem Definition and Contribution

We formulate the problem of interest as follows: consider the coefficient
matrix J ∈ Rm×n of a system of linear equations (in our context, this is
the “Jacobian matrix”), and its upper triangular factorR (the “square
root matrix”), given by the QR factorization, which satisfies J = QR,
for some orthogonal matrix Q. Also consider a column permutation p.
Formally, this is a bijective function {1, . . . , n} → {1, . . . , n}, which
defines a mapping of each column (state variable) from index i to
index p(i). Such a permutation can be described with an orthogonal
permutation matrix P n×n, where ei ∈ Rn is the i-th unit vector:

P
.
=

 | |
ep(1) . . . ep(n)

| |

 , (6.1)

We wish to find the upper triangular factor Rp of the permuted
matrix Jp

.
= JP , which satisfies Jp = QpRp, for some orthogonal

matrix Qp. As explained, we may equivalently consider R and Rp to
be the Cholesky factors of Λ

.
= JTJ and Λp

.
= P TΛP , respectively.
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For visualization purposes, we consider an exemplary system, which will be used as a running
example throughout the chapter. In the top sub-figure of Fig. 6.1, we can see the original
coefficient matrix J of the system, and underneath it, its factor given from qr{J}. We wish to
apply the variable permutation p, such that

[ 1, . . . , 11 ] · P .
= [ 1, 2, 4, 3, 8, 9, 5, 7, 6, 10, 11 ]. (6.2)

Each of the sub-figures represents the sparsity pattern of the corresponding matrix; colored cells
represent entries which are (possibly) Non-Zero (NZ); different colors correspond to the type of
entry, as to be described. For convenience, the rows of J are sorted according to the column-
index of their leading NZ entry (i.e, first NZ in the row); nonetheless, R is invariant under row
reordering in J . We do not make any assumptions on the density (or sparsity) of these matrices.

To clarify, we do not wish to choose a new variable order; we consider it to be given, and
address how to perform the appropriate modification to R practically and efficiently. To achieve
this goal, we derive three key contributions: first, we identify that variable reordering only
requires a local modification of R, in a contained block of rows; second, we explain how to
identify independent row blocks in R, which can be modified independently, and in parallel;
third, we explain how to efficiently derive the orthogonal transformation, which defines the
required modification for each row block. We then utilize these three ideas in two algorithmic
variants: one, by manipulating the factor directly, without accessing J ; and second, with partial
re-factorization of J . Each of the variants holds specific advantages, as we shall compare.

6.2 Direct Modification

6.2.1 The Local Effect of Variable Reordering

First, we shall try to derive Rp by appropriately modifying the original square root matrix R,
and without accessing J . Let us look at RP , i.e., R with columns permuted according to p.
As visualized in the left sub-figure of Fig. 6.2, applying the column permutation breaks the
triangular shape of the original root matrix R. We may re-apply qr to “correct” it:

{Q′,R′} .= qr{RP } (6.3)

The permutation does not affect the rank of the matrix, and since R is of full rank (the
rows/columns are linearly independent), so is RP . Therefore, we know a unique qr factor-
ization of it exists. A similar re-application of qr to “correct” the factor is performed also by
the aforementioned iSAM algorithm; though, there, the factor is modified due to the addition of
constraints (new rows), and not permutation of the state variables.

This factorization can be calculated in several manners. We may choose to apply a series of
Givens rotations {Qk}k to zero all elements below the diagonal, one entry at a time, column-by-
column. Each of these rotations is applied only on a pair of rows in the factorized matrix; the
angle of rotation is chosen such that the leading NZ entry in the lower of the two rows is zeroed
(for more details, see Golub and Loan (1996)). Since the factorization exists, we know that after
a finite number of such rotations, we will end up with an upper triangular matrix R′ with a NZ
diagonal, such that

R′ = Q′T · (RP ), where Q′T
.
=
∏
k

Qk. (6.4)

Surely, since the product of orthogonal matrices remains orthogonal, R′ is the desired square
root matrix of the permuted system:

Jp = (QR) · P = Q · (RP ) = Q · (Q′R′) = (QQ′) ·R′. (6.5)
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(a) (b)

Figure 6.2: The local effect of variable reordering. Blue borders mark the re-factorized sub-matrix;
green-colored entries represent entries of R; orange represents entries calculated from re-factorization of
RP ; white overlay indicates column permutation. Modification of R only requires factorization of the
block of rows jfirst : jlast of RP . Using Algorithm 5, we can divide this row block (dashed blue line) into
the two sub-blocks, which can be factorized independently.

Although it provides the solution, we do not suggest to use this naive approach to modify R,
as it may be far from optimal. Yet, due to the uniqueness of R′, we know that this R′ ≡ Rp,
and we can use this solution to derive general properties Rp, which we will exploit to derive it
more efficiently.

Let us mark with jfirst and jlast the the minimal and maximal non-fixed points of p, respec-
tively; i.e., the minimal and maximal indices j ∈ 1 : n, for which p(j) 6= j. NZ entries below
the diagonal can only appear in RP in rows indexed between jfirst and jlast. Hence, application
of the aforementioned Givens rotations shall only modify these rows of the factorized matrix;
R′ (≡ Rp) remains equal to RP in all other rows. The underlying conclusion, which holds
regardless of the manner by which Rp is calculated, is conveyed in Proposition 1.

Proposition 1 (The Local Effect of Variable Reordering).
The block of rows jfirst : jlast of Rp relies only on the respective block of rows of R; the matrices
may differ in value only in these rows. The top (jfirst − 1) rows, and bottom (n − jlast) rows
of Rp, are identical to the respective rows of R (up to column permutation).

Thus, Rp may be derived using any qr implementation as:

Rp =

 — R′top —
0 R′middle

— R′bottom —

 , where (6.6)

R′top
.
= RP (1 : (jfirst − 1), 1 : n), (6.7)

{Q′middle,R
′
middle}

.
= qr{RP (jfirst : jlast, jfirst : n)}, (6.8)

R′bottom
.
= RP ((jlast + 1) : end, 1 : n). (6.9)

Accordingly, Q′
.
= blkdiag{Ijfirst−1,Q

′
middle, Im−jlast} marks the “correcting” orthogonal ma-

trix, such that Qp = Q ·Q′ completes the solution. This “localized” direct modification method
is visualized in Fig. 6.2.

We may also reach a similar conclusion from probabilistic analysis. The belief b(X) (which
we defined in Section 3.1.1) can be factorized to a product of conditional probabilities:

b(X) ∝
n−1∏
k=1

P(X(k)|d(X(k))) · P(X(n)), (6.10)
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where d(x) denotes the set the variables x is conditioned on, for a given variable elimination
order. Now, say we wish to modify this factorization to match a permuted elimination order,
which is defined by the permutation p. By definition, d(X(j)) = d(X(p(j))) for j < jfirst and
j > jlast. Thus,

b(X) ∝
jlast∏

j=jfirst

P(X(p(i))|d(X(p(i)))) ·
∏

1≤j<jfirst
jlast<j≤(n−1)

P(X(k)|d(X(x))) · P(X(n)) (6.11)

Meaning, the permutation only affects the conditional probabilities of the variables jfirst : jlast,
or, in other words, permutation has only a local effect on the belief factorization – with no
assumptions on the type of distribution! Nonetheless, we recall that, when X is normally dis-
tributed, this factorization of b(X) corresponds to factorization of J to the matrix R, where
each conditional probability corresponds to the respective row of R (see Section 3.2.1). Hence,
in accordance with Proposition 1, we may again conclude that applying the permutation only
leads to modification of rows jfirst : jlast of this matrix.

6.2.2 Identifying Independent Row Blocks

It is known that every permutation can be decomposed into disjoint cycles. Each cycle defines
a “sub-permutation” which only affects a distinct subset of the input elements (in our case, the
indices 1 : n), while all other elements are stationary (i.e., mapped to themselves). We can write
our exemplary permutation (6.2) in “cycle notation”:

p = (1)(2)(3 4)(5 8 7)(6 9)(10)(11). (6.12)

Each set of parentheses represents a disjoint cycle; each number in the cycle is mapped to the
one that follows it, and the last number is mapped back to the first one.

