
Original Research Article

The International Journal of
Robotics Research
2022, Vol. 0(0) 1–27
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649221076381
journals.sagepub.com/home/ijr

Simplified decision making in the belief space
using belief sparsification

Khen Elimelech1 and Vadim Indelman2

Abstract
In this work, we introduce a new and efficient solution approach for the problem of decision making under uncertainty,
which can be formulated as decision making in a belief space, over a possibly high-dimensional state space. Typically, to
solve a decision problem, one should identify the optimal action from a set of candidates, according to some objective. We
claim that one can often generate and solve an analogous yet simplified decision problem, which can be solved more
efficiently. A wise simplification method can lead to the same action selection, or one for which the maximal loss in
optimality can be guaranteed. Furthermore, such simplification is separated from the state inference and does not
compromise its accuracy, as the selected action would finally be applied on the original state. First, we present the concept
for general decision problems and provide a theoretical framework for a coherent formulation of the approach. We then
practically apply these ideas to decision problems in the belief space, which can be simplified by considering a sparse
approximation of their initial belief. The scalable belief sparsification algorithm we provide is able to yield solutions which
are guaranteed to be consistent with the original problem. We demonstrate the benefits of the approach in the solution of a
realistic active-SLAM problem and manage to significantly reduce computation time, with no loss in the quality of solution.
This work is both fundamental and practical and holds numerous possible extensions.

Keywords
Decision making under uncertainty, belief space planning, partially observable markov decision process, sparse systems,
sparsification, active simultaneous localization and mapping

1. Introduction

1.1. Background

In this era, intelligent autonomous agents and robots can be
found all around us. They are designed for various func-
tions, such as operating in remote domains, for example,
underwater and space; imitating humans and interacting
with them; performing repetitive tasks; and ensuring safety
of operations. They might be physically noticeable, for
example, personal-use drones, industrial robotic arms, and
military vehicles; or less so, with the popularization of
internet of things (IoT), smart homes, and virtual assistants.
Still, these agents share the same fundamental goal—to
autonomously plan and execute their actions. Yet, the in-
creasing demand for these “smart” systems presents new
challenges: integration of robotic agents into everyday life
requires them to operate in real time, using inexpensive
hardware. In addition, when planning their actions, these
agents should account for real-world uncertainty in order to
achieve reliable and robust performance. There are multiple
possible sources for such uncertainty, including dynamic
environments, in which unpredictable events might occur;
noisy or limited observations, such as an imprecise GPS
signal; and inaccurate delivery of actions.

Also, problems, such as long-term autonomous navi-
gation, and sensor placement over large areas, often involve
optimization of numerous variables. These settings require
reasoning over high-dimensional probabilistic states,
known as “beliefs.” Appropriately, the corresponding
planning problem is known as Belief Space Planning (BSP).
The objective in such a problem is to select “safe” actions,
which account for the uncertainty of the agent’s belief.
Other relevant instantiations include active Simultaneous
Localization and Mapping (SLAM), active sensing, robotic
manipulation, and even cognitive tasks, such as dialogue
management. The BSP problem is often modeled as a
Partially Observable Markov Decision Process (POMDP),
according to which we shall propagate the belief, and

1Robotics and Autonomous Systems Program, Technion—Israel Institute
of Technology, Haifa
2Department of Aerospace Engineering, Technion—Israel Institute of
Technology, Haifa

Corresponding author:
Khen Elimelech, Robotics and Autonomous Systems Program,
Technion—Israel Institute of Technology, Lady Davis Building, Technion,
Haifa 3200 003, Israel.
Email: khen@technion.ac.il

https://orcid.org/0000-0003-1391-8956
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649221076381&domain=pdf&date_stamp=2022-06-02

evaluate the development of uncertainty, considering
multiple courses of action (Kaelbling et al., 1998). Further,
proper uncertainty measures, such as differential entropy,
are expensive to calculate for high-dimensional and con-
tinuous beliefs. Overall, the computational complexity of
the problem can turn exceptionally high, thus making it
challenging for online systems, or when having a limited
processing power.

1.2. Objectives and approach overview

The previous discussion leads us to our main goal—
allowing computationally efficient decision making. Note
that in this study, we differentiate between planning and
decision making. Planning is a broad concept, which takes
into consideration many aspects, such as goal setting and
balancing, generation of candidate actions, accounting for
different planning horizons and future developments, co-
ordination of agents, and so on. After refining these aspects,
we eventually result in a decision problem: considering an
initial state, and a given set of candidate actions (or action
sequences), we use an objective function to measure the
scalar values attained by applying each action on the initial
state; to solve the problem, we shall identify the optimal
candidate action, which generates the highest objective
value. With this rudimentary view-point, we dismiss
problem-specific attributes, which allows our formulation to
address a wider range of problems. Nonetheless, our work
heavily focuses on contributing to decision making in the
belief space. In these decision problems, the initial state is a
belief over a (possibly) high-dimensional state, and the
objective function is a belief-based information-theoretic
value, measured from the propagated (updated) belief, after
applying a candidate action.

A traditional solution to the decision problem requires
calculation of the objective function for each candidate
action. We would like to reduce the cost of the solution by
sparing this exhaustive calculation and comparison. Instead,
we suggest to identify and solve a simplified decision
problem, which leads to the same action selection, or one for
which the loss in quality of solution can be bounded. A
problem may be simplified by adapting each of its
components—initial state, objective function, and candidate
actions. To allow such analysis, we first provide a general
theoretical framework, which does not depend on any
problem-specific attributes; the framework allows us to
formally quantify the effect of the simplification on the
action selection, and form optimality guarantees for it.

We then show how these ideas can be practically applied
to high-dimensional BSP problems. In this case, the
problem is simplified by considering a sparse approxima-
tion of the initial belief, which can be efficiently propagated,
in order to calculate the candidates’ objective values. The
resulting simplified problem can be solved in any desired
manner, making our approach complementary to other
solvers. Furthermore, while several works already utilize
belief sparsification to allow long-term operation and

tractable state inference, the novelty in our approach is the
exploitation of sparsification exclusively and dedicatedly
for efficient decision making. After solving the decision
problem, the selected action is then applied on the original
belief; by such, we do not compromise the accuracy of the
estimated state.

For clarity, we list down the contributions of this work, in
the order they are presented in the manuscript:

1. A theoretical framework supporting the concept of
decision problem simplification;

2. Formulation of decision making in the belief space,
and application of the concept to it;

3. A scalable belief sparsification algorithm;
4. Derivation of quality-of-solution guarantees;
5. Experimental demonstration in a highly realistic

active-SLAM scenario, where a significant im-
provement in run-time is achieved.

Please note that this paper extends our previous publi-
cations (Elimelech and Indelman, 2017a; 2017b; 2017c).
Besides the expanded experimental evaluation, the belief
sparsification algorithm, which was previously introduced,
is now reformed to a more stable and efficient version. Also,
the theoretical formulation includes several revisions and
corrections to previously introduced definitions; the con-
clusive versions are those presented here. Also, to allow
fluid reading, proofs for all theorems, lemmas, and corol-
laries are given in the appendix.

1.3. Related work

Several works explore similar ideas to the ones presented
here. In this section, we do our best to provide an extensive
review of such works, in comparison to ours.

As mentioned, numerous methods consider sparsifica-
tion for the probabilistic state inference problem, in order to
limit the belief size, and improve its tractability for long-
term operation. Although being a well-researched concept,
these methods do not examine sparsification in the context
of planning problems (influence over action selection,
computational benefits, etc.). Thrun et al. (2004), for ex-
ample, showed that in a SLAM scenario, when using the
information filter, forcing a certain sparsity pattern on the
belief’s information matrix can lead to improved efficiency
in belief update. However, they emphasized that the ap-
proximation quality was not guaranteed and that certain
scenarios could lead to significant divergence.

Also, since Dellaert and Kaess (2006) demonstrated the
equivalence between sparse matrices and (factor) graphs for
belief representation, graph-based solutions for SLAM
problems (which is often a sparse problem) have become
more popular. Accordingly, methods for graph sparsifica-
tion have also gained relevance. For example, Huang et al.
(2012) introduced a graph sparsification method, using node
marginalization. The resulting graph is notably consistent,
meaning, the sparsified representation is not more confident

2 The International Journal of Robotics Research 0(0)

than the original one. Several other approaches suggest to
sparsify the graph using the Chow-Liu tree approximation
and show that the KL-divergence from the original graph
remains low (Carlevaris-Bianco et al., 2014; Carlevaris-
Bianco and Eustice 2014; Kretzschmar and Stachniss 2012).
Hsiung et al. (2018) reach similar conclusions for fixed-lag
Markov blankets. Notably, our sparsification method, which
is presented both in matrix and graph forms, preserves the
dimensionality of the belief, and only modifies the corre-
lations between the variables. It is also guaranteed to exactly
preserve the entropy of the belief.

The approach described byMu et al. (2017) separated the
sparsification into two stages: problem-specific removal of
nodes, and problem-agnostic removal of correlations. The
authors then demonstrated the superiority of their scheme
over agnostic graph optimization, in terms of collision
percentage. This two-stage solution reminds the logic in our
sparsification method: first, identifying variables with
minimal contribution to the decision problem, and then
sparsification of corresponding elements. Of course, we use
such sparsification for planning and not graph optimization.

Exploiting sparsity to improve efficiency can also be
done in other manners. Fundamental works (e.g., Davis
et al., 2004), alongside newer ones (e.g., Frey et al., 2017;
Agarwal and Olson 2012) provide heuristics for variable
elimination order or variable pruning order, in order to
minimize fill-in during factorization of the information
matrix (which is utilized during belief propagation).

In the context of planning under uncertainty and
POMDP, the research community has been extensively
investigating solution methods to provide better scalability
for real-world problems. Finding optimal solutions (poli-
cies) according to the POMDP formulation is often done by
utilizing dynamic programming algorithms, such as, value
and policy iteration (e.g., Porta et al., 2006; Pineau et al.,
2006). Such methods are extremely computationally de-
manding, especially when considering high-dimensional
state space (i.e., search spaces). These methods are thus
generally not suitable for “online” planning problems for
autonomous agents, in which we want to infer a specific
sequence of actions to be executed immediately.

Instead, when considering “online” scenarios, we typi-
cally perform a forward search from the current belief, and
often forced to rely on approximated solutions. Standard
online POMDP solvers (e.g., Silver and Veness 2010; Ye
et al., 2017) often perform search in the state-space, and not
the belief space, as we care to do here. Works which do
consider planning in the belief space, typically focus on
methods for alleviating the search. For example, some
solution methods perform direct (localized) trajectory op-
timization (e.g., Indelman et al., 2015; Van Den Berg et al.,
2012). Otherwise, while building on established motions
planners (e.g., Karaman and Frazzoli 2011; Kavraki et al.,
1996), works such as the Belief Roadmap (by Prentice and
Roy 2009), FIRM (by Agha-Mohammadi et al., 2014),
SLAP (by Agha-mohammadi et al., 2018), and others (e.g.,
by Patil et al., 2014) rely on sub-sampling a finite graph in

the belief space, in which the solution can be searched.
However, such methods are severely limited, by only al-
lowing propagation of the belief over a single (most-recent)
pose through the graph; that is, they perform low-
dimensional pose filtering, rather than high-dimensional
belief smoothing, as we do. This forced marginalization
of state variables surely compromises the accuracy of the
estimation, and limits the applicability to (problems such as)
active-SLAM, in which we often wish to examine the in-
formation (uncertainty) of the entire posterior state, in-
cluding the map and/or executed trajectory (Stachniss et al.,
2004; Kim and Eustice 2014).

Nonetheless, we do not focus on generation (or sam-
pling) of candidates, but, instead, on efficient comparison of
their objective values, by lowering the cost of belief up-
dates. Hence, our approach is complementary to the
aforementioned graph-based methods, which focus on
generating feasible candidates. We demonstrated this
compatibility in our experimental evaluation, where we
used a graph-based motion planner (from the most recent
pose) to simply generate a set of candidate actions; we then
efficiently selected the optimal candidate by propagating the
sparsified (high-dimensional) belief, and evaluating its
posterior uncertainty. In that regard, we may mention
additional works which similarly address the issue of high-
dimensional belief propagation, in the context of active-
SLAM (e.g., Chaves and Eustice 2016; Kopitkov and
Indelman 2017).

Also, closely related to our approach, several other works
examine approximation of the state or the objective function
in order to reduce the planning complexity. A recent ap-
proach (Bopardikar et al., 2016) suggested using a bound
over the maximal eigenvalue of the covariance matrix as a
cost function for planning, in an autonomous navigation
scenario. Benefits of using this cost function include easy
computation, holding an optimal substructure property
(incremental search), and the ability to account to mis-
detection of measurements. Yet, the actual quality of results
in terms of final uncertainty, when measured in conventional
methods, is unclear. Their usage of bounds in attempt to
improve planning efficiency reminds aspects of our work;
however, we use bounds to quantify the quality of solution.
As they mention in their discussion, an unanswered
question is the difference in quality of solution between
planning using the exact maximal eigenvalue, and planning
using its bound. Our theoretical framework might be able to
provide answer to this question.

Boyen and Koller (1998) suggested maintaining an
approximation of the belief for efficient state inference. This
approximation is done by dividing state variables into a set
number of classes, and then using a product of marginals,
while treating each class of variables as a single “meta-
variable.” A k-class belief simplification cuts the original
exponential inference complexity by a factor of k. The study
showed that in rapidly-mixing POMDPs the expectation of
the error could be bounded. This simplification method was
later examined under a restrictive planning scenario

Elimelech and Indelman 3

(McAllester and Singh, 1999). The planning was performed
using a planning-tree search, in which a constant amount of
possible observations was sampled for each tree level, and
again assuming a rapidly-mixing POMDP. There, the error
induced by planning in the approximated belief space can be
bounded as well. This method shares similar objectives with
our work, but examines a very specific scenario, which
limits its generality.

In the approach described by Roy et al. (2005), the
authors attempted to find approximate POMDP solutions
by utilizing belief compression, which was done with a
PCA-based algorithm. This key idea is similar to ours, yet,
in that work, the objective value calculation (i.e., decision
making) still relied on the original decompressed belief,
instead of the simplified one. Thus, no apparent compu-
tational improvement was achieved in planning com-
plexity. The paper also did not make a comparison of this
nature, and only presented analysis on the quality of
compression.