Thanks to Proposition 1, we know that applying each such “sub-permutation” only requires
factorization of a specific block of rows of RP , encapsulated between the minimal and maximal
index in the cycle, independently of the other rows. However, we note that multiple “sub-
permutations” cannot always be applied independently of each other, as these blocks of rows,
corresponding to each of the cycles, are not always distinct. This happens when the cycles
define overlapping ranges, like (5 8 7) and (6 9). In this case, the two cycles cannot be considered
independently, and we have to factorize the entire block of rows 5 : 9. While accounting for such
scenarios, Algorithm 5 specifies how to divide the rows of RP into distinct row blocks, which can
be treated independently, given a certain permutation. The result of this algorithm is visualized
in Fig. 6.2, where, given p, we identified two row blocks of RP . After the blocks are identified,
we can “correct” each of them by applying an independent qr factorization. These factorizations
can (and should) be executed in parallel.

6.2.3 Efficient Row Modification

Assume we wish to factorize the non-triangular block of rows j1 : j2 of RP , in order to derive
the respective block of rows of Rp. We note that, even without the leading zero columns, this
is a “wide” matrix, i.e., the number of columns is greater than or equal the number of rows.
Hence, let us examine a sub-matrix of this row block, containing only its first l

.
= j2− j1 + 1 NZ

columns: square block
.
= RP (j1 : j2, j1 : j2). This is a square block taken around the diagonal

of RP . This block is of full rank l, as it differs from the block R(j1 : j2, j1 : j2) only in the order
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Algorithm 5: Identifying independent row blocks.

Inputs:
Permutation p

Output:
block division – a set of vectors, each containing row (variable) indices of an independent row block

in Rp

1 block division ← {}
2 j1 ← 1

3 while j1 ≤ n do

4 j2 ← p(j1)

5 if j2 > j1 then

// not a stationary point, look for intersecting cycles

6 k ← j1 + 1

7 while k ≤ j2 do

8 j2 ← max{j2, p(k)}
9 k ← k + 1

10 block division ← block division ∪ {j1 : j2}
11 j1 ← j2 + 1

of columns, and the latter is upper triangular with NZs on its diagonal (and hence of full rank).
Therefore, square block has a unique factorization:

{Q′block, square block
′} = qr{square block}, (6.13)

such that square block′ is also an upper triangular matrix with NZs on its diagonal. Thus, it is
sufficient to examine square block, in order to derive the matrix Q′block, which defines the desired
transformation for the entire row block.

This approach essentially separates the calculation and application of this orthogonal trans-
formation; this can improve the modification efficiency in comparison to a “naive” application
of qr on the entire row block. Calculating the qr factorization requires finding and applying an
appropriate series of transformations (e.g., Givens rotations or Householder reflections (Golub
and Loan, 1996)), which together form the orthogonal matrix. Generally, we must apply each
rotation, in order to find the next one in the series. This means that each entry in the factor-
ized matrix is modified multiple times throughout the factorization, according to the number of
transformations needed. Thus, by only factorizing the square block, and not the entire rows, we
can avoid unneeded calculations. The entries beyond column j2 (i.e., RP (j1 : j2, (j2 +1) : n)) do
not need to be continuously modified throughout the factorization process; they can be modified
only once, by multiplying them in the matrix Q′block

T
after it is found.

Overall, we shall repeat this process for every row block of RP which requires factorization
(provided by Algorithm 5); by doing so, we can identify a block diagonal structure, such that
all the NZ entries of RP below the diagonal are contained (as visualized in Fig 6.3a). In order
to calculate Rp, we shall (independently) factorize each of these square blocks, and apply the
transformations to the rest of the respective row blocks. As mentioned, Qp = Q ·Q′, and Q′ can
be found by concatenating each block’s Q′block matrix, according to the block diagonal structure.
Algorithm 6 summarizes the approach.
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Algorithm 6: Optimized factor modification.

Inputs:
Upper triangular factor R

Permutation p with a matching column permutation matrix P

For re-factorization: J and marginals (see Section 3.2.1)

Output:
Modified factor Rp

1 RP ← R · P
2 JP ← J · P ; // *only for re-factorization*

3 Rp ← zeros(n, n) ; // init. matrix

4 block division ← run Algorithm 5 on p

5 foreach block indices in block division do // in parallel

6 j1 ← block indices(1)

7 l ← length{block indices}
8 if l == 1 then

9 Rp(j1, j1 : n) ← RP (j1, j1 : n)

10 else

11 j2 ← block indices(end)

12 if DIRECT MODIFICATION then

13 row block ← RP (j1 : j2, j1 : n)

14 else if RE-FACTORIZATION then

15 row block ←
[

marginalsp{j1 − 1}
JP (IJP {j1 : j2}, j1 : n)

]
// calculate transformation

16 square block ← row block(1 : end, 1 : l)

17 {Q′block, square block′} ← qr{square block}
// apply transformation

18 rows′ ← Q′block
T · row block(1 : end, (l + 1) : end)

// assign in the modified matrix

19 Rp(j1 : j2, j1 : j2) ← square block′(1 : l, 1 : end)

20 Rp(j1 : j2, (j2 + 1) : end) ← rows′(1 : l, 1 : end)

6.2.4 Numerical Concerns

We recall that Rp is unique (under the aforementioned conditions), and, thus, all modification
methods should theoretically yield the same matrix. However, the orthogonal transformations
used in the factorization are operations with real numbers, which are inevitably rounded, in order
to be computed in a machine with limited precision. Therefore, two mathematically equivalent
sequences of operations might, in practice, reach different results, due to slight numerical errors.

Altogether, we can divide the modification methods into two categories: direct modification
of R, without re-accessing J (as considered thus far); and methods which, to varying capacity,
involve re-factorization of J , under the new variable order. Direct modification tends to be
faster, as it takes advantage of the original factorization, in which we handled the “heavy load”
of reducing the overdetermined system to a “square” one. When performing direct modification,
we essentially apply additional transformations on top of those which were applied in the original
factorization: Rp = Q′

T · QT · JP . Hence, as a rule of thumb, this approach corresponds to
an overall longer (although theoretically equivalent) series of operations to reach Rp, than if we
were to re-factorize JP (J → R → Rp vs. J → Rp). This may cause the matrix returned by
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Figure 6.3: Applying Algorithm 6 for optimized direct modification of the factor R given p. Blue
borders mark the re-factorized sub-matrices; green-colored entries represent entries of R; orange rep-
resents entries calculated from re-factorization of RP ; yellow represents entries calculated by applying
a pre-calculated transformation; white overlay indicates column permutation. (a) RP and its block
diagonal structure. (b) Applying qr independently on each square block. (c) Deriving Rp by applying
the calculated orthogonal transformations on the remaining elements in the respective rows. (d) The
“correcting” orthogonal matrix Q′ follows the same block structure.

direct modification to be more prone to numerical errors, and, most importantly, to “false” fill-in.
Such errors occur when a series of operations that should accumulate to a zero entry, yields a
slightly different value. This added fill-in can be problematic in sparse systems or sequential
inference, as it can accumulate over time. As each of the approaches has its advantages (as we
shall compare), we follow the previous discussion by addressing modification via re-factorization.

6.3 Modification via Re-factorization

Clearly, as demonstrated in Fig. 6.4a, we can derive Rp by simply re-factorizing the system
under the new variable order:

{Qp,Rp} = qr{JP }. (6.14)

In the top sub-figure, we can see the permuted coefficient matrix Jp, and in the bottom one –
its triangular factor. Yet, this “naive” solution is far from efficient; as we can see, this solution is
oblivious to the original factorization, and all entries of Rp are calculated from scratch. As we
shall formulate, it is possible to take advantage of the original factorization, and perform smart
partial re-facatorization of Jp.

6.3.1 Optimized Re-factorization

As covered in Chapter 3.2, state-of-the-art approaches for incremental smoothing and mapping
perform incremental updates to R, at the arrival of new constraints (i.e., addition of rows to J).
Although we do not consider addition of constraints, but only reordering of J ’s columns, we can
still utilize this idea here, to efficiently calculate Rp from JP , as visualized in Fig. 6.4b. Of
course, we recall that such calculation requires caching of the marginals in the original factor-
ization process. Nonetheless, this method is not optimized for pure variable permutation, as we
consider here; we can improve it by utilizing our previous conclusions. From Proposition 1, we
know that not only the top rows of R are preserved in the permutation, but also the bottom
ones. So, similarly to (6.8), we can also “skip” the factorization of rows IJP {jlast +1 : n} of JP ,
and factorize only rows IJP {jfirst : jlast}, which, together with the permuted marginal factors,
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(a) (b) (d)(c)

Figure 6.4: Modification via re-factorization. Blue borders mark the re-factorized sub-matrices; teal-
colored entries represent entries of J (i.e., factors); green represents entries of R; purple represents
marginal factors; red represents entries calculated from re-factorization of J ; yellow represents entries
calculated by applying a pre-calculated transformation; white overlay indicates column permutation.
(a) Naive/complete re-factorization. (b) iSAM2-style incremental factorization, starting from the first
permuted variable. (c) Utilizing the local effect of variable reordering. (d) Optimized re-factorization, as
described in Algorithm 6; utilizing block independence and efficient block modification; the highlighted
blocks can be factorized in parallel.

yield rows jfirst : jlast of Rp, i.e.,

qr

{[
marginalsp{jfirst − 1}

JP (IJP {jfirst : jlast}, jfirst : n)

]}
. (6.15)

This improvement is visualized in Fig. 6.4c. We note that here, unlike in direct modification, it
is possible that the triangular block resulting from this re-factorization would contain additional
rows, representing residual marginals factors; such rows can be trimmed, to be left only with the
relevant rows of Rp.

Furthermore, we can also utilize the concept of block independence, and divide rows
IJP {jfirst, jlast} of JP into smaller independent row blocks, which can be factorized in par-
allel – just like we considered in direct modification. Here, though, to every row block we shall
add its relevant marginal factors (which were pre-cached). Finally, in each of these row blocks, we
can separate the calculation of the orthogonal transformation from its application, as previously
suggested. For a block of rows of JP (with the marginal factors), representing l rows of Rp, it
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is sufficient to examine its first l columns, in order to calculate the desired transformation. Only
then we shall apply it to the remaining columns of that row block. We note, though, that in
this case, this sub-block is not necessarily square, as the number of rows to re-factorize may be
greater than the rank of the block. Application of these two concepts is visualized in Fig. 6.4d,
and the overall optimized modification method is summarized in Algorithm 6. Also, we recall
that formation of the orthogonal matrix Qp is often not needed, as the transformations can be
directly applied on the system’s (cached) RHS vector, during the factorization. If still needed, we
can derive Qp from its blocks through appropriate row-index tracking. Alternatively, once Rp
is found, Qp can be easily found as well, by calculating Q′ = RP ·Rp−1 (where Qp = Q ·Q′).

6.4 Experimental Results

We would now like to demonstrate the advantages of our optimized modification technique, pro-
vided in Algorithm 6, in a realistic scenario. Therefore, we again solved a sequential SLAM
simulation (as brought in detail in Section 4.4), in which we estimated the trajectory of a ground
robot navigating in an unknown environment. At the end of the trajectory, the state vector
contained nearly 400 (three-dimensional) poses. We then extracted the coefficient (Jacobian)
matrix J , and the square root matrix R = qr{J}, to be used in this demonstration; the spar-
sity pattern of these matrices can be viewed in Figs. 6.5a and 6.5b, respectively. We examined
three variants of direct modification: naive (i.e., qr{RP }); our optimized algorithm; and our
optimized algorithm, while allowing parallel modification of independent blocks. We also exam-
ined four variants of modification via re-factorization (visible in Fig. 6.4): naive, i.e., complete
re-factorization; incremental re-factorization, matching iSAM2; and our optimized algorithm,
with and without parallelization. For fairness, our implementation of all variants relied on the
standard qr function in MATLAB. To attain unbiased results, we generated 100 random pose
permutations, to be used for comparison. In order to still keep the number of blocks consistent,
when generating each permutation, we first randomly selected two blocks of variables, each with
a random number of poses, and within each of those, generated a random pose permutation.

The average results of applying these permutations, for each of the compared algorithms, are
summarized in Table 6.1; the table presents the execution time, and the number of NZs (NNZ),
indicating the added fill-in due to numerical errors. The sparsity pattern of the modified factor
Rp (considering a typical permutation) can be seen in Fig. 6.5c and Fig. 6.5d. Several observa-
tions can be made. First, the NNZ within each algorithm category is consistent, though direct
modification generally yields additional fill-in in comparison to re-factorization. Nonetheless, in
terms of execution time, direct optimization beats re-factorization by a large margin. As we
expected, even without parallelization, in each category, our optimized algorithm achieves signif-
icantly better performance in comparison to the baseline methods. Allowing parallel computing
can obviously further improve the performance, in direct relation to the number of concurrently
modified blocks.

Table 6.1: Comparison of modification algorithms.

Category Algorithm Runtime (ms) NNZ

Direct modification
Naive 87 390k
Optimized 13 392k
Optimized (parallel) 11 392k

Re-factorization

Naive 336 304k
Incremental (iSAM2) 229 304k
Optimized 83 307k
Optimized (parallel) 70 307k
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Figure 6.5: The sparsity pattern of the coefficient matrix J (a), its upper triangular factor R (b), and
the modified factor Rp, calculated using the two variants our optimized modification algorithm: direct
modification (c), and re-factorization (d).



Chapter 7

Conclusion

In an attempt to allow efficient solution of decision problems, and, specifically, high-dimensional
belief space planning (BSP) problems, we introduced a new conceptual solution paradigm, via
conscious simplification of the problem. To conclude, let us summarize our contributions, and
discuss some of the potential extensions of this work.

Theoretical Framework We started by suggesting a general theoretical framework for for-
mulation of optimality guarantees for simplified decision making. To provide such guarantees, we
presented a novel analysis approach, by measuring the simplification offset, which represents the
size of (confidence) intervals for the candidates’ values. We explained how to translate these in-
tervals to two types of loss guarantees: pre-solution and post-solution guarantees. We explained
how we can optimally utilize intervals which are deterministic, probabilistic, asymmetric, and
even of different sizes. We also presented the idea of action consistency, and explained how
to mitigate simplification bias. This analysis approach also allows us to identify sub-optimal
actions, based on a simplified solution, and perform fast action elimination; this is particularly
useful when considering sequential refinement of the solution. Since the framework separates
interval derivation from the guarantee formulation, we can potentially use this framework to
examine various problem domains and simplifications.

Belief Sparsification We then addressed the challenging problem of decision making in the
belief space. We recognized that examining beliefs over high-dimensional states (“smoothing”)
can help us to improve accuracy and generality; yet, this paradigm makes the problem extremely
challenging, due to the “curse of dimesionality”, which is exponentially amplified during planning.
Practically, we claimed that for identification of the best candidate action, we can utilize a
sparse approximation of the initial belief, and provided a scalable algorithm for generation of
such sparse approximations. This versatile algorithm can generate approximations of different
degrees, based on the subset of state variables selected for the sparsification. Using our theoretical
framework, we identified that by considering the problem’s uninvolved variables, we can provide
an approximation which is guaranteed to preserve the action selection, and induces no loss. In
any case, this approximation does not compromise the accuracy of the state inference process,
as, after selecting an action, it should be applied on the original belief, which remains exact.

PIVOT We followed by presenting another novel idea to improve the efficiency of planning in
the belief space, with no sacrifice in accuracy. First, we recognized that the order of variables
in the current belief, as expressed in its “square root matrix” R or Bayes net, determines which
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subset of them would be affected by an upcoming update. We also recognized that during
planning, to evaluate the different candidates, we should perform multiple such updates on
the same belief, “in parallel”. Thus, when facing such a scenario, we suggested to perform a
precursory optimization to the variable order (i.e., belief representation), in order to reduce the
total computational cost of the following updates. We referred to this reordering paradigm as
PIVOT: Predictive Incremental Variable Ordering Tactic, and presented two of its variants: the
basic and inherently incremental variant, which is easily derived by identifying the involvement
classes of the state variables; and an optimized variant, which also takes into consideration fill-
reduction during variable classification and ordering. Essentially, these orders help reducing the
update cost by bringing forwards “loop closing variables” in the variable order, and sparing the
update of “uninvolved variables”, as identified by the candidate updates.

We also saw that as a “by-product” of applying the tactic, we are able to improve the efficiency
of the state inference process: if we maintain the PIVOT order after the planning session, and
our prediction is in-line with the ground truth during execution, then we would similarly reduce
the cost of loop closures, when they actually occur. This benefit is derived from a wider view
of the system, which considers both the state inference, and planning processes. If we were to
examine only the inference process, there would be no point in actively altering the variable order
in the initial belief, as the cost of such reordering would be equivalent to actually performing the
original update.

Efficient Square Root Modification To support PIVOT, we addressed the problem of mod-
ifying the upper triangular matrix R, to convey this reordering of the variables. We identified
three main contributions, to allow efficient computation. First, variable reordering has only a
local effect on the factor; meaning, R is affected only between its rows which correspond to
the first and last permuted variables. Second, this row block can be divided into independent
sub-blocks, which can be modified independently, and even in parallel. Third, to modify each of
these blocks, it is sufficient to examine only the square portion of it, around the matrix diagonal,
in order to derive the transformation required for the modification. We utilized these conclusions
in a novel modification algorithm, and examined two variants of it: directly modifying R, and
combining (partial) re-factorization. As our simulation proves, the first enjoys lower computation
time, while the latter enjoys higher accuracy. Nonetheless, considering either variant, our opti-
mized algorithm significantly improves the performance over state-of-the-art. Overall, as the two
variants show superiority in different criteria, selecting the one to use in a matter of preference.