The work presented by Indelman (2015, 2016) contained
the first explicit attempt to use belief sparsification to
specifically achieve efficient planning. The papers showed
that using a diagonal covariance approximation, a similar
action selection could usually be maintained, while sig-
nificantly reducing the complexity of the objective calcu-
lation. This claim, however, is most often not guaranteed.
Optimal action selection was only proved under severely
simplifying assumptions—when candidate actions and
observations only update a single state variable, with a
rank-1 update of the information. This attempt inspired
our extensive research and in-depth, formal analysis.

Finally, it is worth mentioning that the idea of examining
only the order of candidate actions, instead of their cardinal
objective values, sometimes appears in the context of
economics under the term ordinal utility (e.g., Manski
1988); this term, however, is not prominent in the con-
text of artificial intelligence. We examine a similar idea in
our theoretical framework, to follow.

2. Simplified decision making

To begin with, let us consider a decision problem P, which
we formally define in Definition 1.

Definition 1. A decision problem P is a 3-tuple ðξ,A,V Þ,
where ξ is the initial state, from which we examine a set of
candidate actions A (finite or infinite), using an objective
function V: {ξ}× A → R. Solving the problem means se-
lecting the optimal action a∗, such that

a∗ ¼ argmax
a2A

V ðξ, aÞ: (1)

According to our suggested solution approach, we wish to
generate and solve a simplified yet analogous decision
problem Ps^ðξs,As,VsÞ, which results in the same (or
similar) action selection, but for which the solution is more
computationally efficient. This can be achieved by altering

or approximating any of the problem components—initial
state, candidate actions, or objective function—in order to
alleviate the calculation of the candidates’ objective values.
Nonetheless, approximating each of these components
represents a different simplification approach. For example,
there is a logical difference between simplifying the initial
state (i.e., examining different states under the same ob-
jective function), and simplifying the objective function
(i.e., examining the same state under different objectives); in
the first case, we would like to maintain a certain relation
between states, and in the second one, a relation between
functions.

Next, we will introduce additional ideas to help for-
malize our goal, and see how these can guide us towards
designing effective simplification methods, which are
guaranteed to preserve the quality of solution.

Fig 1. Ps is a simplified version of a decision problem P; the
graphs show the objective values of each problem’s candidate
actions. (a) a∗s is the optimal action according to the simplified
problem, and a∗ is the real optimal action; the difference between
the (real) objective values of these two actions is the loss induced
by the simplification. (b) The offset measures the maximal
difference between respective objective values from the two
problems, and does not require to explicitly identify a∗/ a∗s .

4 The International Journal of Robotics Research 0(0)

2.1. Analyzing simplifications

2.1.1. Simplification loss. Examining a simplified decision
problem may lead to loss in the quality of solution, when the
selected action is not the real optimal action. We can express
this loss with the following simplification quality measure:

Definition 2. The simplification loss between a decision
problem P^ðξ,A,V Þ and its simplified version
Ps^ðξs,As,VsÞ, due to sub-optimal action selection, is

lossðP,PsÞ^V ðξ,a∗Þ � V
�
ξ,a∗s

�
,

where a∗ ¼ argmax
a2A

V ðξ,aÞ,a∗s ¼ argmax
as2As

Vsðξs,asÞ: (2)

To put in words, this loss is the difference between the
maximal objective value, attained by applying the optimal
candidate action a∗ on ξ, and the value attained by applying
a∗s (the action returned from the solution of the simplified
solution) on ξ. This idea is illustrated in Figure 1(a). We
implicitly assume that the original objective function V can
accept actions from the simplified set of candidates As.
When the solutions to the problems agree lossðP,PsÞ ¼ 0.

Most often, it is indeed possible to settle for simplified
decision problem formulation (which can lead to a sub-
optimal action), in order to reduce the complexity of action
selection; though, it is important to quantify and bound the
potential loss, before applying the selected action, in order
to guarantee that this solution can be relied on.

2.1.2. Simplification offset. To assess the simplification
loss, we suggest to identify the simplification offset, which
acts as an intuitive “distance” measure in the space of
decision problems:

Definition 3. The simplification offset of a candidate a2A,
between a decision problem P^ðξ,A,V Þ, and its simplified
version Ps^ðξs,A,VsÞ is

δðP,Ps,aÞ^ jV ðξ,aÞ � Vsðξs,aÞj: (3)

Overall, the simplification offset between P and Ps is

ΔðP,PsÞ^max
a2A

fδðP,Ps,aÞg: (4)

Unlike the loss, the offset (which is illustrated in
Figure 1(b)) measures the maximal difference between
respective objective values from the two problems, and does
not require to explicitly identify the optimal actions. Fur-
ther, for each candidate a2A, the offset represents an in-
terval for the real value V(ξ, a), around the respective
approximated value Vs(ξs, a), in which it must lie, that is

Vsðξs,aÞ � δðaÞ ≤V ðξ,aÞ ≤Vsðξs,aÞ þ δðaÞ (5)

Notably, the offset represents only the size of this interval,
and not its location on the value axis (around Vs(ξs, a)). This
means that the offset, in contrast to the loss, is a property of
the simplification method, and does not depend on the

solution of P nor Ps. It can thus potentially be examined
without explicitly solving either of the problems, nor cal-
culating V nor Vs, as we shall see.

Note that when defining the offset, we implicitly con-
sidered that the two problems examine the same set of
candidate actions; this will be valid from now on, unless
stated otherwise. Also, for brevity, we will no longer write
the initial state as input to V/Vs, nor V, Vs as input to δ/Δ,
whenever the context is clear. Next, we will explain how we
can utilize the offset to infer loss guarantees.

2.2. Optimality guarantees

2.2.1. Bounding the offset. Obviously, knowing the offset
exactly for every action would be equivalent to having access
to the original solution.We would thus usually rely on a bound
of the offset to infer loss guarantees. As mentioned, the offset
measures the difference between respective objective values
from the original and simplified problems, and is independent
of their solutions. Thus, we can evaluate and attempt to bound
the offset before solving the problem; by utilizing the general
structure of problems in our domain, and knowing how they
are affected by the nominative simplification method, we can
try to infer a symbolic formula for the offset, and draw con-
clusions from it. This type of analysis often allows us to draw
general conclusions regarding the simplificationmethod, rather
than a specific problem. For example, in Section 3.2, we
discuss a novel belief simplificationmethod, used to reduce the
cost of planning in the “belief space.” By symbolically ana-
lyzing the offset (for any decision problem in this domain), we
could identify the conditions under which its value is zero, and
the simplification is guaranteed to induce no loss. This idea is
later demonstrated in Section 3.3.1. Still, we note that pro-
viding completely general guarantees, which are valid for all
the decision problems in the domain, is not always possible
from pure symbolic analysis. Sometimes, to draw decisive
conclusions, we must assign the properties of the specific
decision problem we wish to solve.

If we failed to reach valuable conclusions from such “pre-
solution” symbolic analysis of the offset, we can try to bound it
“post-solution,” by utilizing the calculated (simplified) values,
and (any) known bounds, or limits, for the real objective
values; these limits should be selected based on domain
knowledge of the specific problem. Then, the following can be
easily derived from the definition of the simplification loss

δðaÞ ≤maxfVsðξs,aÞ � LBfV ðξ,aÞg
UBfV ðξ,aÞg � Vsðξs,aÞg (6)

where LB,UB stand for lower and upper bounds, respec-
tively. We demonstrate how to practically utilize this idea in
Section 3.3.2.

2.2.2. Bounding the loss. As discussed, our goal is to
guarantee that relying on a certain simplification would not
induce more than the acceptable loss. As with the offset,
bounding the loss can be done on two occasions: (i) pre-
solution analysis—this type of analysis occurs before solving

Elimelech and Indelman 5

the simplified problem (based on the availability of “symbolic”
offset bounds); and (ii) post-solution analysis—which occurs
after solving the simplified problem (but before applying the
selected action). Surely, we prefer to know if the simplified
solution would be worthwhile before investing in it; for
example, we may consider the case where action execution
is costly (as measured with the objective function), and
beyond a certain loss, improving the decision making
efficiency is not worth the execution of a sub-optimal
action. Nonetheless, post-solution guarantees are typi-
cally tighter, as we can also rely on the calculated values.
The notion of offset allow us to seamlessly derive both
types of guarantees, and easily improve them when re-
fining the solution, or given access to new information.

From the properties of the absolute value, it is also easy
to infer that the offset is a valid metric (a distance measure)
between decision problems. Indeed, Lemma 1 intuitively
indicates that when the offset between a problem and its
simplification is small, then the induced loss is also small,
and the action selection stays “similar.”

Lemma 1. For any two decision problems P and Ps

0 ≤ lossðP,PsÞ ≤ 2 � ΔðP,PsÞ: (7)

This conclusion is potentially reachable in pre-solution
analysis, as it does not rely on the simplified solution,
that is, the calculated objective values; when these become
available, in post-solution analysis, this bound can be re-
fined, as indicated in Lemma 2.

Lemma 2. For any two decision problems P and Ps

lossðP,PsÞ ≤
max

�
0; 2 � ΔðP,PsÞ þmax

a ≠ a∗s
fVsðaÞÞg � Vs

�
a∗s
��

:
(8)

For an extended discussion regarding derivation of loss
guarantees, including a proof of Lemma 2, and more in-
tricate loss bounding techniques, please refer to Elimelech
(2021). Specifically, when we do not have access to a
symbolic formula for the offset, and instead rely on the
“post-solution offset bound” (equation (6)), the expression
in equation (8) simplifies to

lossðP,PsÞ ≤ max
a ≠ a∗s

fUBfV ðaÞgg � LB�V�a∗s��: (9)

Notably, such post-solution analysis allows us to understand
not only what is the maximal possible loss, but also which
candidates are likely to cause it.

2.3. Reducing simplification bias

Previously, we suggested the simplification offset as a
“distance measure” between decision problems and rec-
ognized that it (s bound) can be used to bound the sim-
plification loss. However, this distance measure may be

deceiving, as the problems may appear to be separated by a
large offset, even when the simplification induces a small
loss. Specifically, this can be the case when the simplifi-
cation causes a large “bias” in the simplified objective
values. In the following section, we introduce another
concept, to help us handle such scenarios.

2.3.1. Action consistency. We point out a key observation:
to solve the decision problem, we only need to sort (or rank)
the candidate actions in terms of their objective function
value; changing the values themselves, without changing
the order of actions, does not change the action selection.
Hence, when two problems maintain the same order of
candidate actions, their solution is equivalent. In this case,

Fig 2. (a) Each graph represents the objective values of the
candidate actions of a certain decision problem; although the
values are different, all the graphs maintain the same trend
among the actions, and therefore, the problems are action
consistent. (b) The simplification offset Δ between P and Ps is
the maximal difference between the values of respective actions.
The offset can be reduced by utilizing a monotonically increasing
function f (here, we used a constant-shift), which leads to a less
biased yet action consistent problem Pf

s .

6 The International Journal of Robotics Research 0(0)

we can simply say that the two problems are action con-
sistent, as demonstrated in Figure 2(a).

Definition 4. Two decision problems, P1^ðξ1,A,V1Þ and
P2^ðξ2,A,V2Þ, are action consistent and marked P1xP2,
if the following applies "ai,aj 2A:

V1ðξ1,aiÞ<V1

�
ξ1,aj

�
5V2ðξ2,aiÞ<V2

�
ξ2,aj

�
: (10)

If also V1 ≡ V2, we can simply say that ξ1, ξ2 are action
consistent, and mark ξ1 x ξ2.

This relation holds several interesting properties.

Lemma 3. Action consistency (x) is an equivalence re-
lation; that is, any three decision problems P1,P2,P3,
satisfy the following properties:

1. Reflexivity: P1xP1.
2. Symmetry: P1xP2 5P2xP1.
3. Transitivity: P1xP2 ⋀P2xP1 → P2xP1.

Lemma 3 implies that the entire space of decision problems is
divided into separate equivalence-classes of action consistent
problems. Lemma 4 adds that we can transfer between action
consistent problems using monotonically increasing functions.
We remind again that all proofs are given in Appendix B.

Lemma 4. For any two decision problems P1 and P2

P1xP25the mapping f :V1ðξ1,aÞ1V2ðξ2,aÞ
is monotonically increasing:

(11)

Meaning, if the (scalar) mapping of respective objective
values between the two problems agrees with a monoton-
ically increasing function (e.g., a constant shift, a linear
transform, or a logarithmic function), then the problems are
action consistent. If this mapping is not monotonically
increasing, then the problems are not action consistent.

2.3.2. Unbiased simplification offset. The notion of action
consistency can help us to achieve better guarantees when
utilizing our previously developed analysis approach. We
now understand that when deriving loss bounds, instead of
examining a simplified problem Ps, we can, equivalently,
examine any other problem Pf

s that is action consistent with
it. Further, such a problem will necessarily be of the form
Pf

s^ðξs,A,f °VsÞ, where f is monotonically increasing.
Accordingly, instead of examining the simplification

offset, as considered thus far, we can examine the unbiased
simplification offset:

Definition 5. The unbiased simplification offset between a
decision problem P^ðξ,A,V Þ, and its simplified version
Ps^ðξs,A,VsÞ is

Δ∗ðP,PsÞ^min
�
Δ
�P,P f

s

� j f :R→R

is monotonically increasing ⋀ P f
s^ðξs,A,f °VsÞ

�
:

(12)

The unbiased offset is the minimal offset betweenP and any
problem action consistent with Ps. A demonstrative ex-
ample appears in Figure 2(b). Specifically, PxPs, if and
only if the unbiased offset is zero:

Lemma 5. For any two decision problems P and Ps

PxPs5Δ∗ðP,PsÞ ¼ 0: (13)

Thankfully, our previous conclusions still hold, and we can
use the unbiased simplification offset to bound the loss:

Lemma 6. For any two decision problems P and Ps

0 ≤ lossðP,PsÞ ≤ 2 � Δ∗ðP,PsÞ: (14)

Since Δ∗ðP,PsÞ ≤ΔðP,Pf
s Þ, for any monotonically in-

creasing f. We can symbolically develop ΔðP,Pf
s Þ, for any

such f that is convenient, in order to bound the loss; such a
function should help “counter” the effect of the simplifi-
cation on the objective values. We may also recognize that
the unbiased offset satisfies the triangle inequality (like the
standard offset):

Lemma 7. For any three decision problemsP1,P2, andP3,
the unbiased simplification offset satisfies the triangle in-
equality, that is

Δ∗ðP1,P2Þ þ Δ∗ðP2,P3Þ ≥Δ∗ðP1,P3Þ: (15)

This property can potentially help in bounding the loss,
when applying multiple simplifications. However, unlike
the standard offset, the unbiased offset is scaled according
to the original objective values (like the loss) and is
asymmetric in its input arguments. It is, therefore, not
considered a metric1.