Demonstration To prove the benefits of our ideas, we applied them in several experiments.
We started by utilizing belief sparsification in a highly realistic active SLAM simulation. There,
we showed that using sparsification of the uninvolved variables, planning time can be significantly
reduced, while, as mentioned, guaranteeing no loss in the quality of solution. We then showed that
planning time can be reduced even further, if using full sparsification (i.e., sparsifying all the state
variables); in practice, for this configuration, we experienced no loss in the quality of solution,
as well. Nonetheless, we demonstrated how, using our theoretical framework, the potential loss
can be bounded. We further demonstrated the utilization of our theoretical framework, by
performing action elimination, based on sparsified beliefs, in a sensor placement simulation. We
even demonstrated (in Appendix A) how to derive the (probabilistic) offset for a sampling-based
simplification, and showed that it was only dependent on the number of samples, and can hence
be derived pre-solution.

Finally, we demonstrated the effectiveness of PIVOT, by applying it to the same active-SLAM
simulation. There, we solved the sequence of planning and state inference sessions, using various
variable ordering tactics. We proved that, using PIVOT, we were able to significantly reduce the
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computation time of both the planning and inference, with only a slight increase in fill-in (the
memory footprint), and with no sacrifice in accuracy. In that experiment, we also utilized our
square root modification algorithm, to practically apply the PIVOT order.

Future Work The proposed paradigm offers many possible future research directions. In
general, other belief simplification methods, besides the provided sparsification algorithm, can
be used in similar ways. We can also examine other simplification methods, such as altering
the action set or the objective function. Developing simplification methods for more general
beliefs, such as multi-modal Gaussians, can hold important practical significance. In any case,
the impact of all these methods on the action selection and the potential loss can be examined
using our framework. In fact, we can use the framework as a basis to design simplification
methods. For example, we can start by asserting a constraint on the offset, and then attempt
to reverse-engineer the expression, in order to understand in what manner the belief can be
simplified, without violation. It would also be valuable to utilize the framework to quantify the
loss in optimality due to model uncertainty.

In the context of PIVOT, since it does not make any assumptions on the belief structure, it
would be interesting to verify its benefits when applied to other belief topologies, such as in full-
SLAM (vs. pose-SLAM), or when considering non-binary factors. We may also be able to further
optimize the order, by utilizing more advanced fill-reducing concepts, such as graph dissection
(Krauthausen et al., 2006), or the Bayes tree (Kaess et al., 2010). These concepts can also be
utilized to improve our square root modification algorithm, if we can first generalize it to support
beliefs which are represented with graphical models (and not only matrices). Finally, we may
also be able to examine the applicability of PIVOT to other contexts, such as multi-hypothesis
or multi-modal beliefs (Pathak et al., 2018), where we might also face branching belief updates.

Overall, with the versatility of these ideas, we hope this work will prove to yield a significant
contribution to the research community.
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Appendix A

Simplified Decision Making:
Probabilistic Simplifications

A.1 Analyzing Probabilistic Asymmetric Simplifications

A.1.1 Probabilistic Simplification Loss: Formalizing Near-Optimality

We now wish to extend our theoretical framework which we presented in Chapter 2, to allow
derivation of probabilistic simplification guarantees. Such guarantees are especially usable when
analyzing simplification methods which have a stochastic component; e.g., we may consider
the objective function V (3.27), which we previously defined for planning in the belief space,
and which often must be approximated, via sub-sampling of random hypotheses. For such
simplifications, it is often impossible to provide “absolute guarantees”, as considered before, and
we thus prefer to seek more lenient guarantees, which hold with a certain confidence level. We
begin by defining:

Definition 7. Consider a decision problem P (as previously defined), and a candidate action a
(a hypothesis). The candidate is (ε, α)-near optimal, with confidence level 1−α ∈ [0, 1] and loss
limit ε ∈ [0,∞], if it satisfies

P(loss ≤ ε) ≥ 1− α, where loss
.
= V (ξ, a∗)− V (ξ, a), (A.1)

where a∗
.
= argmaxa∈A V (ξ, a) is the optimal candidate.

In our context, we typically consider the hypothesis to be returned as the solution of a sim-
plified decision problem Ps, i.e., the candidate which yielded the highest approximated value
Vs(ξs, a). The definition can thus be viewed as a generalization of the simplification loss (Def-
inition 2), which now considers the loss to be a random variable, and requires it to be in the
(confidence) interval [0, ε], with confidence 1− α.

A.1.2 Probabilistic Simplification Offset

Similarly to the loss, we can also extend the notion of simplification offset (Definition 3), by
allowing it to be probabilistic, and match the structure of a confidence interval.
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Definition 8. Considering a confidence level 1−α ∈ [0, 1], the (1−α)-confidence simplification
offset of a candidate a ∈ A is

δα(P,Ps, a)
.
= min{ε ∈ R+ | P(|V (a)− Vs(a)| ≤ ε) ≥ 1− α}. (A.2)

Overall, the (1− α)-confidence simplification offset between P and Ps is

∆α(P,Ps)
.
= max

a∈A
{δα(P,Ps, a)} (A.3)

Meaning, δα(V, Vs, a) is the minimal limit ε, for which we can guarantee with at least 1− α
confidence, that the offset of a does not exceed. When α = 0, this definition reduces back to
the original deterministic offset. Again, we may extend this notion, by measuring the lower and
upper offsets separately:

Definition 9. Considering confidence levels 1−α1, 1− α2 ∈ [0, 1], the (1−α1, 1−α2)-confidence
simplification offset of a candidate a ∈ A is

δ(α1,α2)(P,Ps, a)
.
= (δα1

(P,Ps, a), δα2
(P,Ps, a)), (A.4)

where

δα1
(P,Ps, a)

.
= min{ε1 ∈ R+ | P(V (a)− Vs(a) ≥ −ε1) ≥ 1− α1, } (A.5)

δα2
(P,Ps, a)

.
= min{ε2 ∈ R+ | P(V (a)− Vs(a) ≤ ε2) ≥ 1− α2.} (A.6)

Overall, the (1− α1, 1− α2)-confidence simplification offset between P and Ps is

∆(α1,α2)(P,Ps)
.
= (∆α1

(P,Ps),∆α2
(P,Ps)), (A.7)

where

∆α1
(P,Ps)

.
= max

a∈A
{δα1

(P,Ps, a)}, (A.8)

∆α2(P,Ps)
.
= max

a∈A
{δα2(P,Ps, a)}. (A.9)

According to Fréchet inequalities Fréchet (1935), we know that the intersection of any two
events A and B, satisfies

P(A ∩B) = P(A) + P(B)− P(A ∪B) ≥ P(A) + P(B)− 1. (A.10)

Thus, for every a ∈ A, the probability (confidence) for the upper and lower offsets – δα1
(a) and

δα2
(a) – to hold simultaneously is ≥ 1− (α1 +α2). When this occurs, the combination of the two

events conveys a(n asymmetric) confidence interval for the real value V (a), around the respective
simplified value Vs(a), such that

P
(
Vs(a)− δα1

(a) ≤ V (a) ≤ Vs(a) + δα2
(a)
)
≥ 1− (α1 + α2). (A.11)

For each a, this interval over V (a) is contained between the Upper Confidence Bound (UCB),
and the Lower Confidence Bound (LCB). As mentioned, the offset represents only the size of
this interval, and not its location on the value axis (which is around Vs(a)).
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A.2 From Offset to Loss Guarantees & Action Elimination

A.2.1 Post-Solution Loss Guarantees

Again, let us first focus on deriving “post-solution” guarantees. Thus, assume we have indeed
solved the simplified problem Ps (i.e., calculated Vs(a), ∀a ∈ A).

As we recall, in our context, the loss is defined as: V (a∗)− V (a∗s), where a∗s is the selected
candidate. Surely, we do not have access to the real values, but let us consider that for each
a ∈ A, we know the (1 − βa, 1 − γa)-confidence offset, δ(βa,γa)(a), and, by such, a confidence
interval for V (a) (as defined in (A.11)). Given this knowledge, which we later clarify how to
practically reach, we wish to provide guarantees for the loss of the solution.

By definition, the “highest” interval, i.e., the one located around the maximal Vs(a), corre-
sponds to the selected candidate a∗s (otherwise, it would not have been selected). Let us mark
the respective offset of this candidate as δ(β∗s ,γ∗s )(a

∗
s).