We may also note that the notions of action consis-
tency and simplification offset are related to the concept
of “rank correlation”—a scalar statistic which measures
the correlation between two ranking vectors (see Kendall
1948). Yet, such ordinal vectors are oblivious to the
cardinal objective values, and, therefore, cannot be used
to bound the simplification loss. The rank correlation
coefficient mostly serves for statistical analysis, as its
calculation requires perfect knowledge on the ranking
vectors. Since the rank variables are not independent of
each other, a change or addition of a single vector entry
may subsequently lead to change in all other entries, and
require complete recalculation of the correlation coeffi-
cient. On the other hand, the concepts we introduced rely
on a “local relation” between the problems: to check for
action consistency, we only examine pairs of actions at a
time; and to evaluate the offset—only pairs of respective
objective values. Addition of candidates, for example,
does not affect these relations between the existing
candidates. As we explain next, this locality can be
utilized to derive offset and loss bounds.

Elimelech and Indelman 7

3. Decision making in the belief space

In the previous section, we examined the concept of de-
cision problem simplification. We now wish to practically
apply this idea to allow efficient decision making under
uncertainty, which we formulate as decision making in the
belief space. In this domain, the initial state of the decision
problem is actually a probability distribution (“belief”), and,
as to be explained, the problem is simplified by considering
a sparse approximation of it. We provide an appropriate
sparsification algorithm and then show that the induced loss
can be bounded. First of all, we define the problem.

3.1. Problem definition

3.1.1. Belief propagation. We consider a sequential prob-
abilistic process. At time-step k, an agent transitions from
pose xk�1 to pose xk, using a control uk. It then receives an
observation of the world zk, based on its updated state.
The agent’s state vector X k^ðxT0 ,…,xTk ,L

T
k ÞT consists of the

series of poses and may also include external variables,
which are introduced by the observations; for example, in a
full-SLAM scenario, Lk can stand for the positions of
maintained landmarks.

Pose transition and observation are both probabilistic
operations, which induce probabilistic constraints over the
state variables, known as factors. Here, we assume
the transition and observation models are described with the
following dependencies:

xk ¼ gkðxk�1,ukÞ þ wk , wk ∼Nð0,W kÞ, (16)

zk ¼ hkðX kÞ þ vk , vk ∼Nð0,V kÞ, (17)

where Wk, Vk are the covariance matrices of the respective
normally-distributed (Gaussian) zero-mean noise models
wk, vk, and gk, hk are deterministic functions.

At each time-step, the agent maintains the posterior
distribution over its current state vector Xk, given the
controls and observations taken until that time; this dis-
tribution, which is defined by the product of these factors, is
also known as its belief:

bk^PðX k j u1 : k ,z1 : kÞ}∏
k

i¼1
f ui f zi , (18)

where u1:k ^ {u1, …, uk} and z1:k ^ z1, …, zk}, and f ui , f zi

are the factors matching the respective controls and ob-
servations. As widely considered, by utilizing local model
linearization, we may conclude that given the previously-
defined models, the belief bk is also normally-distributed
(for the full derivation see Elimelech (2021)). Hence, to
describe it, we can use a covariance matrix Σk, or equiv-
alently, its inverse, the (Fisher) information matrix Λk:

bk ¼ N �X ∗
k ,Σk

�
≡N �X ∗

k ,Λ
�1
k

�
: (19)

The matrices are symmetric, and the order of their rows and
columns matches the specific order of variables in the state.

We may now reason about a posterior belief bk+1, after
performing a control uk+1 and taking an observation zk+1:

bkþ1^PðX kþ1 j u1 : kþ1,z1 : kþ1Þ}
bk � Pðxkþ1 j xk ,ukþ1Þ � Pðzkþ1 j X kþ1Þ: (20)

This belief remains normally-distributed and can be de-
scribed with the following information matrix:

Λkþ1 ¼ �Λk þ GT
kþ1W

�1
kþ1Gkþ1 þHT

kþ1V
�1
kþ1H kþ1, (21)

where thematricesGk+1 andHk+1 are the Jacobians=gkþ1jX kþ1

and=hkþ1jX kþ1
, respectively, around some initial estimate, and

�Λk is the augmented prior information matrix. Since controls
and observations may introduce new variables to the state ve-
ctor, its size at time-step k, often does not match its size at time-
step k + 1. Hence, the prior information matrix Λk should be
augmented to accommodate these new variables. We use the
accent □�to indicate augmentation of the prior information matrix
(with entries of zero) to match the posterior size. Adding new
variables is possible at any index in the state, as long as wemake
sure the augmentation keeps the same variable order. If the prior
state is of size n andwe addm new variables to the end of it, then

�Λk^

Λn×n

k 0n×m

0m×n 0m×m

!
: (22)

The expression in equation (21) can be written in a more
compact form, by marking the collective Jacobian J δ

kþ1,
which encapsulates the new information regarding the
control and the succeeding observation:

Λkþ1 ¼ �Λk þ J δ
kþ1

T
J δ
kþ1, where J δ

kþ1^
W

�1
2

kþ1Gkþ1

V
�1

2
kþ1H kþ1

2
64

3
75:
(23)

Each belief update can be described using a collective
Jacobian of this form. Thanks to the additivity of the in-
formation, we can easily examine the information matrix of
the posterior belief bk+T after applying a sequence of T
controls u^ uk+1:k+T ; the respective collective Jacobians of
each control can simply be stacked to yield the collective
Jacobian U of the entire sequence u:

ΛkþT ¼ �Λk þ
XT
t¼1

J δ
kþt

T
J δ
kþt ¼ �Λk þ UTU ,

where U^

2
664
J δ
kþ1

«

J δ
kþT

3
775:

(24)

8 The International Journal of Robotics Research 0(0)

3.1.2. Decision making. At time-step k, the agent performs
a planning session. According to its current (prior) belief bk,
it wishes to select the control sequence which minimizes the
expected uncertainty in the future (posterior) belief. To
measure the uncertainty we use the differential entropy,
which, for a normally-distributed belief b of state size n,
with an information matrix Λ, is

HðbÞ ¼ 1

2
� ln
�ð2πeÞn

jΛj
	
¼ �1

2
� ðlnjΛj � n � lnð2πeÞÞ, (25)

where j□j represents the determinant operation. Although
other uncertainty measures with a lower computational
cost exist, for example, the trace of the covariance matrix,
the entropy bests those by taking inter-variable correla-
tions into account; those can have a dramatic effect on the
measured uncertainty and are crucial for correct analysis.
Thus, while utilizing the information update rule from
equation (24), we define the following information-
theoretic value or objective function, which measures
the expected information gain between the current and
final beliefs

~V ðbk ,uÞ^EZ½HðbkÞ � HðbkþT Þ�, (26)

where u is a candidate control sequence and Z is the set
of observations taken while performing this sequence.Wemay
also take the common assumption of achieving the most likely
observations, around the currentmean (“maximum likelihood”
assumption, as examined by Platt et al. (2010)), which would
allow us to drop the expectation from this expression. We will
also drop the augmentation mark and time index from now on,
for the sake of concise writing.

Overall, from an initial belief b, and considering a given
set of candidate control sequences U, we are interested in
solving the decision problem P^ðb,U,V Þ, where V is the
objective function:

V ðb,uÞ^1

2
�

ln

�����Λþ UTU

����� lnjΛj � m � lnð2πeÞ
�
,

(27)

where Λ is the information matrix of the prior belief b,
U is the collective Jacobian of u, and m is the number
of variables added to the state when executing u
(the difference between the number of columns in U
and in Λ).

For clarification, we described the process as sequential
to conform to the common POMDP framework; we treat
every planning session as a separate decision problem.
Further, the “maximum likelihood” assumption is not es-
sential, but is used to achieve a clear discussion, where each
candidate control sequence can be described with a single
collective Jacobian; for a generalized discussion, where this
assumption is relaxed, and where we also allow examination
of candidate policies, please see Elimelech (2021). Finally,
we can use the information matrix to examine the future
beliefs, even if the state inference process is not based on

such information smoother. If the initial information matrix
is not provided, it can be calculated by inverting the co-
variance matrix.

3.1.3. The square root matrix. An alternative way to rep-
resent the belief bk (and propagate it) is using the upper tri-
angular square root matrix Rk of the information matrix Λk,
given, for example, by calculating the Cholesky factorization:

Λk ¼ RT
kRk : (28)

Like Λk, the order of rows and columns of Rk also matches
the order of variables in the state. Prominent state-of-the-
art SLAMalgorithms, for example, iSAM2 (Kaess et al., 2012),
rely on this representation, as it allows the calculation of the
posterior mean (state inference) to be performed incrementally,
while exploiting inherent sparsity.

Our belief simplification method, as described in the
following section, also relies on this representation. Un-
fortunately, in this form, the information update losses its
convenient additivity property and requires re-calculation
(or update) of the factorization, in order to find the posterior
square root matrix Rk+T, such that

RT
kþTRkþT ¼ ΛkþT ¼ �Rk

T �Rk þ UTU , (29)

where U is defined as in equation (24) and �Rk marks an
appropriate augmentation of the prior root matrix:

�Rk^ðRn×n
k j 0n×mÞ: (30)

On the other hand, the determinant of the posterior
information can be calculated in linear time—by multi-
plying of the diagonal elements of this triangular
matrix. The objective function (equation (27)) can thus be
re-written as

V ðb,uÞ ≡

1

2
�
 XN

i¼1

ln
�
Rþ

ii

�2 �Xn
i¼1

lnðRiiÞ2 � m � lnð2πeÞ
!
,

(31)

where n is the prior state size, N is the posterior state size, R+

marks the posterior square root matrix, and the subscript □ij

marks the matrix element in the i-th row and j-th column. As
explained, using this form, the significant computational
cost of calculating the objective value moves from the
determinant calculation to the information update phase,
though this can be performed incrementally.

3.2. Belief sparsification

We now wish to present a simplification method for the
decision problem we have just formalized:P^ðb,U,V Þ. We
choose keep the same objective function V, and set U of
candidate actions and focus on simplifying the initial belief
b. As stated, candidate actions here are actually control

Elimelech and Indelman 9

sequences for the agent; we assume the collective Jacobians
for the set of actions are available.

As we saw, calculation of the objective function (as
defined in equation (27) involves calculation of the de-
terminant of the posterior information matrix, after per-
forming an appropriate belief update for the candidate
action. The cost of this calculation depends directly on
the number of non-zero elements in the matrix and is
significantly lower for sparse matrices. Thanks to the
additivity of the information, sparsifying the prior in-
formation matrix Λ could potentially lead to a sparser
posterior information matrix Λ + UTU, for every candi-
date action u with collective Jacobian U; notably, such
sparsification of the prior is only calculated once, for any
number of actions. We also note that in many problems, es-
pecially in navigation problems, the collective Jacobians are
inherently sparse, and as the state grows, involve less variables
in relation to its size. Hence, even after their addition to the
sparsified prior information matrix, its sparsity shall be re-
tained. Equivalently, we may seek to sparsify R, the square
root of Λ, which is used in equation (31), in order to improve
the efficiency of the factorization update process.

Overall, assuming the initial belief of the decision
problem is b ¼ NðX ∗,Λ�1Þ, our simplified problem shall
rely instead on bs ¼ NðX ∗,Λ�1

s Þ as the initial belief, where
Λs is a sparse approximation ofΛ. In the following section, we
present a sparsification algorithm2 for the information matrix
(or its square rootmatrix). Figure 3 summarizes the paradigmof

belief sparsification for efficient decision making in the belief
space; clarification regarding its steps is to follow.

3.2.1. The algorithm. Algorithm 1 summarizes our sug-
gested method for belief sparsification. The algorithm may
receive as input, and return as output, a belief represented
using either the information matrix, or its square root. This
scalable algorithm depends on a pre-selected subset S of
state variables, and wisely removes elements which cor-
respond to these variables from the matrix. Approxima-
tions of different degrees can be generated using different
variable selections S, as to be explained in Section 3.3.1.
For a clear discussion, when S contains all the variables,
we say this is a full sparsification; using any other partial
selection of variables is a partial sparsification. Figure 4
contains a visual demonstration of the algorithm steps. In
the following section (Section 3.2.2), we provide an extended
probabilistic analysis of the algorithm and explain how it can
also be applied to general (non-Gaussian) beliefs; a visual
demonstration of such application, where we represent the
belief using a generic factor graph, is given in Figure 4. An
example of the the algorithm output is provided in Figure 5.

Algorithm 1 Scalable belief sparsification.

Inputs:
A belief b ¼ NðX ∗,Λ�1Þ, such that Λ = RTR
A subset S of state variables to sparsify

Output:

A sparsified belief bs^NðX∗,Λ�1
s Þ, such that

Λs^RT
s Rs

// reorder the state variables such that
the variables in S are first in the state
vector

1 P ← an appropriate (column) permutation matrix
2 if the algorithm input is Λ then

3 Λp ← PTΛP
4 Rp ← chol (Λp)

5 else if the algorithm input is R then
6 Rp ← modify R to convey appropriate variable

reordering (see remark in the main text)
7 Rp

s ← zero off-diagonal elements from Rp in rows
matching variables in S // sparsify Rp

8 Rs ← PRP
s P

T // return to the original
variable order

9 if the algorithm output is Λ then
10 Λs ← RT

s Rs // reform the
information matrix

Let us break down the algorithm steps:
First, we should check if the variables are ordered

properly, that is, such that the variables we wish to
sparsify (variables in S) appear first in the state. If not,
we should reorder the variables accordingly. This

Fig 3. Belief sparsification for efficient decision making in the
belief space. Essential steps are in dark blue; optional steps, in
order to provide guarantees, are in light blue. Here, candidate
actions represent control sequences for the agent.