Now, let us assume the real optimal candidate a∗ is not actually the selected candidate a∗s,
but another candidate a. From the definition of the offset we know that

P(V (a∗s) ≥ Vs(a∗s)− δβ∗s (a∗s)) ≥ 1− β∗s (A.12)

P(V (a) ≤ Vs(a) + δγa(a)) ≥ 1− γa (A.13)

Note that unlike before, these are the upper and lower bounds of different candidates. The
probability (confidence) for the two events examined in (A.12)-(A.13) to happen simultaneously
is ≥ 1− (β∗s + γa). When this occurs, we can infer that:

loss(P,Ps) ≤ max{εa, 0}, where εa
.
= δβ∗s (a∗s) + δγa(a)−

(
Vs(a

∗
s)− Vs(a)

)
. (A.14)

with at least 1−min{αa, 1} confidence, where αa
.
= β∗s + γa. Note that we limited the loss and

confidence levels to their correct range: αa must be ≤ 1, and εa must be ≥ 0.
As we recall, the loss limit εa, is determined by the overlap of the confidence interval of a,

with the interval of a∗s. If the pair of intervals do not overlap, i.e., the upper bound for the value
of a is lower than the lower bound for the value of a∗s, i.e.,

Vs(a
∗
s) + δβ∗s (a∗s) > Vs(a) + δγa(a), (A.15)

then it implies that εa should be negative. Thus, a could not actually have been the real optimal
action in the first place, and we can infer that this candidate is probably sub-optimal (with 1−αa
confidence), and can eliminate this candidate.

Surely, we do not actually know which candidate is the real optimal candidate a∗. We should
thus perform this interval overlap analysis for each candidate a 6= a∗s, assuming it is the optimal
candidate. If there are remaining, un-eliminated candidates (besides a∗s), we may return only the
most conservative guarantee – that the solution is (max{ε, 0},min{α, 1})-near optimal, where

ε = max
a6=a∗s
{εa}, (A.16)

α = max
a6=a∗s
{αa}. (A.17)

A.2.2 Optimized Guarantees: Balancing α and ε

The overlap of each pair of intervals is determined by their location (on the value axis) and their
size. As mentioned, their location is set around the respective approximated values Vs(a), which
we consider here to be set; however, their size, which is represented with the offset, may vary.
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In the previous discussion, we implicitly assumed that we only had access to a single confidence
interval for each candidate (with specific size and confidence level). However, from the nature of
confidence interval derivation (as we shall see), it is likely that we have a “span” of intervals per
candidate, matching a range of confidence levels. For example, we are likely to know δγa(a), as a
function of γa, for every γa ∈ [0, 1]. There is a positive correlation between the interval size and
confidence level; i.e., increasing the confidence level increases the size of the interval, and vice
versa. This arises a question: when performing the interval overlap analysis, which intervals to
consider for each candidate, in order to optimize the yielded guarantees? The answer depends
on what we care to provide:

Confidence constraint given a confidence level 1 − α, we wish to return the minimal loss
limit ε (i.e., the tightest loss bound), which we can guarantee not to surpass, with at least 1−α
confidence. In this case, we wish to find ∀a 6= a∗s:

εαa = min
β,γ

{
δβ(a∗s) + δγ(a)

}
− (Vs(a

∗
s)− Vs(a)), (A.18)

where
1− α ≤ 1− (β + γ) ≤ 1. (A.19)

Of course, when possible, for each a, the minimal overlap will occur on the lower edge of the
inequality constraint, i.e., when we require the minimal confidence levels, and hence minimize the
size of the intervals. Then, we can infer that the simplified solution is (max{maxa6=a∗s{ε

α
a}, 0}, α)-

near optimal.

Loss constraint given an upper limit for the loss ε, we wish to return the maximal confidence
level 1− α, with which we can guarantee not to surpass this limit. In this case, we wish to find
∀a 6= a∗s:

αεa = min
δβ(a∗s), δγ(a)

{β + γ}, (A.20)

where
0 ≤ δβ(a∗s) + δγ(a)−

(
Vs(a

∗
s)− Vs(a)

)
≤ ε. (A.21)

Of course, when possible, for each a, the maximum confidence will occur on the upper edge
of the inequality constraint, i.e., when we maximize the size of these intervals, and hence the
confidence we have in them. For example, when asked to return the confidence level of hav-
ing no loss (i.e., that ε = 0), we shall utilize the intervals of maximal size which do not
overlap, i.e., pairs of “touching” intervals. Then, we can infer that the simplified solution is
(ε, min{maxa6=a∗s{α

ε
a}, 1})-near optimal.

In both options, if in one of these minimizations, we do not have access to intervals which
satisfy the constraints, then we cannot provide a loss guarantee with the given requirement (and
should try to tighten the offset first).

As demonstrated in Fig. A.1, the purpose of these minimizations is to give the best guarantee,
given our knowledge. It is surely possible that the minimum αεa/εαa would be achieved for a pair
of asymmetric intervals. Also, it is possible that for each a, the minimum αεa/εαa would rely on
a different interval for a∗s (in a different confidence level). This means that overall, we rely on
multiple intervals of a∗s, to provide the tightest guarantee, and eliminate sub-optimal candidates.
Nonetheless, for each minimization, considering any pair of confidence intervals which satisfies
the constraint would be enough to provide a certain guarantee. Thus, for a possibly simpler
guarantee derivation, we can, e.g., assume the intervals are symmetric around Vs and/or of
equal size for each action (i.e., that β = γ, ∀a); of course, these assumptions may lead to overly
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Figure A.1: Derivation of optimized probabilistic loss guarantees via interval overlap analysis. The
two top sub-figures demonstrate that two interval pairs, which respect the same confidence constraint,
can result in different overlaps (loss bounds). The two bottom pairs respect the same loss (overlap)
constraint, but convey guarantees of different confidence levels.
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conservative guarantees. When requiring ε = 0, for each a, 1−min{α0
a, 1} conveys the confidence

level with which we can eliminate a, and 1−min{maxa 6=a∗s{α
0
a}, 1}) conveys the confidence level

with which all actions but a∗s can be eliminated; this is the probability that the simplified solution
is the optimal solution!

A.2.3 Pre-Solution Loss Guarantees

In the previous analysis we explained how to provide guarantees via post-solution analysis. Now,
assume instead that we want to perform pre-solution analysis. Thus, let us now assume that we
have access to the (1− βa, 1− γa)-confidence offset of each candidate a, but not to a calculated
solution. Looking back at (A.14), we recall that the upper loss limit εa conveys the overlap of
the confidence intervals of a and a∗s. However, since we do not have access to the location of the
intervals, we have no choice but be conservative, and assume the intervals are located around
the same value, in order to consider the maximal potential overlap for each pair of intervals.
Meaning, we can (only) infer that

εa ≤ δβ∗s (a∗s) + δγa(a) (A.22)

with at least 1−min{αa, 1} confidence, where αa
.
= β∗s + γa.

From (A.16)-(A.17), we recall that since we did not know which action is actually a∗, in
order to provide the loss guarantee, we had to be conservative, and take the maximal εa and αa,
considering every a 6= a∗s. Now, we also do not know which of the candidates is a∗s; we thus need
to examine the overlap between the intervals of every possible pair of candidates, i.e.,

εa′,a = δβa′ (a
′) + δγa(a) (A.23)

αa′,a = βa′ + γa (A.24)

Then, we can conservatively conclude that simplified solution is (ε,min{α, 1})-near optimal,
where

ε = max
a′ 6=a
{εa′,a} ≤ max

a∈A
{δβa(a)}+ max

a∈A
{δγa(a)} (A.25)

α = max
a′ 6=a
{αa′,a} ≤ max

a∈A
{βa}+ max

a∈A
{γa} (A.26)

If we mark the minimal confidence levels among the lower and upper offsets of every a ∈ A
with 1− β and 1− γ (respectively), then these expressions conveniently reduce to

ε ≤ ∆β + ∆γ (A.27)

α ≤ β + γ (A.28)

Thus, given ∆(β,γ), the (1−β, 1− γ)-confidence offset between P and Ps, we can guarantee that

the simplified solution is (∆β + ∆γ , min{β + γ, 1})-near optimal. Indeed, since this conclusion
depends only on the definition of Ps, and not on the calculated values Vs(a), we can reach this
conclusion before calculating the solution. We summarize this claim in the Lemma 9:

Lemma 9. If
∆(α1,α2)(P,Ps) ≤ (ε1, ε2), (A.29)

then
loss(P,Ps) ≤ ε1 + ε2, (A.30)

with at least 1− (α1 + α2) confidence.
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A.3 Practical Application: Empirical Value Estimation

To demonstrate the practical application of this type of probabilistic guarantee derivation, we
may examine our previous formulation of decision making in the belief space. There, we encoun-
tered the value function V (3.27), which, for an initial belief bk and candidate policy π, returned
the expected accumulated discounted reward (“the expected return”), after applying the policy.
We then explained that even though the belief can be propagated parametrically (for each real-
ization of Z), when the observation space is continuous (or just too large), the expectation in V
cannot be calculated analytically, but only be empirically estimated via sampling of hypotheses.