10 The International Journal of Robotics Research 0(0)

requires appropriate modification of the input matrix. If
the algorithm input is the symmetric matrix Λ (line 2), we
shall simply permute its rows and columns by calculating
the product PTΛP of the information matrix with an
appropriate (column) permutation matrix P. After this
permutation, we can derive Rp, the square root matrix of
the permuted information matrix, using the Cholesky
decomposition (line 4). If the algorithm input is the
matrix R (line 1), the task of variable reordering is not
trivial, as trying to modify R by permuting its rows and
columns would break its triangular shape. Instead, this
task (typically) requires re-factorization of Λ under the
new variable order.

Remark In our follow-up work (Elimelech and Indelman
2021), we provide an efficient modification algorithm for R,
which is intended for the task of variable reordering, and can
spare the matrix re-factorization; we can use this algorithm
to efficiently derive Rp (line 6).

If no reordering is required and the algorithm input is Λ,
we may directly calculate the Cholesky decomposition (line
4); if no reordering is required, and the input is R, we may
skip directly to line 7. Specifically, when all ofS is already at the
beginning of the state, no reordering is needed. This situation
particularly occurs when sparsifying all the variables (i.e., full

sparsification). Next, in line 1, we zero off-diagonal elements in
the permuted square root matrix Rp, in rows corresponding to
variables in S, to yield the sparsified square root matrix Rp

s .
Since the prior belief should be updated according to

the predicted hypotheses, the variable order in the
sparsified information matrix (or its square root) must
match the variable order in the collective Jacobians. Thus, we
should reorder the variables back to their original order (line 8).
Though, we notice that after the sparsification this permutation
can be performed on the square root matrix directly, without
resorting to the information matrix, and without breaking its
triangular shape, by calculating PRp

sP
T (note the reverse

multiplication order). This claim is formalized in Corollary 1
(and proved in Appendix B).

Corollary 1. After sparsification of the square root matrix
(line 7 of Algorithm 1), permutation of the variables back to
their original order can be performed on the square root
matrix directly, without breaking its triangular shape.

Finally, we may return the sparsified belief, repre-
sented either with Rs or Λs. In the latter case, this requires
to (easily) reconstruct the sparsified information matrix
from its sparsified root (line 1). After the sparsification,

Fig 4. The steps of Algorithm 1 (from left-to-right), for sparsification of a Gaussian belief (shown in Figure 6(a)); the state variables are
X^½x1,l1,l2,x2,x3,l3�T (in that order), and the subset of variables selected for sparsification is S ¼ fx1,l2,x2g (in green). (a) The sparsity
pattern of the symmetric information matrix of belief. (b) Reordering the variables, such that all the variables in S appear first; this is done
by simply permuting the rows and columns of the matrix. (c) Calculating the upper triangular square root matrix cholðΛpÞ of the
permuted information matrix; each row corresponds to a state variable. (d) Removing off-diagonal elements from rows corresponding to
variables in S. (e) After the sparsification, we may permute the variables back to their original order directly in the square root matrix,
without breaking its upper triangular shape. (f) Reforming the sparsified information matrix Λs^RT

s Rs; note that the process affects the
values in the matrix and may also introduce new non-zeros (marked in purple).

Fig 5. A square root matrix (taken from our experimental evaluation) and its sparse approximations generated with Algorithm 1, for
different variable selections S. On the left—the original matrix; in the center—the matrix after partial sparsification, of only the
uninvolved variables (here, about half of the variables); on the right—the matrix after full sparsification. The matrices on the left and in the
center are guaranteed to be action consistent. Full sparsification results in a convenient diagonal approximation of the information. For all
degrees of sparsification, the determinant of the matrix remains the same.

Elimelech and Indelman 11

the value of the non-zero (NZ) entries in the sparsified
information matrix may be different than the corre-
sponding entries in the original matrix (including the
diagonal), and new NZs may be added in compensation
for the removed entries (factors). Also, note that the
permutation of variables back to their original order can
potentially be skipped, by equivalently permuting the
columns of all the candidate collective Jacobians, to
match the altered order.

The derivation of Rp (in line 1 or line 1), when con-
ducted, is the costliest step of the algorithm, which de-
fines its maximal computational complexity; we may
recall that the complexity of the Cholesky decomposition
is O(n3), at worst, where n is the state size (Hämmerlin
and Hoffmann 2012). In comparison, the computational
cost of the remaining steps, that is, matrix permutation
(lines 1 and 1), removal of matrix elements (line 1), and
reconstruction of the information matrix (line 1), is
usually minor. Still, it should be noted that depending on
the configuration, many of the steps are often not nec-
essary. For example, as mentioned, when the input matrix
is already in the desired order, the permutations can be
skipped; this is specifically correct in full sparsification.
In that case, if given the square root matrix as input, the
algorithm holds an almost negligible complexity—we
only need to extract the matrix’ diagonal. Also, in full
sparsification, the sparsified information matrix, if re-
quired, can be reconstructed from its root in linear
complexity, as both Rs and Λs are diagonal.

Nonetheless, we remind that the approach is meant to
overall reduce the decision making time, as the time spent
on performing the sparsification (performed once) is lower
than the time saved in performing (the multiple) belief
updates. For example, since full sparsification leads to a di-
agonal approximation (information or its root), considering
the collective Jacobians are sparse, belief updates can be
performed with an almost linear complexity. Also, since the
cost of sparsification does not depend on the number of

candidates or hypotheses, as this number grows, the relative
“investment” in calculating the sparsification becomes less
significant.

3.2.2. Probabilistic analysis. Let us analyze the suggested
sparsification algorithm from a wider perspective, using
probabilistic graphical models.

As explained, the belief b (equation (18)) is constructed as a
product of factors—probabilistic constraints between vari-
ables, for example, those induced by observations or con-
straints between poses. A belief can be graphically represented
with a factor graph—where variable nodes are connected with
edges to the factor nodes in which they are involved. In
Figure 6(a), we can see an exemplary factor graph, which
represents a belief b with six variables and eight factors

bðXÞ}
fx1 � fx1l1 � fx1l2 � fx1x2 � fx2l1 � fx2l2 � fx2x3 � fx3l3, (32)

where the state X^½x1, l1, l2, x2, x3, l3�T contains three poses
and three landmarks and fij is a factor between i and j. As
explained, in the linear(ized) Gaussian system, the belief b is
described with the information matrix Λ, as shown in
Figure 4(a). Off-diagonal non-zero entries in the informa-
tion matrix Λ indicate the existence of factors between the
corresponding variables.

The belief b can be factorized to a product of conditional
probability distributions in a process known as “variable
elimination” (see Davis 2006)

b}∏
n�1

i¼1
PðX ijdðX iÞÞ � PðX nÞ, (33)

where d(Xi) denotes the set of variables Xi is conditionally
dependent on—a subset of the variables which follow Xi

according to the variable (elimination) order. Practically,
fixing the variable order in the state sets the decomposition
of the belief. Thus, according to Algorithm 1, we begin the
sparsification process by reordering the state variables, such

Fig 6. Visualizing the steps of Algorithm 1 (from left-to-right), for sparsification of a belief with probabilistic graphical models. (a) The
factor graph of the prior belief b (matching Figure 4(a)); the state variables are X^½x1,l1,l2,x2,x3,l3�T , and the subset of variables selected
for sparsification are S ¼ fx1,l2,x2g (circled in green). (b) Eliminating the variables in the factor graph in order to derive the
corresponding Bayes net; the figure describes an intermediate step of the elimination process, after eliminating the variables in S:
x1, l2, x2 (in this order); note the added marginal factor (in purple). (c) The final Bayes net of b, after eliminating all the variables. (d)
Removing all edges which lead to variables in S (green arrows); this is the Bayes net describing the sparsified belief bs. (e) Reforming the
factor graph of the sparsified belief bs; variables in S are now independent, and each is connected to a modified prior factor (in green); the
remaining variables are inter-connected with the same factors which connected them originally (in black), alongside the marginal factors,
which were added after elimination of S (in purple).

12 The International Journal of Robotics Research 0(0)

that all variables in S appear first in the state. This step
requires us to permute the information matrix accordingly
(as shown in Figure 4(b)); here, we chose S ¼ fx1,l2,x2g.
Note that variables can be conditionally dependent even if
there is no factor between them. By starting the elimination
with the variables in S, we force conditional separation of the
variables for sparsification and the remaining variables, that is

b}PðS j ¬SÞ � Pð¬SÞ: (34)

This means that the no variable in ¬S is conditionally
dependent on a variable in S.

The factorization of the belief to a product of conditional
probabilities can be graphically represented with a Bayesian
network (“Bayes net”), as shown in Figure 6(c). In this
directed graph, the existence of an edge from node i to j
indicates that i 2 d(j). As established by Dellaert and Kaess
(2006), this factorization is equivalent to the factorization of
the (permuted) information matrix Λp to its upper triangular
square root Rp (Figure 4(c)). The conditional probability
distribution of the i-th variable corresponds to the respective
row of Rp. Off-diagonal entries in that row represent the
conditional dependencies: if the off diagonal entry Rp

ij is
non-zero, then Xj is in d(Xi), and Xj is a parent of Xi in the
Bayes net; specifically, if all elements on the i-th row,
besides the diagonal entry, are zero, then Xi is not condi-
tionally dependent on any variable (according to the
elimination order) and has no parents in the Bayes net. For
more details, see Dellaert and Kaess (2017).

According to the next step in the algorithm, we shall now
zero off-diagonal entries in Rp, in the rows which correspond
to variables in S (Figure 4(d)); equivalently, this process can
be seen as removing edges from the Bayes net (Figure 6(d)).
By removing all the off-diagonal entries from the i-th row, we
replace the conditional probability distribution

PðX ijdðX iÞÞ ¼ N

μðdðX iÞÞ,

Rp

ii
TRp

ii

��1�
(35)

with an independent probability distribution over Xi

PsðX iÞ^N

μi,

Rp

ii
TRp

ii

��1�
: (36)

Essentially, we fix the mean of Xi to a constant value, which
is no longer dependent on other variables. We, of course,
would like to preserve the mean of the overall belief and
therefore shall select μi ¼ X ∗

i . It should be mentioned that
this probability distribution is not the marginal distribution
over Xi, which is given as NðX ∗

i ,ΣiiÞ.
The sparisified belief is thus given as the product

bs}∏
x2S

PsðxÞ � Pð¬SÞ: (37)

The chosen elimination order makes sure that the inner de-
pendencies among the non-sparsified variables remain exact.
Notably, the suggested sparsification is performed
by manipulating the square root matrix, which is equivalent to

manipulating the Bayes net. In contrast, traditional be-
lief sparsification methods (as we reviewed) perform sparsi-
fication on Λ directly, or equivalently, the factor graph. Still,
we would like to understand what the factor-decomposition,
which corresponds to the sparsified belief, is. Let us look again
at the exemplary belief, given in equation (32). We begin its
factorization (after the initial reordering) by eliminating the
variables in S (in order). First, x1:

b}Pðx1 j x2, l1, l2Þ �
f 0x2l1l2 � fx2l1 � fx2l2 � fx2x3 � fx3l3:

(38)

Then, l2:

b}Pðx1 j x2,l1,l2Þ � Pðl2 j x2,l1Þ�
f 0x2,l1 � fx2l1 � fx2x3 � fx3l3:

(39)

Finally, x2:

b}Pðx1 j x2,l1,l2Þ � Pðl2 j x2,l1Þ � Pðx2 j l1,x3Þ�
f 0x3l1 � fx3l3:

(40)

This partial elimination is visualized in Figure 6(b). As we
can see, after elimination of variables, new “marginal”
factors ðf 0x2l1l2 ,f 0x2,l1 ,f 0x3l1Þ may be introduced to the belief,
representing new links among the non-eliminated variables;
in our case, after eliminating all the sparsified variables, one
marginal factor still remains: f 0x3l1 .

According to the previous analysis, in the sparsification,
each of the conditional distributions on the sparsified var-
iables is replaced with an independent distribution. These
are, in fact, unitary factors over the variables; here, we mark
those as . The sparsified belief can thus be given as a product
of these unitary factors on the sparsified variables, the
marginal factors introduced after eliminating these vari-
ables, and the remaining non-eliminated factors (here, fx3l3).
Overall, in our example, this product is:

bs}f
00
x1 � f 00 l1 � f 00x2 � f 0x3l1 � fx3l3 (41)

The factor graph matching this belief is shown in
Figure 6(e). It is clear that the sparsification does not affect
the elimination of the remaining variables (variables in ¬S).
Continuing the elimination process from either b (equations
(40) or bs (41)) would result in the same distribution Pð¬SÞ.

To complete the analysis, we shall note that this spar-
sification method does not change the diagonal entries in the
information root matrix, and thus, the determinants ofΛ and
Λs remain the same:

jΛj ¼ jΛpj ¼ ��RpTRp
�� ¼

jRpj2 ¼ ∏
n

i
ðRp

iiÞ2 ¼
��Rp

s

��2
¼ ��Rp

s
TRp

s

�� ¼ ��Λp
s

�� ¼ jΛsj:

(42)

Hence, the sparsification method preserves the overall
entropy of the belief (as defined in equation (25)), no matter
which variables are sparsified. This is usually not

Elimelech and Indelman 13

guaranteed in the aforementioned traditional sparsification
methods. Still, when incorporating new factors in the future,
divergence in entropy between the original and sparsified
beliefs (i.e., simplification offset) might indeed happen. This
offset depends on the variables selected for sparsification and
can even be zero, as we shall discuss next. Since the sparsified
variables become independent, if we wish to update our
estimation after applying new actions, or after acquiring a
new observation of an existing variable (i.e., loop closure),
information would no longer propagate from a sparsified
variable to another variable, or vice-versa, unless they are
observed together. Though, notably, unlike simply margin-
alizing the sparsified variables out of state, as done in fil-
tering, they can still be updated in the future.

3.3. Optimality guarantees

3.3.1. Variable selection and pre-solution guarantees. Next,
we shall present the conclusions of our symbolic analysis of

the suggested simplification method (as explained in Section
2.2). In this evaluation, we utilized our knowledge on the
decision problem formulation, and on Algorithm 1, in order
to derive general guarantees for the simplification loss. More
specifically, we shall explain which variables should be
sparsified, such that the effect on the objective value for each
candidate action (i.e., the simplification offset) is minimal.