Thus, let us mark with Vm a simplified value function, which we define as the empirical
mean of the return, using m independently sampled (i.i.d.) hypotheses. We can then use our
framework to examine the loss between a decision problem P .

= (b0,Π, V ) and its simplification
Pm

.
= (b0,Π, Vm). Interestingly, here, we do not actively simplify the problem, as we consid-

ered before (via sparsification of the initial belief); instead, the empirical value estimation acts
as an “inherent” simplification of an otherwise unattainable original value function. We may
nonetheless utilize our framework to quantify its effect on the solution.

A.3.1 Calculating the Offset

For a candidate policy π ∈ Π, and confidence levels 1 − β, 1 − γ, we want to derive the offset
δ(β,γ)(P,Pm, π). As explained, for each candidate, this offset represents the size of a confidence
intervals for the real (unknown) value V (b0, π). We shall start by mentioning that if nothing is
known about the distribution of the return, then it is impossible to derive confidence bounds
for its mean, due to its sensitivity to the distribution tails (as stated by Bahadur and Savage
(1956)). Otherwise, we can generally consider two approaches: (1) deriving parametric confidence
intervals, if we know the family of the return distribution; and (2) deriving non-parametric
confidence intervals, which rely on other limitations on the distribution.

For conciseness, in the following discussion, we demonstrate how to derive such confidence
intervals when the return distribution has a bounded support [a, b]. Under this assumption,
as shown by Anderson (1969), based on empirical CDF estimation, we can derive confidence
intervals for the true mean, such that:

P
(
V (π)− Vm(π) ≥ −ε′ · (b− a)

)
≥ 1− α, (A.31)

P
(
V (π)− Vm(π) ≤ ε′ · (b− a)

)
≥ 1− α, (A.32)

where ε′ =

√
ln 1

α

2m
, ∀α ∈ [0, 1]. (A.33)

From the definition of the offset, we can easily conclude that

δα(V, Vm, π) = δα(V, Vm, π) =

√
ln 1

α

2m
· (b− a) (A.34)

This conclusion also matches Hoeffding’s inequality (Hoeffding, 1994). Yet, we may easily con-
sider other concentration inequalities (Boucheron et al., 2013), or consider other assumptions, to
calculate the offset even when the return distribution support is unbounded.
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A.3.2 Deriving Guarantees

We note that, as previously claimed, the offset calculated in (A.34) does not depend on the
approximated values nor the actual sampled hypotheses, but only on their number m. Thus,
using this offset, we can derive “pre-solution” guarantees for the simplified decision problem, as
covered in Section 2.2.2. From Lemma 9, we may conclude that using Vm as a simplified value
function (i.e., evaluating each candidate with at least m hypotheses) yields a solution which is

(2 ·
√

ln 1
α

2m · (b− a), 2α)-near optimal, ∀α ∈ [0, 0.5].

We can also yield (optimized) “post-solution” guarantees, for a specific solution, as previously
explained in Section A.2.2. For even greater generality, let us allow every candidate to be
evaluated with a different number of hypotheses; let us thus assume π∗s is evaluated with m∗s
hypotheses, and every other candidate π is evaluated with mπ hypotheses. Now, we recall that
when asked to provide guarantees, two types of constraints can be given, and each requires solving
a set of minimization problems (A.18)-(A.21), in order to optimize the returned guarantee.

Confidence constraint α assigning the offset from (A.34) in (A.18) means we shall solve the
following minimization ∀π 6= π∗s :

εαπ = min
β,γ


√ ln 1

β

2m∗s
+

√
ln 2

γ

2mπ

 · (b− a)−
(
Vm∗s (π∗s )− Vmπ (π)

)
(A.35)

where

0 ≤β ≤ α (A.36)

γ = α− β (A.37)

Exploiting the equality constraint leaves us a single degree of freedom (DOF), i.e., an optimization
of a single variable. We can see the minimum depends on the proportion of m1 : m2.

Loss constraint ε by inverting the expression we derived in (A.34), which gives the offset for
a confidence level, we can extract the confidence level from the offset:

exp

(
−2m∗s ·

(
δβ(π∗s )

b− a

)2
)

= β, (A.38)

exp

(
−2mπ ·

(
δγ(π)

b− a

)2
)

= γ. (A.39)

Assigning these expressions in (A.20) means we shall solve the following minimization ∀π 6= π∗s :

αεπ = min
δβ(π∗s ), δγ(π)

{
exp

(
−2m∗s ·

(
δβ(π∗s )

b− a

)2
)

+ exp

(
−2mπ ·

(
δγ(π)

b− a

)2
)}

(A.40)

where

0 ≤ δβ(π∗s ) ≤ ε+
(
Vm∗s (π∗s )− Vmπ (π)

)
(A.41)

δγ(π) = ε+
(
Vm∗s (π∗s )− Vmπ (π)

)
− δβ(π∗s ) (A.42)

Again, the equality constraint leaves us a single DOF.
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Proofs

The proofs of Lemmas 1,2,3,9 are brought in the main text.

B.1 Lemma 4

Proof.
The properties are trivially given from the definition of action consistency.

B.2 Lemma 5

Proof.
Assume f is a monotonously increasing function, such that for every two actions ai, aj ∈ A

f(V1(ξ1, ai)) = V2(ξ2, ai), f(V1(ξ1, aj)) = V2(ξ2, aj). (B.1)

Then,
f(V1(ξ1, ai)) < f(V1(ξ1, aj)) ⇐⇒ V2(ξ2, ai) < V2(ξ2, aj). (B.2)

Because f is monotonously increasing, then f(x) < f(y) ⇐⇒ x < y, and

V1(ξ1, ai) < V1(ξ1, aj) ⇐⇒ V2(ξ2, ai) < V2(ξ2, aj). (B.3)

Meaning, (ξ1,A, V1) ' (ξ2,A, V2).
Now, to prove the opposite direction, assume (ξ1,A, V1) ' (ξ2,A, V2); hence,

V1(ξ1, ai) < V1(ξ1, aj) ⇐⇒ V2(ξ2, ai) < V2(ξ2, aj). (B.4)

Let us define a new function f on the domain {V1(ξ1, a) | a ∈ A}, such that f(V1(ξ1, a))
.
=

V2(ξ2, a). Given this definition, and the action consistency conditions from (B.4), we can conclude
that

f(V1(ξ1, ai)) < f(V1(ξ1, aj))

⇐⇒ V2(ξ2, ai) < V2(ξ2, aj) ⇐⇒
V1(ξ1, ai) < V1(ξ1, aj). (B.5)

Thus, f is monotonously increasing on its domain.
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B.3 Lemma 6

Proof.
Both directions are a direct consequence of Lemma 5. Assume ∆∗(P,Ps) = 0. Thus, a
monotonously increasing balance function f exists, such that ∆(P,Pfs ) = 0. Meaning, for
every action a ∈ A, f(Vs(ξs, a)) = V (ξ, a). According to Lemma 5, it is sufficient to prove that
P ' Ps.

To prove the opposite direction, assume P ' Ps. Let us define a new function f on the domain
{Vs(ξs, a) | a ∈ A}, such that f(Vs(ξs, a))

.
= V (ξ, a). From this definition, ∆(P,Pfs ) = 0. Also,

according to Lemma 5, this function f is monotonously increasing, and can be used to conclude
that ∆∗(P,Ps) = 0.

B.4 Lemma 7

Proof.
From the definition of the simplification offset, we know that for every monotonously increasing
function f , the following is true:

|V (ξ, a∗)− f(Vs(ξs, a
∗))| ≤ ∆(P,Pfs ), (B.6)

|V (ξ, a∗s)− f(Vs(ξs, a
∗
s))| ≤ ∆(P,Pfs ). (B.7)

Removing the absolute values surely does not compromise the inequalities:

V (ξ, a∗)− f(Vs(ξs, a
∗)) ≤ ∆(P,Pfs ), (B.8)

f(Vs(ξs, a
∗
s))− V (ξ, a∗s) ≤ ∆(P,Pfs ). (B.9)

By adding the two inequalities, and utilizing the definition of the loss, we get:

loss(P,Pfs ) + f(Vs(ξs, a
∗
s))− f(Vs(ξs, a

∗)) ≤ 2 ·∆(P,Pfs ). (B.10)

From the definition of a∗s, we know that

Vs(ξs, a
∗
s)) ≥ Vs(ξs, a∗). (B.11)

Since f is monotonously increasing, then also

f(Vs(ξs, a
∗
s))) ≥ f(Vs(ξs, a

∗)), (B.12)

f(Vs(ξs, a
∗
s)))− f(Vs(ξs, a

∗)) ≥ 0. (B.13)

Thus, we can infer that

loss(P,Pfs ) ≤ 2 ·∆(P,Pfs ). (B.14)

Since the final statement is true for any monotonously increasing function f , we may conclude
the desired upper bound over the loss,

loss(P,Ps) ≤ 2 ·∆∗(P,Ps) (B.15)
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B.5 Lemma 8

Proof.
Let us examine three decision problems P1,P2,P3, where Pi

.
= (ξi,A, Vi). Now, for each two

problems Pi,Pj , we mark aij ∈ A as the action, and fij as the function, for which ∆∗(Pi,Pj)
.
=

δ(Pi,P
fij
j , aij) (the values can be chosen arbitrarily from all values which comply to the equation).

According to this notation we can conclude:

∆∗(P1,P2) + ∆∗(P2,P3)
.
=

δ(P1,Pf122 , a12) + δ(P2,Pf233 , a23) ≥

δ(P1,Pf122 , a13) + δ(P2,Pf233 , a13)
.
=

|V1(ξ1, a13)− f12(V2(ξ2, a13))|+ |V2(ξ2, a13)− f23(V3(ξ3, a13))| ≥
|V1(ξ1, a13)− f12(V2(ξ2, a13)) + V2(ξ2, a13)− f23(V3(ξ3, a13))| .= (??).

(B.16)

Let us define the following scalar function:

F (x)
.
= f23(x) + f12(V2(ξ2, a13))− V2(ξ2, a13) = f23(x) + constant. (B.17)

Since f23 is a monotonously increasing, so is F , and

(??) = |V1(ξ1, a13)− F (V3(ξ3, a13))| .=
∆(P1,PF3 , a13) ≥

∆(P1,Pf133 , a13) =

∆∗(P1,P3).

(B.18)

Hence, ∆∗ satisfies the triangle inequality.

B.6 Corollary 1

Proof.
Let us mark as Rp

s the sparsified square root matrix, before permuting the variables back to their
original order in line 8 of Algorithm 3. First, we show that applying the reverse permutation
P�P T on Rp

s indeed leads to a square root of the sparse information matrix Λs (in the original
order):

(PRp
sP

T )T (PRp
sP

T ) = PRp
s
TRp

sP
T = PΛp

sP
T = Λs, (B.19)

where Λp
s is the sparsified information matrix, before permuting the variables back.

Now, we want to examine the shape of the matrix Rs
.
= PRp

sP
T , and show that it is indeed

triangular. According to the Algorithm 3, before executing line 8,Rp
s is of the following structure:

Rp
s =

(
diagonal 0

0 triangular

)
, (B.20)

where the rows of the diagonal block correspond to the sparsified variables. Without losing
generality, we should only prove that applying a permutation of the form p′: (1, . . . , n) 7→
(2, . . . , i, 1, i+ 1, . . . , n) on this matrix (i.e., “pushing forwards” one of the sparsified variables),
does not break the triangular form. Hence, assuming P T is the column permutation matrix
matching such p′, let us look at
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Rs
.
= PRp

sP
T =

P


d ∈ R 0 . . . 0

0
...
0

triangular

P T =



0
...
0

triangular ∗

d 0 . . . 0 0 . . . 0
0
...
0

0 triangular


P T =



triangular

0
...
0

∗

0 . . . 0 d 0 . . . 0

0

0
...
0

triangular


. (B.21)

Recursively utilizing this conclusion, for more intricate permutations, proves that Rs is indeed
triangular, whenever permuting the sparsified variables back to their original order, as desired.

B.7 Theorem 1

Proof.
Consider a belief b = N (X∗,Λ−1), where the state contains n1 uninvolved variables and n2

involved variables, such that n = n1 +n2 is the prior state size. Also consider the simplified belief
bs = N (X∗,Λ−1

s ), in which all uninvolved variables were sparsified, by applying Algorithm 3.
We mark with P the (column) permutation matrix that positions all the involved variable

at the end of the state. Now, let Rp be the Cholesky factor of the permuted information matrix
Λp .

= P TΛP , such that Λp = RpTRp. This Rp can be divided into block form:

Rp .
=

(
Rp

11 Rp
12

0n2×n1 Rp
22

)
, (B.22)

where Rp
11 ∈ Rn1×n1 and Rp

22 ∈ Rn2×n2 are triangular sub-matrices, Rp
12 ∈ Rn1×n2 , and 0n1×n2

is a zero matrix in the specified size. By following the steps of Algorithm 3, we realize that the
returned sparsified information matrix Λs is given as Λs

.
= PRp

s
TRp

sP
T (or, equally, satisfies

P TΛsP
.
= Rp

s
TRp

s), where

Rp
s
.
=

(
Dp

11 0n1×n2

0n2×n1 Rp
22

)
, (B.23)
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and Dp
11 is the diagonal matrix formed by copying the diagonal of Rp

11 (and assigning zero
elsewhere).

We would like to find the simplification offset between the two decision problems P and Ps
(for which b and bs are the initial beliefs, respectively). Let us consider a candidate policy π ∈ Π.
Then, we may derive the following from the definition of the offset and the objective function Ṽ :

δ(P,Ps, π)
.
=
∣∣∣Ṽ (b, π)− Ṽ (bs, π)

∣∣∣ = (B.24)∣∣∣E
H

[H(b)−H(bH)]− E
H

[H(bs)−H(bsH)]
∣∣∣ = (B.25)∣∣∣E

H
[H(bH)−H(bsH)]

∣∣∣ = (B.26)

1

2
·
∣∣∣E
H

[ln|ΛH | − ln|ΛsH |]
∣∣∣, (B.27)

where ΛH and ΛsH represent the posterior information matrices, after updating of the respective
priors, according to the hypothesis H (for the candidate π). For ease of writing, let us use
U ∈ Rh×(n+m) to mark the collective Jacobian corresponding to H (where n+m is the posterior
state size); hence, from the additivity of the information (3.24), the last expression can be written
as

δ(P,Ps, π) =
1

2
·
∣∣∣E [ln∣∣∣Λ̆ +UTU

∣∣∣− ln
∣∣∣Λ̆s +UTU

∣∣∣]∣∣∣, (B.28)

where

Λ̆
.
=

(
Λ 0n×m

0m×n 0m×m

)
(B.29)

is the augmented information matrix (and similarly for Λs).
Now, let us examine the following expression:

#
.
=
∣∣∣Λ̆ +UTU

∣∣∣− ∣∣∣Λ̆s +UTU
∣∣∣, (B.30)

We know that (unitary) variable permutation does not affect the determinant of a matrix,
thus

# =
∣∣∣P̆ T

(
Λ̆ +UTU

)
P̆
∣∣∣− ∣∣∣P̆ T

(
Λ̆s +UTU

)
P̆
∣∣∣ =∣∣∣P̆ T Λ̆P̆ + (UP̆ )T (UP̆ )

∣∣∣− ∣∣∣P̆ T Λ̆sP̆ + (UP̆ )T (UP̆ )
∣∣∣, (B.31)

where

P̆
.
=

(
P 0n×m

0m×n Im×m

)
(B.32)

is the augmented permutation matrix, which keeps the variables added in the update at the end
of the state. Note that if the variables were not originally added to the end of the state, the
permutation P̆ can be easily adapted to enforce this property.