Considering a specific action, a state variable is involved
if applying the action adds a constraint (factor) on it; that is,
if g or h, which define the relevant transition and obser-
vation models (which are defined in equations (16) and
(17)), are affected by this variable. Practically, in the col-
lective Jacobian of an action, each of the columns corre-
sponds to a state variable, and every row represents a
constraint; a variable is involved if at least one of the entries
in its matching column is non-zero; uninvolved variables
correspond to columns of zeros. For example, in a navi-
gation scenario, the landmarks we predict to observe by
taking the action (along with the current pose) are involved;
variables referring to landmarks from the past, which we do
not predict to observe, are uninvolved. An illustration of this
example is given in Figure 7.

We emphasize that since this is a planning problem, the
collective Jacobians, the objective values, and the involved
variables are determined based on our prediction for the
outcome of each action. Further, these components can only
be based on our current belief, and not the ground truth, as it
is unknown. Thus, although a landmark we identified as
uninvolved, might be observed when applying the action
(e.g., if the initial belief was distant from the ground truth),
this is not a concern in the planning context. As explained,
in our formulation, the objective function (equation (27))
relies on the “most likely” observation. In other words, we
consider only the single “most likely” outcome for each
action. Theoretically, we can consider multiple probabilistic
outcomes for each action, each determining its own set of
involved variables; as mentioned, this generalized discus-
sion is brought by Elimelech (2021).

We claim that for any given action, sparsifying the
uninvolved variables from the prior belief b, before com-
puting the posterior belief, would not affect the posterior
entropy (which defines our objective function V). Hence, for
a set of candidate actions U, we can sparsify from the prior
belief all variables which are uninvolved in any of the
actions, and use this sparsified belief bs to compute the
objective function, without affecting its values. Specifically,
this means that the simplification offset is zero and that this
sparsified belief is action consistent with the original one:
b x bs. This claim is formally expressed in Theorem 1. A
proof for this claim is given in Appendix B.

Theorem 1. Consider a decision problem P^ðb,U,V Þ,
where b is a (Gaussian) initial belief, and V is the objective
function from equation (27). Considering a set S of state
variables, which are uninvolved in any of candidates in U,
Algorithm 1 returns a belief bs, such that Δ(P, Ps) = 0, where
Ps^ðbs,U,V Þ.

Fig 7. A factor graph representing the belief of an agent in an
exemplary full-SLAM scenario. The current (prior) state consists
of three poses x1, x2, x3 (blue nodes), and the position of three
landmarks l1, l2, l3 (yellow nodes), which were previously
observed. Factors (black nodes) between poses mark motion
constraints, and factors between a pose and a landmark mark
observation constraints. At time of planning, the agent is at pose x3,
and wishes to infer which of the candidate paths is the optimal one.
If taking the right path, the agent predicts augmenting its state
with two new poses xright4 ,xright5 , with motion constraints connecting
them to the current pose; based on its current state estimation, it
also predicts observing landmark l3 from xright4 (i.e., adding an
observation constraint between l3 and the new pose). The variables
(from the prior state) involved with this action are those directly
connected to any of the predicted new factors—x3, l3. If taking the
left path, the agent predicts augmenting its state with two new
poses xleft4 ,xleft5 , and observing landmark l1 from xleft4 . The variables
involved with this action are x3, l1. The involved variables (in any
of the actions) are marked with black outline. Note that x1, x2, l2
are never involved; these are marked with dark green outline.
Theorem 1 suggests that the uninvolved variables can be sparsified
from the prior belief (via Algorithm 1), while maintaining action
consistency.

14 The International Journal of Robotics Research 0(0)

In principle, only a single sparsification process is
conducted for each decision problem (i.e., planning ses-
sion), regardless of the number of candidate actions. Se-
lecting variables which are uninvolved in any of the
candidate actions allows to keep action consistency con-
sidering the entire set of candidates. Still, it is possible to
break the set of actions to several subsets of similar actions
and consider the uninvolved variables in each subset. For
each subset we would create a custom prior approximation,
and then select the best candidate in each of the subsets,
before finding the overall best candidate among those. This
can result in a more adapted sparsification for each subset.
Yet, calculation of the sparsification itself has a cost, which
needs to be considered when trying to achieve the best
performance. Here, we examine the most general case—
treating the set of actions as a whole.

Remark. We note that if we consider (1) sparsification of
only uninvolved variables; (2) the output of Algorithm 1 to
be the square root matrix; and (3) no requirement to
maintain the original variable order after the sparsification
(by instead, reordering the collective Jacobians); then, there
is no need to actually zero entries in the rows of the
“sparsified” variables. The initial reordering is sufficient to
make sure that these rows would not be updated when
(incrementally) incorporating new constraints. An in-depth
look at this variation was examined in our follow-up work
(see Elimelech and Indelman 2019).

We proved that sparsifying uninvolved variables does not
affect the objective function values, and, therefore, they should
always be included in the set S of variables for sparsification. It
is possible to sparsify also involved variables, but then “zero
offset” and action consistency are not guaranteed. Intuitively,
selecting more involved variables to S results in a sparser
approximation, but potentially a larger divergence from the
original objective values. In Appendix A.1, we show that under
additional restrictions, we can symbolically derive offset (and
loss) bounds also when sparsifying involved variables; these
bounds are only applicable for “rank 1” updates, that is, when
the collective Jacobians are limited to a single row.

3.3.2. Post-solution guarantees. For a more general sce-
nario, when sparsifying involved variables, and with actions
possibly having multi-row collective Jacobians, we can try
to bound the loss by performing post-solution analysis, as
discussed in Section 2.2. Unlike before, such guarantees are
derived after solving the simplified problem (but before
applying the selected action). As explained, we can utilize
the calculated (simplified) objective values, and domain-
specific lower and upper bounds of the objective function
(LB,LB, respectively), to yield offset bounds (equation (6));
from these offset bounds, we can then easily derive loss
bounds (equation (9)).

As our decision problem domain relies on beliefs,
which, as we saw, can be represented with a (factor)
graph, we can potentially exploit topological aspects to

derive the desired objective bounds. For example, we can
utilize conclusions from a recent work by Kitanov and
Indelman (2019), which extends a previous work by
Khosoussi et al. (2018). There, the following bounds on
the information gain were proved, for when the corre-
sponding factor graph contains only the agent’s poses,
and each pose consists of the position and the orientation
of the agent (i.e., pose-SLAM)

LBtopfV ðb,uÞg^3 � lnt ðb, uÞ þ μþ HðbÞ, (43)

UBtopfV ðb,uÞg^
LBtopfV ðb,uÞg þ

Xn
i¼2

lnðdi þ ΨÞ � ln
��~L��, (44)

where t(b, u) stands for the number of spanning trees in the
factor graph of the posterior belief (b after applying u); n
marks the graph size; ~L is the reduced Laplacian matrix of
the graph; and di’s are the node degrees corresponding to ~L.
They also assume that the factors between the poses are
described with a constant diagonal noise covariance; μ and
Ψ are constants which depend on this noise model, and the
posterior graph size (i.e., the length of the action sequence).
In their demonstration, they show that when the ratio be-
tween the angular variance and the position variance is
small, these bounds are empirically tight. This case can
happen, for example, when a navigation agent is equipped
with a compass, which reduces the angular noise. For a
detailed derivation of these bounds, please refer to Kitanov
and Indelman (2019).

For different problem domains, it is possible to use
various other objective bounds in a similar manner. For
example, in Appendix A.2, we present additional bounds,
which exploit known determinant inequalities. These make
no assumptions on the state structure and are potentially
useful when the matrix Λ is diagonally dominant.

4. Experimental results

4.1. The scenario

To demonstrate the advantages of the approach, we applied it
to the solution of a highly realistic active-SLAM problem. In

Fig 8. A Pioneer 3-AT robot in the simulated indoor environment.
The robot is equipped with a lidar sensor, Hokuyo UST-10LX, as
visible on top of it.

Elimelech and Indelman 15

this scenario, a robotic agent navigates through a list of goals in
an unknown indoor environment. We used the Gazebo sim-
ulation engine (Koenig and Howard 2004) to simulate the
environment and the robot—Pioneer 3-AT, which is a standard
ground robot used in academic research worldwide. The robot
is equipped with a lidar sensor, Hokuyo UST-10LX. These
components can be seen in Figure 8. Despite examining a 2D
navigation scenario, our method does not impose any re-
strictions on the pose size nor on the state structure.

We used the pose-SLAM paradigm, meaning, the agent’s
state X k^ðxT0 ,…,xTk ÞT consists only of poses kept along its
entire trajectory. Each of these poses consists of three var-
iables, representing the position and orientation. Our ap-
proach is highly relevant in this case, in which the state size
grows quickly as the navigation progresses, making the
planning more computationally-challenging. The belief over
the state is represented as a factor graph, and implemented
using the GTSAM C++ library (Dellaert, 2012). When
adding a new pose to the graph, the sensor scans the envi-
ronment in a range of 30 m and provides a point-cloud of it.
This point-cloud is then matched to scans taken in previous
poses using ICP matching (Besl and McKay 1992). If a
match is found, a loop-closure factor (constraint) is added
between these poses. To keep the computation cost of the
scan matching feasible, and to avoid creating redundant
constraints, wemake sure to compare the current pose only to
key poses within a certain range of (estimated) distances from
it. Transition (motion) constraints are also created between
every two consecutive poses. Both the observation and
motion contain some Gaussian noise, which matches the real
hardware’s specs. Robot Operating System (ROS) is used to
run and coordinate the system components—state inference,
decision making, sensing, etc.

The full indoor map is unknown to the robot, and it is
incrementally approximated by it using the scans during the

navigation. We do, however, rely on the full and exact map

to produce collision-free candidate trajectories. We use the

Probabilistic RoadMap (PRM) algorithm (Kavraki et al.,
1996) to sample that map and then use the K-diverse-paths
algorithm (Voss et al., 2015) to build a set U of trajectories to
the current goal. This usage of the map is irrelevant to the
demonstration of our method; in our formulation, we
consider the candidate actions are given. The complete
indoor map is shown in Figure 9, with the sampled PRM
graph on it. Each trajectory matches, of course, a certain
control sequence, and is translated to a series of factors and
constraints to be added to the prior factor graph. Loop
closure constraints are added between poses in the new
trajectory and poses in the previously-executed trajectory,
according to their estimated location (i.e., where we expect
to add them when executing this trajectory). The corre-
sponding collective Jacobians of the candidate trajectories
are constructed as explained in Section 3.1.

Since all trajectories lead to the goal, we only wish to
optimize the “safety” of taking the path. Meaning, keeping
the uncertainty of the state low, by preferring a more in-
formative trajectory. We use the aforementioned objective
function V (from equation (31)) to compare between can-
didates. Under the “maximum likelihood” assumption, our
method is only relevant to the computation of this
information-theoretic measure, so for a more convenient
discussion, we do not consider other objectives, such as the
length of the trajectory.

To cover its list of goals, the robot executes several
planning sessions. In each session, the robot is provided
with one goal, generates a set of candidate trajectories U to
it, and selects the best candidate by solving a decision
problem. The robot completes executing the entire selected
trajectory before starting a new planning session to the
next goal. To evaluate our method, in each planning
session, we solved three decision problems, with each
problem using another version of the initial belief. The
robot’s original initial belief accounts for the trajectory of
poses executed up to that point (the entire inferred state).
The other two versions are generated by sparsifying the
original belief using Algorithm 1—one with partial
sparsification, and one with full sparsification. Overall, in
each session, the three configurations of the decision
problem are as follows:

1. P ¼ ðb,U,V Þ —the original decision problem;
2. Pinvolved ¼ ðbinvolved ,U,V Þ —with sparsification of

the uninvolved variables—an action consistent
problem. We remind again that uninvolved variables
correspond to columns of zeros in the collective
Jacobians of all candidate actions, as explained in
Section 3.3.1.

3. Pdiagonal ¼ ðbdiagonal ,U,V Þ —with sparsification of
all variables, leading to a diagonal information
matrix, but not necessarily action consistent.

For each configuration, we measured the objective
function calculation time for each candidate action, along
with the one-time calculation of the sparsification itself

Fig 9. The entire indoor environment from a top view. Walls are
colored in light blue. The PRM graph, from which trajectories are
built, is colored in red and green. Each square on the map
represents a 1 m × 1 m square in reality.

16 The International Journal of Robotics Research 0(0)

for the latter two. On the whole, in each planning session,
we measure the total decision making time for each of the
three configurations. For a fair comparison of the prob-
lems, the objective function calculation was detached
from the factor graph-based implementation of the belief.
From GTSAM, we extracted the square root matrix of the
initial belief, and the collective Jacobians corresponding
to (the factors added by) each candidate trajectory. Then,
using Algorithm 1, we created the two additional versions

of the prior matrix, as detailed before. For each of the
three decision problems, that is, using each version of the
prior square root matrix, we calculated the corresponding
posterior square root matrix (via QR update); as ex-
plained in Section 3.1.3, we could then easily extract the
determinant of these triangular matrices, to calculate the
objective values.

At the end of each session, we applied the action selected
by configuration 1. Of course, in a real application, we
would only solve the problem using a single configuration;
here, we present a comparison of the results for different
configurations. We also did not invest in smart selection of
variables for sparsification, as even full sparsification
achieved very accurate results.

4.2. Results

In the following section we present and analyze the results
from a sequence of six planning sessions. Of course, these
sessions took place after the robot had already executed a
certain trajectory in the environment, in order to build a state
in a substantial size, and a map; if the prior state is empty,
examining its sparsification is vain. Figures 10–15 show-
case a summary of each of the planning sessions and contain
several components:

(a) A screenshot of the scenario, which includes: the map
estimation (blue occupancy grid); the current estimated
position (yellow arrow-head) and goal (yellow circle);
the trajectory taken up to that point (thin green line); the
candidate trajectories from the current position to the

Fig 10. Results summary for planning session #1

Fig 11. Results summary for planning session #2

Elimelech and Indelman 17

goal (thick lines in various colors); and the selected
trajectory (highlighted in bright green).

(b) A comparison of the objective function values of the
candidate actions (i.e., trajectories), considering each
of the versions of the initial belief:P with the original
belief in red; Pinvolved with sparsification of the un-
involved variables in blue; and Pdiagonal with spar-
sification of all the variables in green. For scale, the
comparison also contains the prior differential en-
tropy, before applying any action. This “prior value”
is not affected by the sparsification and is the same
for the three configurations (see equation (42)).

(c) A comparison of the solution time for the three
decision problems. Again,P in red,Pinvolved in blue,
and Pdiagonal in green. The highlighted parts of the
blue and green bars mark the cost of the sparsifi-
cation itself out of the total solution time.

(d) A comparison of the three versions of the triangular
square root matrix. The figures indicate non-zero
entries in each matrix, that is, their sparsity pattern.

(e) The sparsity pattern of the collective Jacobians of the
examined trajectories. Again, uninvolved variables are
identified by having columns of zero in all the Jacobians.

For the first and last sessions we provide an in-depth
inspection, including all the components. Since the
structure of the belief and Jacobians in all the sessions is
similar, for the intermediate sessions we only present a
summarized version, with components (a)-(c). The square
root matrix and its approximations, given previously in
Figure 5, are extracted from the third session. Addi-
tionally, the numerical data shown in the figures is

summarized in Table 1. Further data regarding the loss is
later given in Table 2.

4.2.1. Efficiency. As expected, the sparsification leads to a
significant reduction in decision making time. The

Fig 12. Results summary for planning session #3 Fig 13. Results summary for planning session #4

Fig 14. Results summary for planning session #5

18 The International Journal of Robotics Research 0(0)

simplified problem Pdiagonal consistently achieves the best
performance, followed by Pinvolved, while both are vastly
more efficient than the original problem P. Surely, a higher
degree of sparsification (S containing more variables) leads
to a greater improvement in computation time. As discussed
in Section 3.2.1, full sparsification of the square root matrix
has a particularly low cost—we only need to extract its
diagonal. From Table 1 and the run-time comparison bar
diagrams, it is clear that the cost of a partial sparsification is
also minor in relation to the entire decision making. In
some of the diagrams, the highlighted section of the bar,
which stands for the cost of the sparsification, is hardly
visible. Also, since the sparsification cost does not depend
on the number of candidate actions, the larger the set of
actions is, the less significant the sparsifcation should
become.

We see a correlation between the ratio of uninvolved
variables and the reduction in run time with Pinvolved.
Variables corresponding to the executed trajectory become
involved when a loop closure factor is created between them
and a candidate trajectory. Hence, the ratio of uninvolved
variables represents the overlap of the candidate trajectories
with the previously executed trajectory. In the first session,
the executed trajectory is short, resulting in a relatively
small state size, and sparse root matrix, since not many loop
closures were formed. As the sessions progress, the prior

matrix becomes larger and denser, due to new loop closures,
as apparent in the sixth session.

In principle, we also notice a correlation between the
state size and relative improvement in performance, for both
sparsification configurations. Updating the square root
factorization, in order to calculate the posterior determinant,
has, at worst, cubical complexity in relation to the matrix
size. An update to a variable at the beginning of the state
(i.e., a loop closure) may force us to recalculate the entire
factorization, baring this maximal computational cost.
Sparsification of variables reduces the number of elements
to update and thus should be more beneficial when handling
larger and denser beliefs.

4.2.2. Accuracy. Alongside the undeniable improvement in
efficiency, we can also examine the quality of the selected
action. According to Theorem 1, not onlyP andPinvolved are
action consistent, but they produce exactly the same ob-
jective values. Hence, solving Pinvolved always leads to the
optimal action selection and induces no loss. Pdiagonal is not
always action consistent with the original problem, and
maintaining the same action selection is not guaranteed;
however, it is evident from Figures 10–15 that even when
sparsifying all the variables, the quality of solution is
maintained. Not only does the graphs of P and Pdiagonal

maintain a very similar trend, which practically leads to the

Table 1. Numerical summary for all sessions. “Uninvolved var. ratio” represents the percentage of uninvolved variables in the prior state.
“Run-time” represents the reduction in decision making time in the specified configuration, in comparison to the original problem. “Non
zeros” represents the reduction in the number of non-zero entries in the prior square root matrix, after using the sparsification. “Sparsification
time” represents the cost of this one-time calculation, out of the entire problem run-time.

Session Prior Size

Pinvolved Pdiagonal

Uninvolved var. ratio, % Run-time Sparsification time Non zeros Run-time Sparsification time Non zeros

1 567 46 �23% 3% �76% �55% 1% �97%
2 762 74 �34% 4% �77% �67% 1% �98%
3 1182 60 �66% 1% �83% �85% 1% �99%
4 1269 69 �70% 2% �86% �86% 2% �99%
5 1341 65 �67% 2% �84% �82% 2% �99%
6 1392 44 �52% < 1% �61% �80% < 1% �99%

Table 2. The loss induced by the two simplified configurations, alongside the bounds on the loss (of the diagonal configuration), for
different noise models. The specified ratio for each bound represents the ratio between the angular variance and the position variance. No
bound is calculated for the other configuration, since it is guaranteed to induce no loss. The loss and its bounds are brought as a percentage
of the maximal approximated value in that session. Also shown is Pearson rank correlation coefficient ρ.

Session ρðP,PinvolvedÞ ρðP,PdiagonalÞ lossðP,PinvolvedÞ lossðP,PdiagonalÞ
lossðP,PdiagonalÞ
bound—0.01:1, %

lossðP,PdiagonalÞ
bound—0.25:1, %

lossðP,PdiagonalÞ
bound—0.85:1, %

1 1 0.99 0% 0% 2 16 46
2 1 1 0% 0% 2 16 47
3 1 1 0% 0% 1 13 39
4 1 0.99 0% 0% 1 15 43
5 1 1 0% 0% 1 16 43
6 1 0.99 0% 0% 1 15 41

Elimelech and Indelman 19

same action selection, and zero loss, but also the difference
(offset) between them is slim. This is also evident by ex-
amining the Pearson rank correlation coefficient ρ (which we
mentioned in Section. 2.1) between the solutions of the
original and simplified decision problems. A value of ρ = 1
represents perfect correlation of the candidate rankings (i.e.,
action consistency), and ρ = �1 represents exactly opposite
rankings. Clearly, the calculated values, presented in Table 2,
indicate that Pdiagonal indeed resulted in an action consistent
solution (or very close to it). We emphasize again, that

regardless of the selected action, the inference of the next state
remains unchanged, as it is done on the original belief.

4.2.3. Guarantees. Throughout the experiment, it was
possible to guarantee the quality-of-solution for Pdiagonal, by
bounding lossðP,PdiagonalÞ in post-solution evaluation—after
solving each (simplified) planning session, and before ap-
plying the selected action. Obviously, no bound should be
calculated for Pinvolved, since the loss was guaranteed to be
zero in our pre-solution “offline” evaluation. As explained in
Section 2.2, equation (9) provides a formula for the loss
bound, given the solution of the simplified problem (which is
available), and some domain-specific bounds/limits for the
objective function. Here, we used the topological bounds
from equations (43) and (44), and assigned them in the
formula to provide guarantees during each planning session.

The tightness of these topological bounds, which affects
the tightness of the loss bound, depends on the ratio between
the angular variance, and the position variance, with which we
model the noise in factors between poses; the smaller the
angular noise is, in relation to the latter, the tighter the bounds
are (as analyzed by Khosoussi et al. (2018) and by Kitanov
and Indelman (2019)). Hence, we calculated the loss bound
assuming different noise models (different such ratios) and
examined their effects. Such a change to the noisemodel has a
minor effect on the objective evaluation, since it does not
change the sparsity pattern of the matrices; thus, we only
present the effect on the inferred loss bound, and not on the
entire planning process. The bounds, which were calculated
assuming different noise ratios, are given in Table 2. The loss
and its bounds are brought as a percentage of the maximal
approximated objective function value in that session, to
allow a correct comparison. In the scenario showcased before,
the angular variance to position variance ratio was 0.25:1.

Indeed, changing the noise model has a significant in-
fluence on the tightness of the loss bounds. A ratio of 0.01:1
yields a very tight bound. It is not far-fetched that the
angular variance would be this low in a navigation scenario,
for example, by having a compass, as mentioned before.
Raising this ratio results in more conservative bounds,
especially in comparison to the exact loss, which is zero.
Yet, they can still be used to guarantee that the solution stays
in an acceptable range. Developing tighter bounding
methods for the objective function shall help making these
guarantees less conservative.

To clarify, this discussion, alongside any assumptions
on the noise or state structure, is only brought in order to
examine our ability to provide guarantees, using this
specific topological method. It is not essential in any way
in order to apply the sparsification and improve the
performance.

5. Conclusions

In an attempt to allow efficient autonomous decision making,
and specifically, decision making in the (high-dimensional)

Fig 15. Results summary for planning session #6

20 The International Journal of Robotics Research 0(0)

belief space, we introduced a new solution paradigm, which
suggests performing a conscious simplification of the decision
problem. Its impact is intended to be both conceptual and
practical. Conceptually, we claimed that decision making,
that is, identification of the best candidate action, can utilize a
simplified representation or approximation of the initial state,
without compromising the accuracy of the state inference
process. After efficiently selecting a candidate action, it
should be applied on the original state, which remains exact.
On top of that, we presented the simplification loss as a
quality of solution measure, and explained how it can be
bounded (e.g., using the simplification offset) in order to
provide guarantees. We recognized that when the simplifi-
cation maintains action consistency, that is, when the trend of
the objective function is maintained after the simplification,
there is no loss.

Practically, when applying the paradigm to the belief
space, decision making can be conducted considering a
sparse approximation of the prior belief. We provided a
scalable algorithm for generation of such approximations.
This versatile algorithm can generate approximations of
different degrees, based on the subset of state variables
selected for the sparsification. Specifically, by identifying
the problem’s uninvolved variables, we can provide an
action consistent approximation, which is guaranteed to
preserve the action selection. As explained in Section 3.2.2,
our sparsification approach is original and intuitive, as it
exploits the belief’s underlying Bayes net structure. We
presented an in-depth study of our approach and demon-
strated it in a highly realistic active SLAM simulation. We
showed that using sparsification of uninvolved variables,
planning time can be significantly reduced, while, as
mentioned, guaranteeing no loss in the quality of solution.
We then showed that planning time can be reduced even
further, when sparsifying all the state variables; in practice,
for this configuration, we experienced no loss in the quality
of solution, as well. Nonetheless, we demonstrated how the
theoretical loss in that case can be bounded.

The proposed novel paradigm offers many possible
future research directions. In general, other sparsification
methods, besides the provided algorithm, can be used in
similar ways; however, their impact on the action selection
should be examined. Potentially, existing (approximated)
solution methods for POMDPs can also be evaluated with
our theoretical framework, to provide a standard compar-
ison tool for measuring the accuracy of planning algorithms.
Also, this framework can be used to develop a scheme for
elimination of candidate actions; in fact, we have already
developed a proof of concept for this idea (Elimelech and
Indelman, 2017b). We can also examine other simplification
methods, such as altering the action set or the objective
function. Developing simplification methods for more
general beliefs, such as multi-modal Gaussians, can hold
important practical significance. Derivation of tighter loss
bounds is also of interest. Overall, with the versatility of
these ideas, we expect the approach to yield a substantial
contribution to the research community.

Acknowledgements

The authors would like to acknowledge Dr. Andrej Kitanov from
the Faculty of Aerospace Engineering at the Technion—Israel
Institute of Technology, for insightful discussions concerning
Section 3.3.2, and his assistance with implementing the simulation.

Funding

The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This work
was supported by the Israel Science Foundation (grant 351/15).

ORCID iD

Khen Elimelech https://orcid.org/0000-0003-1391-8956

Notes

1. Still, the aforementioned properties, along with the obvious
non-negativity, make the unbiased offset a quasi-metric (or
asymmetric metric), which induces an appropriate topology on
the space of decision problems, as explained by Künzi (2001).

2. Algorithm 1 is a revised version of the sparsification algorithm
that appeared in our previous publication (Elimelech and
Indelman, 2017c).

References

Agarwal P and Olson E (2012) Variable reordering strategies for
slam. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. Vilamoura-Algarve, Portugal, October
2012 IEEE: IROS, pp. 3844–3850.

Agha-mohammadi A-a, Agarwal S, Kim S-K, et al. (2018) Slap:
simultaneous localization and planning under uncertainty via
dynamic replanning in belief space. IEEE Transactions on
Robotics 34(5): 1195–1214.

Agha-Mohammadi A-A, Chakravorty S and Amato NM (2014)
FIRM: sampling-based feedback motion planning under
motion uncertainty and imperfect measurements. The Inter-
national Journal of Robotics Research 33(2): 268–304.

Besl P and McKay ND (1992) A method for registration of 3-D
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence Intell 14(2): 239–256.

Bopardikar SD, Englot B, Speranzon A, et al. (2016) Robust belief
space planning under intermittent sensing via a maximum
eigenvalue-based bound. International Journal of Research
and Review 35(13): 1609–1626.

Boyen X and Koller D (1998) Tractable inference for complex stochastic
processes. In: Proceedings of the Fourteenth Conference on Un-
certainty in AI. Madison, WI: UAI, July 1998, pp. 33–42.

Carlevaris-Bianco N and Eustice RM (2014) Conservative edge
sparsification for graph slamnode removal. In: IEEE International
Conference on Robotics and Automation. Hong Kong, China,
June 2014 ICRA. pp. 854–860.

Carlevaris-Bianco N, Kaess M and Eustice RM (2014) Generic
node removal for factor-graph SLAM. IEEE Transactions on
Robotic 30(6): 1371–1385.

Chaves SM and Eustice RM (2016) Efficient planning with the Bayes
tree for active SLAM. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE: IEEE, pp. 4664–4671.

Elimelech and Indelman 21

https://orcid.org/0000-0003-1391-8956

Davis TA (2006) Direct Methods for Sparse Linear Systems,
Fundamentals of Algorithms. Philadelphia, PA, United
States: Society for Industrial and Applied Mathematics.

Davis T, Gilbert J, Larimore S, et al. (2004) A column approximate
minimum degree ordering algorithm. ACM Transactions on
Mathematical Software 30(3): 353–376.

Dellaert F (2012) Factor Graphs and GTSAM: A Hands-on In-
troduction. Technical Report GT-RIM-CP&R-2012-002.
Georgia Institute of Technology.

Dellaert F and Kaess M (2006) Square root SAM: simultaneous
localization and mapping via square root information
smoothing. The International Journal of Robotics Research
25(12): 1181–1203.