We can also augment the matrix Rp with m empty columns (and similarly for Rp
s):

R̆p .
=

(
Rp

11 Rp
12 0n×m

0n2×n1 Rp
22

)
, (B.33)

and assign the result in #, to yield:

# =
∣∣∣R̆p

T
R̆p + (UP̆ )T (UP̆ )

∣∣∣− ∣∣∣∣R̆p
s

T
R̆p
s + (UP̆ )T (UP̆ )

∣∣∣∣ (B.34)
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This expression can be reorganized to the following form:

# =

∣∣∣∣∣
(
R̆p

UP̆

)T (
R̆p

UP̆

)∣∣∣∣∣−
∣∣∣∣∣∣
(
R̆p
s

UP̆

)T (
R̆p
s

UP̆

)∣∣∣∣∣∣ (B.35)

The two matrices which appear in this expression also follow a block form:(
R̆p

UP̆

)
=

(
Rp

11 Rp
12 0n1×m

0(n2+h)×n1 B

)
, (B.36)(

R̆p
s

UP̆

)
=

(
Dp

11 0n1×(n2+m)

0(n2+h)×n1 B

)
, (B.37)

where

B
.
=

(
Rp

22 0n2×m

U inv

)
, (B.38)

and U inv is a sub-matrix of UP̆ , containing its right n2 +m columns. Since the left n1 columns
of UP̆ correspond to uninvolved variables, we know they may only contain zeros.

Thus, if we mark R̆p
12

.
=
(
Rp

12 0n1×m
)
, then the left term in (B.35) is:∣∣∣∣∣

(
R̆p

UP̆

)T (
R̆p

UP̆

)∣∣∣∣∣ =

∣∣∣∣∣ R
p
11
T
Rp

11 Rp
11
T
R̆p

12

R̆p
12

T
Rp

11 R̆p
12

T
R̆p

12 +BTB

∣∣∣∣∣. (B.39)

From the block-determinant formula (see Harville, 1998), this equals to∣∣∣Rp
11
T
Rp

11

∣∣∣ · ∣∣∣∣R̆p
12

T
R̆p

12 +BTB − R̆p
12

T
Rp

11R
p
11
−1
Rp

11
T−1

Rp
11
T
R̆p

12

∣∣∣∣ = |Rp
11|

2 ·
∣∣BTB

∣∣ (B.40)

The right term in (B.35) is:∣∣∣∣∣∣
(
R̆p
s

UP̆

)T (
R̆p
s

UP̆

)∣∣∣∣∣∣ =

∣∣∣∣ Dp
11
T
Dp

11 0
0 BTB

∣∣∣∣ =
∣∣∣Dp

11
2
∣∣∣ · ∣∣BTB

∣∣ (B.41)

Since Rp
11 and Dp

11 are triangular matrices with the same diagonal, their determinants are
equal (to the product of the diagonal elements). Thus, # = 0, and overall∣∣∣Λ̆ +UTU

∣∣∣ =
∣∣∣Λ̆s +UTU

∣∣∣. (B.42)

This surely means that

ln
∣∣∣Λ̆ +UTU

∣∣∣− ln
∣∣∣Λ̆s +UTU

∣∣∣ = 0. (B.43)

Finally, assigning this expression in (B.28) means that

δ(P,Ps, π) = 0. (B.44)

Since the previous conclusion is true ∀π ∈ Π, this means that

∆(P,Ps)
.
= max

π∈Π
δ(P,Ps, π) = 0, (B.45)

as desired.
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 תקציר

 

לתכנן ולבצע פעולות באופן עצמאי.    םא לאפשר לסוכנים ורובוטי ושל חקר בינה מלאכותית ורובוטיקה ה  העיקרי  היעד 

זו יכולה  ודאות  - אי ;  המצויה בעולם האמיתי  ודאות-על מנת להשיג ביצועים מהימנים, על סוכנים אלה להתחשב באי

נתונים  . באופן מעשי,  עולותפ ביצוע לא מדויק של  מ חיישנים רועשים, או  מסביבות דינמיות,  פעילות במ  , למשל,לנבוע

  י . אמונות שכאלה הן, למעשה, התפלגויות מעל לווקטור דורשים לבחון מצבים הסתברותיים, הידועים כ"אמונות"  אלה

וסביבתו על עצמו  זו היא לאפשר קבלת    תה של עבודתנומטר,  באופן כללי.  מצב, המבטאות את הידע של הסוכן 

האמונה". כדי להגדיר את אופן הפעולה    ים כקבלת החלטות ב"מרחב חודאות, אותה אנחנו מנס - החלטות יעילה תחת אי 

בהתחשב  ולעדכן אותה בהתאם לכך,  ,  ההסתברותית  המיטבי, על הסוכן לצפות את ההתפתחות העתידית של אמונתו

)  מרובות.   מועמדותבפעולות   גבוה  ממימד  מצב  וקטורי  מעל  אמונות  מעל  למשל,  המבטאים,  בחינת  התפלגויות 

מורכבות  שיפור זה מגיע, כמובן, על חשבון  ק השיערוך באופן משמעותי. אמנם,  מסלולים מלאים( יכולה לשפר את דיו 

מטבע הדברים, פתרון    אמת הינו אתגר משמעותי. -בזמן   ות החלטה שכאלה עי ב שפתרון    הגורמת לכך חישובית גבוהה,  

את הפעולות המועמדות תחת פונקציית מטרה כלשהי. בעבודה זו אנו טוענים שלעיתים    חלטה מצריך לאמודהבעיית ה

, לזהות ולפתור בעיית החלטה מפושטת, אשר מובילה  זאת  , ובמקוםמדויק של ערכי הפעולות  ניתן לותר על חישוב 

האמונה ההתחלתית,    –אחד ממרכיביה    כל  על ידי שינוי שלית החלטה  זהה )או דומה(. ניתן לפשט בעי  ת פעולהלבחיר

כדי לתמוך ברעיון    ל יותר.קהמטרה יעשה  פונקציית  כך שחישוב    –ית המטרה או קבוצת הפעולות המועמדות  י פונקצ

ית חדישה ויסודית, אשר מאפשרת לנתח באופן  ט אנו מתחילים בהצגת תשתית תאור   זה, אנו מציגים מספר תרומות. 

שיטת הניתוח    שעלול להיגרם מבחירה של פעולה שאינה מיטבית.  את המיטביות של פעולות, ולכמת את ההפסדרשמי  

לאחר מכן אנו מראים כיצד    הזו גם מאפשרת לנו לזהות פעולות שאינן מיטביות באופן מובטח, ועל כן ניתנות לסילוק.

לרוב  ניתן ליישם את הרעיון של פישוט בעיות בהקשר של קבלת החלטות במרחב האמונה. באופן מעשי, האמונה  

או באמצעות "מטריצת השורש  עבור אמונות מהתפלגות כללית,    כגון גרף אילוצים,  מיוצגת באמצעות מודל גרפי,

ים לפשט את הבעיה  ע לפיכך, אנו מצי  ., עבור התפלגויות נורמליות הריבועי" שהינה משולשת עליונה וממימד גבוה

. קירוב שכזה (המייצגת   מטריצההגרף או  הול של  דילעל ידי בחינה של קירוב דליל של האמונה ההתחלתית )קרי,  

בהתאם לכך, אנו מציגים אלגוריתם מדרגי לדילול    .ותועמדפעולות המבעת בחינת ה   יותר,  יתן לעדכון באופן יעילנ

מניתוח זה ניתן להבטיח שבמקרים    באמצעות התשתית המוצעת.   אמונות, ומנתחים את השפעתו על בעיית ההחלטה

דילול שכז באיכות הפתרון.  מסוימים  להקרבה  גורם  אינו  כלל  להפחתת  ה  נוספת  בהצגה של שיטה  אנו ממשיכים 

וקטור המצב, לפני קבלת ההחלטות.  ו המורכבות החישובית של הבעיה, על ידי אופטימיזציה של סדר המשתנים ב

ה זו כ"טקטיקת  אנו מתייחסים לשיט פעולה זו יכולה לעזור בהפחתת מספר המשתנים שיושפעו בעת עדכון האמונה.  

בהתאם להתפתחות האמונה אותה אנו צופים  מראש,  סידור משתנים הדרגתית נבואית", שכן סידור המשתנים נקבע  

מאליו, ומרמז   ן באופן שאינו מוב מטריצת השורש הריבועילמרבה הצער, שינוי סדר המשתנים גורם לשינוי בעתיד.  

לתיקון    , יעיל ומקבילי  נוסף,   ה זו, אנו מציגים אלגוריתםמחדש. מכאן, על מנת לתמוך בשיטה  על הצורך בחישוב

פתרון בעיות ניווט  ב אנו מדגימים את היתרונות של השיטות המוצעות    ישיר של המטריצה בעת שינוי סדר המשתנים.

אנו   בהן  ניידים,  רובוטים  ידי  על  מעשית  מומיפוי  פגיעה  החישוב, ללא  להביא להפחתה משמעותית בזמן  צליחים 

 בעיות רלוונטיות נוספות כוללות מיקום חיישנים, נהיגה אוטונומית ומניפולציה באמצעות רובוטים.   הפתרון.   באיכות
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