Dellaert F and Kaess M (2017) Factor graphs for robot perception.
Foundations and Trends in Robotics 6(1–2): 1–139.

Elimelech K (2021) Efficient Decision Making under Uncertainty
in High-Dimensional State Spaces, PhD thesis. Technion –

Israel Institute of Technology, Haifa, Israel.
Elimelech K and Indelman V (2017a) Consistent sparsification for

efficient decision making under uncertainty in high dimensional
state spaces. In: IEEE International Conference on Robotics and
Automation. Singapore, May 2017 ICRA, pp. 3786–3791.

Elimelech K and Indelman V (2017b), Fast action elimination for ef-
ficient decision making and belief space planning using bounded
approximations. In: Proceedings of the International Symposiumof
Robotics Research (ISRR)’. Puerto Varas, Chile, December 2017.

Elimelech K and Indelman V (2017c) Scalable sparsification for
efficient decision making under uncertainty in high dimen-
sional state spaces. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. Vancouver, BC, Canada,
September 2017, IROS, pp. 5668–5673.

Elimelech K and Indelman V (2019) Introducing PIVOT: predictive
incremental variable ordering tactic for efficient belief space
planning. In: Proceedings of the International Symposium of
Robotics Research (ISRR). Hanoi, Vietnam, October 2019.

Elimelech K and Indelman V (2021) Efficient modification of the
upper triangular square root matrix on variable reordering.
IEEE Robotics and Automation Letters (RA-L) 6(2): 675–682.

Frey KM, Steiner TJ and How JP (2017) Complexity analysis and
efficient measurement selection primitives for high-rate graph
slam. arXiv preprint arXiv:1709.06821.

Hämmerlin G and Hoffmann K-H (2012) Numerical Mathematics.
Berlin/Heidelberg,Germany: Springer Science&BusinessMedia.

Harville DA (1998) Matrix algebra from a statistician’s perspec-
tive. Technometrics 40(2): 164.

Hsiung J, HsiaoM,Westman E, et al. (2018) Information sparsification
in visual-inertial odometry. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IROS, pp. 1146–1153.

Huang G, Kaess M and Leonard J (2012) Consistent sparsification
for graph optimization. In: Proceedings of the European
Conference on Mobile Robots. ECMR, pp. 150–157.

Indelman V (2015), Towards information-theoretic decision making
in a conservative information space. In: American Control
Conference, Chicago, IL, USA, July 2015, pp. 2420–2426.

Indelman V (2016) No correlations involved: decision making under
uncertainty in a conservative sparse information space. IEEE
Robotics and Automation Letters (RA-L) 1(1): 407–414.

Indelman V, Carlone L and Dellaert F (2015) Planning in the
continuous domain: a generalized belief space approach for
autonomous navigation in unknown environments. Interna-
tional Journal of Robotics Research 34(7): 849–882.

Kaelbling LP, Littman ML and Cassandra AR (1998) Planning and
acting in partially observable stochastic domains. Artificial
Intelligence 101(1): 99–134.

Kaess M, Johannsson H, Roberts R, et al. (2012) iSAM2: in-
cremental smoothing and mapping using the Bayes tree.
International Journal of Robotics Research 31(2): 217–236.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. International Journal of Robotics
Research 30(7): 846–894.

Kavraki L, Svestka P, Latombe J-C, et al. (1996) Probabilistic
roadmaps for path planning in high-dimensional configura-
tion spaces. IEEE Transactions on Robotics and Automation
12(4): 566–580.

Kendall MG (1948) Rank Correlation Methods. Tunbridge: Griffin.

Khosoussi K, Giamou M, Sukhatme GS, et al. (2018) Reliable
graph topologies for SLAM. International Journal of Ro-
botics Research 38(2–3): 260–298.

Kim A and Eustice RM (2014) Active visual SLAM for robotic
area coverage: theory and experiment. International Journal
of Robotics Research 34(4–5): 457–475.

Kitanov A and Indelman V (2019) Topological information-
theoretic belief space planning with optimality guarantees.
arXiv preprint arXiv:1903.00927.

Koenig N and Howard A (2004), Design and use paradigms for
gazebo, an open-source multi-robot simulator. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). Sendai, Japan, September 2004.

Kopitkov D and Indelman V (2017) No belief propagation required:
belief space planning in high-dimensional state spaces via factor
graphs, matrix determinant lemma and re-use of calculation.
International Journal of Robotics Research 36(10): 1088–1130.

Kretzschmar H and Stachniss C (2012) Information-theoretic
compression of pose graphs for laser-based SLAM. Inter-
national Journal of Robotics Research 31(11): 1219–1230.

Künzi H-PA (2001) Nonsymmetric distances and their associated
topologies: about the origins of basic ideas in the area of
asymmetric topology. In:Handbook of the History of General
Topology. Springer, 853–968.

Manski CF (1988) Ordinal utility models of decision making under
uncertainty. Theory and Decision 25(1): 79–104.

McAllester DA and Singh S (1999) Approximate planning for
factored pomdps using belief state simplification. In: UAI.
Morgan Kaufmann Publishers Inc., 409–416.

Mu B, Paull L, Agha-Mohammadi A-A, et al. (2017) Two-stage
focused inference for resource-constrained minimal collision
navigation. IEEE Transactions on Robotics 33(1): 124–140.

Patil S, Kahn G, Laskey M, et al. (2014) Scaling up gaussian belief
space planning through covariance-free trajectory optimization
and automatic differentiation. In: International Workshop on the
Algorithmic Foundations of Robotics. Istanbul, Turkey, August
2014, WAFR, pp. 515–533.

22 The International Journal of Robotics Research 0(0)

Pineau J, Gordon GJ and Thrun S (2006) Anytime point-based
approximations for large POMDPs. Journal of Artificial
Intelligence Research 27: 335–380.

Platt R, Tedrake R, Kaelbling L, et al. (2010) Belief space planning
assuming maximum likelihood observations. In: Robotics:
Science and Systems. Zaragoza, Spain: RSS, pp. 587–593.

Porta JM, Vlassis N, Spaan MT, et al. (2006) Point-based value
iteration for continuous pomdps. J. of Machine Learning
Research 7: 2329–2367.

Prentice S and Roy N (2009) The belief roadmap: efficient planning
in belief space by factoring the covariance. International
Journal of Robotics Research 28(11–12): 1448–1465.

Roy N, Gordon GJ and Thrun S (2005) Finding approximate
pomdp solutions through belief compression. Journal of
Artificial Intelligence Research (JAIR) 23: 1–40.

Silver D and Veness J (2010) Monte-carlo planning in large
pomdps. In: Advances in Neural Information Processing
Systems, NIPS. MIT Press, 2164–2172.

Stachniss C, Haehnel D and Burgard W (2004) Exploration with
active loop-closing for FastSLAM. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).
Sendai, Japan, September 2004.

Thrun S, Liu Y, Koller D, et al. (2004) Simultaneous localization
and mapping with sparse extended information filters. In-
ternational Journal of Robotics Research 23(7–8): 693–716.

Van Den Berg J, Patil S and Alterovitz R (2012) Motion planning
under uncertainty using iterative local optimization in belief
space. International Journal of Robotics Research 31(11):
1263–1278.

Voss C, Moll M and Kavraki LE (2015) A heuristic approach to
finding diverse short paths. In: IEEE Intl. Conf. on Robotics
and Automation. ICRA, pp. 4173–4179.

Ye N, Somani A, Hsu D, et al. (2017) Despot: online pomdp
planning with regularization. Journal of Artificial Intelligence
Research 58: 231–266.

Appendices

A. Additional loss bounds

We present here additional techniques to bound the loss
between a decision problem P^ðb,U,JÞ, and its simplified
version Ps^ðbs,U,JÞ, which uses a sparse belief approx-
imation, created with Algorithm 1.

A.1 Pre-Solution Guarantees: Rank-1 Updates
We remind again that according to Lemmas 1 and 2 in

Section 2.2, we can use (a bound of) the offset between the
problem and its simplification, to derive a loss bound. In
Section 3.3.1, we proved that sparsification of the uninvolved
variables always results in zero offset, and hence zero loss.
Now, we show that under additional restrictions, we can derive
an offset bound also when sparsifying involved variables.

Assume that for every action u2U the corresponding
collective Jacobian U 2R

1×N contains only a single row, that
is, rank-1 information updates. This can be the case, for ex-
ample, in sensor placement problemswith scalar measurements
(like temperature). Now, let us analyze the simplification offset:

2 � δðP,Ps,uÞ ¼ (45)

2 � jV ðb,uÞ � V ðbs,uÞj ¼ (46)��ln��Λþ UTU
��� ln

��Λs þ UTU
���� ¼ (47)

(Matrix determinant lemma (see Harville, 1998))

jln�jΛj � �1þ UΛ�1UT
��� ln

�jΛsj �
�
1þ UΛ�1

s UT
�� ¼j
(48)

ðEq: 42Þ��ln�1þ UΛ�1UT
�� ln

�
1þ UΛ�1

s UT
��� ¼ (49)

jln�1þ UΛ�1
s UT þ U

�
Λ�1 � Λ�1

s

�
UT
��

ln
�
1þ UΛ�1

s UT
��� ¼ ð+Þ

(50)

The logarithm is a monotonously increasing concave
function; thus, every a,b2R and c ≥ 0 satisfy

jlnðaÞ � lnðbÞj ≥ jlnðaþ cÞ � lnðbþ cÞj: (51)

In other words, the difference in the function value between
a pair of inputs decreases, when the inputs equally grow.
Surely, 0 ≤UΛ�1

s UT , since Λ�1
s is positive semi-definite.

Thus, we may choose , and c ¼ UΛ�1
s UT . Therefore

ð+Þ ≤ ��ln�1þ U
�
Λ�1 � Λ�1

s

�
UT
�� lnð1Þ�� ¼ (52)

��ln�1þ U
�
Λ�1 � Λ�1

s

�
UT
��� ≤ (53)

�����ln

1þ α �

X
i,j2InvðuÞ

�
Λ�1 � Λ�1

s

�
ij

!�����, (54)

where InvðuÞ is the set of (prior state) variables involved in
u, and the scalar α complies to α ≥maxiU2

i . We recall that
Ui is uninvolved5Ui = 0. When considering the involved
variables among all the actions, and α is valid "u2U, this
bound becomes independent of a specific action, and only a
single expression needs to be calculated. Overall, we can
conclude the following bound on the offset

ΔðP,PsÞ ≤
1

2
�
�����ln

1þ α �

X
i,j2InvðUÞ

�
Λ�1 � Λ�1

s

�
ij

!�����:
(55)

As we may notice, this symbolic bound depends on the
initial belief of the original and simplified problems, yet
not on their solution; it hence can be utilized before
actually solving the problem. When calculating this

Elimelech and Indelman 23

bound, we considered only single-row collective Ja-
cobians, but otherwise arbitrary. Although the consid-
ered assumption is restrictive, the concluded bound is
indeed usable for certain problems, as evident in our
follow-up work (Elimelech and Indelman, 2017b).
Guaranteed action consistency for the case of single-row
Jacobians, which are also limited to a single non-zero
entry, was previously shown by Indelman (2016).

A.2 Post-solution guarantees

We recall that the offset can also be bounded by utilizing
domain-specific upper and lower bounds of the objective
function (UB,LB, respectively), as indicated in equation
(6). In addition to the topological objective bounds, which
were presented in Section 3.3.2, we may also utilize alter-
native bounds, which rely on known determinant bounds.

For the lower bound, we can useMinkowski determinant
inequality, which states that for positive semi-definite
matrices M1,M2 2R

N×N

jM1 þM2j
1
N ≥ jM1j

1
N þ jM2j

1
N , (56)

lnjM1 þM2j ≥ N � ln�jM1j
1
N þ jM2j

1
N
�
: (57)

Let us assign M1 ^Λ, M2 ^UTU; when UTU is not a full
rank update (e.g., U has less than N rows), jUTU j ¼ 0, and
we are left with

ln
��Λþ UTU

�� ≥ lnjΛj (58)

For formality, it is easy to show that even if the prior state
size is smaller than N, the validity of the conclusion is not
compromised. For the upper bound, we can use Hada-
mard inequality, which states that for a positive semi-
definite matrix M 2R

N×N

jM j ≤ ∏
N

i¼1
ðMÞii: (59)

Let us assign M^Λþ UTU ; then��Λþ UTU
��≤∏N

i¼1

�
Λþ UTU

�
ii
, (60)

ln
��Λþ UTU

�� ≤Xn
i¼1

ln½ðΛþ UTUÞii�: (61)

Overall, we get the following objective function bounds

LBdetfV ðb,uÞg^lnjΛj � N � lnð2πeÞ, (62)

UBdetfV ðb,uÞg^
XN
i¼1

ln
��
Λþ UTU

�
ii

� �N � lnð2πeÞ,

(63)

where Λ is the information matrix of prior belief b, U is the
collective Jacobian of action u, and N is the posterior state
size.

Unlike the bounds presented in Section 3.3.2, these
bounds are extremely general, as they make no as-
sumptions on the state nor actions, besides the standard
problem formulation. As expected, this advantage comes
at the expense of tightness. Nonetheless, they may es-
pecially be useful when the matrix Λ is diagonally
dominant.

B. Proofs

B.1 Lemma 1
Proof.
Refer to the proof of the more general case, stated in

Lemma 6.

B.2 Lemma 2
Proof.
Refer to Elimelech (2021) for an extended discussion and

formulation of this statement.

B.3 Lemma 3.
The properties are trivially given from the definition of

action consistency.

B.4 Lemma 4
Proof.
Assume f is a monotonously increasing function such that

for every two actions ai,aj 2A
f ðV1ðξ1,aiÞÞ ¼ V2ðξ2,aiÞ, f

�
V1

�
ξ1,aj

�� ¼ V2

�
ξ2,aj

�
,

(64)

then

f ðV1ðξ1,aiÞÞ < f ðV1ðξ1,aiÞÞ5V2ðξ2,aiÞ<V2

�
ξ2,aj

�
, (65)

Because f is monotonously increasing, then f(x) < f(y)5
x < y, and

V1ðξ1,aiÞ<V1

�
ξ1,aj

�
5V2ðξ2,aiÞ<V2

�
ξ2,aj

�
: (66)

Meaning, ðξ1,A,V1Þxðξ2,A,V2Þ.
Now to prove the opposite direction, assume

ðξ1,A,J1Þxðξ2,A,J2Þ; hence
V1ðξ1,aiÞ<V1

�
ξ1,aj

�
5V2ðξ2,aiÞ<V2

�
ξ2,aj

�
: (67)

Let us define a new function f on the domain fV1ðξ1,aÞ j
a2 ξg such that f(V1(ξ1, a)) = V2(ξ2, a). Given this defi-
nition and the action consistency conditions from equation
(67), we can conclude that

f ðV1ðξ1,aiÞÞ < f ðV1ðξ1,aiÞÞ5
V2ðξ2,aiÞ <V2

�
ξ2,aj

�
5

V1ðξ1,aiÞ<V1

�
ξ1,aj

�
:

(68)

Thus, f is monotonously increasing on its domain.

24 The International Journal of Robotics Research 0(0)

B.5 Lemma 5
Proof.
Both directions are a direct consequence of Lemma 4.

Assume Δ∗ðP,PsÞ ¼ 0. Thus, a monotonously increasing
function f exists such that ΔðP,Pf

s Þ ¼ 0. Meaning, for every
action a2A, f ðVsðξs,aÞÞ ¼ V ðξ,aÞ. According to Lemma
4, it is sufficient to prove that PxPs.

To prove the opposite direction, assume Px Ps. Let us
define a new function f on the domain fVsðξs,aÞ j a2Ag
such that f ðVsðξs,aÞÞ^V ðξ,aÞ. From this definition,
ΔðP,Pf

s Þ ¼ 0. Also, according to Lemma 4, this function f
is monotonously increasing, and thus, Δ∗ðP,PsÞ ¼ 0.

B.6 Lemma 6
Proof.

From the definition of the simplification offset, we know
that for every monotonously increasing function f, the
following is true:

jV ðξ,a∗Þ � f ðVsðξs,a∗ÞÞj ≤Δ
�P,P f

s

�
, (69)

��V�ξ,a∗s�� f
�
Vs

�
ξs,a

∗
s

���� ≤Δ�P,P f
s

�
: (70)

Removing the absolute values surely does not compromise
the inequalities

V ðξ,a∗Þ � f ðVsðξs,a∗ÞÞ ≤ Δ
�P,P f

s

�
, (71)

f
�
Vs

�
ξs,a

∗
s

��� V
�
ξ,a∗s

�
≤ Δ
�P,Pf

s

�
: (72)

By adding the two inequalities, and utilizing the definition
of the loss, we get

loss
�P,Pf

s

�þ f
�
Vs

�
ξs,a

∗
s

��� f ðVsðξs,a∗ÞÞ
≤ 2 � Δ�P,P f

s

�
:

(73)

From the definition of a∗s , we know that

Vs

�
ξs,a

∗
s

��
≥Vsðξs,a∗Þ: (74)

Since f is monotonously increasing, then also

f
�
Vs

�
ξs,a

∗
s

��
≥ f ðVsðξs,a∗ÞÞ, (75)

f
�
Vs

�
ξs,a

∗
s

��� f ðVsðξs,a∗ÞÞ ≥ 0: (76)

Thus, we can infer that

loss
�P,Pf

s

�
≤ 2 � Δ�P,Pf

s

�
: (77)

Since the final statement is true for any monotonously in-
creasing function f, we may conclude the desired upper
bound over the loss

lossðP,PsÞ ≤ 2 � Δ∗ðP,PsÞ (78)

B.7 Lemma 7
Proof.
Let us examine three decision problems P1,P2,P3, where

Pi^ðξ i,A,ViÞ. First, let us define the notation
δðPi,Pj,aÞ^ jViðξ i,aÞ � Vjðξ j,aÞj. Now, for each two
problems Pi,Pj, we mark aij 2 ξ as the action, and fij as
the balance function, for which Δ∗ðPi,PjÞ^δðPi,Pfij

j ,aijÞ
(the values can be chosen arbitrarily from all values which
comply to the equation). According to this notation we can
conclude:

Δ∗ðP1,P2Þ þ Δ∗ðP2,P3Þ^
δ

P1,P f12

2 ,a12
�
þ δ

P2,P f23

3 ,a23
�
≥

δ

P1,P f12

2 ,a13
�
þ δ

P2,P f23

3 ,a13
�
^

jV1ðξ1,a13Þ � f12ðV2ðξ2,a13Þj
þ jV2ðξ2,a13Þ � f23ðV3ðξ3,a13ÞÞj ≥
jV1ðξ1,a13Þ � f12ðV2ðξ2,a13ÞÞ
þ V2ðξ2,a13Þ � f23ðV3ðξ3,a13ÞÞj^ð++ :Þ

(79)

Let us define the following scalar function:

FðxÞ^f23ðxÞ þ f12ðV2ðξ2,a13ÞÞ � V2ðξ2,a13Þ ¼
f23ðxÞ þ constant:

(80)

Since f23 is a monotonously increasing, so is F, and

ð++Þ ¼ jV1ðξ1,a13Þ � FðV3ðξ3,a13ÞÞj^
δ
�P1,PF

3 ,a13
�
≥

δ

P1,P f13

3 ,a13
�
¼

Δ∗ðP1,P3 :Þ

(81)

Hence, Δ* satisfies the triangle inequality.

B.8 Corollary 1
Proof. Let usmark asRp

s the sparsified square rootmatrix,
before permuting the variables back to their original order in
line 1 of Algorithm 1. First, we show that applying the reverse
permutation P□PT on Rp

s indeed leads to a square root of the
sparse information matrix Λs (in the original order):�

PRp
sP

T
�T�

PRp
sP

T
� ¼ PRp

s
TRp

sP
T ¼ PΛp

sP
T ¼ Λs, (82)

Elimelech and Indelman 25

where Λp
s is the sparsified information matrix, before per-

muting the variables back.
Now,wewant to examine the shape of thematrixRs^PRp

sP
T

and show that it is indeed triangular. According to Algorithm 1,
before executing line 8, Rp

s is of the following structure:

Rp
s ¼

diagonal 0

0 triangular

!
, (83)

where the rows of the diagonal block correspond to the
sparsified variables. Without losing generality, we
should only prove that applying a permutation of the form
p0: (1, …, n)1(2, …, i, 1, i+1, …, n) on this matrix (i.e.,
“pushing forwards” one of the sparsified variables), does not
break the triangular form. Hence, assuming PT is the column
permutation matrix matching such p0, let us look at

Rs^ PRp
sP

T ¼

P

0
BBBBBBBB@

d 2R 0…0
0

«

0

triangular

1
CCCCCCCCA
PT ¼

0
BBBBBBBBBBBBBBBBBBBBBB@

0

«

0

triangular ∗

d 0…0 0…0
0

«

0

0 triangular

1
CCCCCCCCCCCCCCCCCCCCCCA

PT ¼

0
BBBBBBBBBBBBBBBBBBBBBB@

triangular

0

«

0

∗

0…0 d 0…0

0

0

«

0

triangular

1
CCCCCCCCCCCCCCCCCCCCCCA

:

(84)

Recursively utilizing this conclusion, for more intricate
permutations, proves that Rs is indeed triangular, whenever
permuting the sparsified variables back to their original
order, as desired.

B.9 Theorem 1
Proof. Consider a belief b ¼ NðX ∗,Λ�1Þ, where the

state contains n1 uninvolved variables and n2 involved vari-
ables, such that n = n1+n2 is the prior state size. Also consider
the simplified belief bs ¼ NðX ∗,Λ�1

s Þ, in which all unin-
volved variables were sparsified, by applying Algorithm 1.

We mark with P the (column) permutation matrix that
positions all the involved variable at the end of the state.
Now, let Rp be the Cholesky factor of the permuted

information matrix Λp = PTΛP, such that Λp ¼ RpTRp. This
Rp can be divided into block form

Rp^

Rp

11 Rp
12

0n2×n1 Rp
22

!
, (85)

where Rp
11 2R

n1×n1 and Rp
22 2R

n2×n2 are triangular sub-
matrices, Rp

12 2R
n1×n2 , and 0n1×n2 is a zero matrix in the

specified size. By following the steps of Algorithm 1, we
realize that the returned sparsified information matrix Λs is
given as Λs^PRp

s
TRp

sP
T (or, equally satisfies

PTΛsP^Rp
s
TRp

s), where

Rp
s^

Dp

11 0n1×n2

0n2×n1 Rp
22

!
, (86)

and Dp
11 is the diagonal matrix formed by copying the di-

agonal of Rp
11 (and assigning zero elsewhere).

We would like to find the simplification offset between
the two decision problems P and Ps (for which b and bs are
the initial beliefs, respectively). Let us consider a can-
didate action u2U with a collective Jacobian
U 2R

h×ðnþmÞ, where n + m is the posterior state size. We
may derive the following from the definition of the offset
and the objective function V:

δðP,Ps,uÞ ¼ 1

2
�
����ln
�����Λþ UTU

����� ln

���� �Λs þ UTU

����
����: (87)

Now, let us examine the following expression:

#^

�����Λþ UTU

�����
�����Λs þ UTU

����, (88)

We know that (unitary) variable permutation does not affect
the determinant of a matrix, thus

¼
�����P T

�Λþ UTU

�
�P

�����
�����PT

�Λs þ UTU

�
�P

���� ¼�����PT �Λ�P þ

U �P

�T

U �P

������
�����PT �Λs

�P þ

U �P

�T

U �P

�����,
(89)

where

�P^

P 0n×m

0m×n Im×m

!
(90)

is the augmented permutation matrix, which keeps the vari-
ables added in the update at the end of the state. Note that if the
variables were not originally added to the end of the state, the
permutation �P can be easily adapted to enforce this property.

We can also augment the matrix Rp with m empty
columns (and similarly for Rp

s):

�Rp^

Rp

11 Rp
12 0n×m

0n2×n1 Rp
22

!
(91)

and assign the result in #, to yield:

26 The International Journal of Robotics Research 0(0)

¼
��� �RpT �Rp þ �U �P

�T�
U �P
����� ��� �Rp

s

T �Rp
s þ

�
U �P
�T�

U �P
����
(92)

This expression can be reorganized to the following form

¼

�������
0
B@ �Rp

U �P

1
CA

T0
B@ �Rp

U �P

1
CA
��������
�������
0
B@ �Rp

s

U �P

1
CA

T0
B@ �Rp

s

U �P

1
CA
������� (93)

The two matrices which appear in this expression also
follow a block form

0
B@ �Rp

U �P

1
CA ¼

Rp

11 Rp
12 0n1×m

0ðn2þhÞ×n1 B

!
(94)

0
B@ �Rp

s

U �P

1
CA ¼

Dp

11 0n1×ðn2þmÞ

0ðn2þhÞ×n1 B

!
, (95)

where

B^

Rp

22 0n2×m

U inv

!
, (96)

and Uinv is a sub-matrix of U �P, containing its right n2 + m
columns. Since the left n1 columns of U �P correspond to
uninvolved variables, we know they may only contain
zeros.Thus, if we mark �Rp

12^
�
Rp
12 0n1×m

�
, then the left

term in equation (93) is0
B@ �Rp

U �P

1
CA

T 0B@ �Rp

U �P

1
CA
������� ¼

Rp
11

TRp
11 Rp

11
T �Rp

12

�Rp
12

T
Rp

11
�Rp
12

T �Rp
12 þ BTB

�����
�����

�������
(97)

From the block-determinant formula (see Harville 1998),
this is equal to

��Rp
11

TRp
11

�� �
����� �Rp

12

T �Rp
12 þ BTB�…

�Rp
12

T
Rp

11R
p
11�1Rp

11
T�1

Rp
11

T �Rp
12

�����
¼ jRp

11j2 �
��BTB

��
(98)

The right term in equation (93) is

�������
0
B@ �Rp

s

U �P

1
CA

T0
B@ �Rp

s

U �P

1
CA
������� ¼

�����D
p
11

TDp
11

0

����� 0
BTB

����� ¼ ��Dp
11

2�� � ��BTB
��

(99)

Since Rp
11 and Dp

11 are triangular matrices with the same
diagonal, their determinants are equal (to the product of the
diagonal elements). Thus, # = 0, and overall

j�Λþ UTUj ¼ j�Λs þ UTUj: (100)

This surely means that

lnj�Λþ UTUj � lnj�Λs þ UTUj ¼ 0: (101)

Finally, assigning this expression in equation (87) means that

δðP,Ps,uÞ ¼ 0: (102)

Since the previous conclusion is true "u2U, this means that

ΔðP,PsÞ^max
u2U

δðP,Ps,uÞ ¼ 0, (103)

as desired.

Elimelech and Indelman 27

	Simplified decision making in the belief space using belief sparsification
	1. Introduction
	1.1. Background
	1.2. Objectives and approach overview
	1.3. Related work

	2. Simplified decision making
	2.1. Analyzing simplifications
	2.1.1. Simplification loss
	2.1.2. Simplification offset

	2.2. Optimality guarantees
	2.2.1. Bounding the offset
	2.2.2. Bounding the loss

	2.3. Reducing simplification bias
	2.3.1. Action consistency
	2.3.2. Unbiased simplification offset

	3. Decision making in the belief space
	3.1. Problem definition
	3.1.1. Belief propagation
	3.1.2. Decision making
	3.1.3. The square root matrix

	3.2. Belief sparsification
	3.2.1. The algorithm
	3.2.2. Probabilistic analysis

	3.3. Optimality guarantees
	3.3.1. Variable selection and pre-solution guarantees
	3.3.2. Post-solution guarantees

	4. Experimental results
	4.1. The scenario
	4.2. Results
	4.2.1. Efficiency
	4.2.2. Accuracy
	4.2.3. Guarantees

	5. Conclusions
	Acknowledgements
	Funding
	ORCID iD
	Notes
	References
	Appendices
	A. Additional loss bounds
	A.2 Post-solution guarantees
	B. Proofs
	Outline placeholder
	B.1 Lemma 1
	Proof.

	B.2 Lemma 2
	Proof.

	B.3 Lemma 3
	B.4 Lemma 4
	Proof.

	B.5 Lemma 5
	Proof.

	B.6 Lemma 6
	Proof.

	B.7 Lemma 7
	Proof.

	B.8 Corollary 1
	Proof.

	B.9 Theorem 1
	Proof.

