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Abstract— Inference and decision making under uncertainty
are essential in numerous robotics problems. In recent years,
the similarities between inference and control triggered much
work, from developing unified computational frameworks to
pondering about the duality between the two. In spite of
the aforementioned efforts, inference and control, as well as
inference and belief space planning (BSP) are still treated as two
separate processes. In this paper we propose a novel approach
that utilizes the similarities between inference and BSP and
make the key observation that inference can be efficiently
updated using the precursory planning stage, thus paving the
way towards a joint inference and BSP paradigm. We develop
four different methods that implement our novel approach
under simplifying assumptions and validate them in the context
of autonomous navigation in unknown environment. Results
indicate that not only our methods improve running time by at
least two orders of magnitude, compared to iSAM2 paradigm,
they also found to be less sensitive to state dimensionality and
loop closures.

I. INTRODUCTION

Computationally efficient inference and decision making
under uncertainty are required in numerous problem domains
in robotics, with applications such as autonomous navigation
and SLAM, search and rescue scenarios, object manipulation
and robot-assisted surgery. Until recently, the two processes,
inference and decision making, have been treated separately:
the inference stage maintains a belief over variables of
interest (e.g. robot poses) given available information, while
decision making under uncertainty and the related belief
space planning problem are entrusted with determining the
best next action(s) to realize a certain objective.

The inference problem has been addressed by the research
community extensively over the past decades. In particular,
focus was given to inference over high-dimensional state
spaces, with SLAM being a representative problem, and
to computational efficiency to facilitate online operation, as
required in numerous robotics systems. Over the years, the
solution paradigm for the inference problem has evolved.
From EKF based methods (e.g. [4], [8]), through information
form recursive (e.g. [23]) and smoothing methods (e.g. [6],
[7])), and in recent years up to incremental smoothing
approaches, such as iSAM [13] and iSAM2 [12].

Given a belief from the inference stage, decision mak-
ing under uncertainty and Belief Space Planning (BSP)
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Fig. 1: Visualization of JIP, a novel approach to address both inference and belief
space planning under a single process. Here b[Xk+1|k] stands for the belief of the
joint state in time instance k + 1 while current time is k and each row stands for
a different planning horizon. The relations between different beliefs in the graph are
denoted by different arrows. (a) Inference (b) Planning step (c) Updating Inference
with precursory planning (d) Update planning with precursory planning.

approaches reason about belief evolution for different can-
didate actions while taking into account different sources
of uncertainty. The corresponding problem is an instanti-
ation of a Partially Observable Markov Decision Process
(POMDP) problem, which is known to be computationally
intractable [1]. Over the years, numerous approaches have
been developed that trade-off suboptimal performance with
reduced computational complexity, see e.g. [9], [17], [19].
While the majority of these approaches, including [2], [20],
[21], [26], assumed some sources of absolute information
(GPS, known landmarks) are available or considered the
environment to be known, recent research relaxed these
assumptions, accounting for the uncertainties in the mapped
environment thus far as part of the decision making process
[10], [14] at the price of increased state dimensionality.

Interestingly, be the decision making approach as it may,
it has to solve numerous inference problems in order to
determine the (sub)optimal actions. Obvious similarities be-
tween inference and decision making, triggered much work
in recent years. For example, Kobilarov et al. [15] and Ta
et al. [22] developed Differential Dynamic Programming
(DDP) and Factor Graph (FG) based unified computational
frameworks, respectively, for inference and decision making.
Toussaint and Storkey [25] provided an approximate solution
to the Markov Decision Process (MDP) problem using in-
ference optimization methods, and Todorov [24] investigated



the duality between optimal control and inference for the
MDP case. While both Toussaint and Storkey [25] and
Todorov [24] refer to the MDP case, in this paper we
address the more general case where the state is partially
observable and thus has to be inferred probabilistically within
a POMDP framework. Despite the aforementioned research
efforts, however, inference and BSP are still handled as two
separate processes.

Our key observation is that similarities between inference
and decision making paradigms can be utilized in order to
save valuable computation time. In this paper, we provide an
approach to save precious computation time in the inference
update stage by reusing calculations from precursory plan-
ning. Our approach is rooted in the new concept of JIP, a
Joint Inference and belief space Planning approach, which
strives to handle both inference and decision making as a
single process, thus sharing and updating similar calculations
becomes trivial. In contrast to the notion of joint infer-
ence and control, which considers an MDP setting, the JIP
paradigm considers a partially observable setting (POMDP).

Figure 1 provides a graphical representation of JIP. The
joint inference and belief space planning approach incor-
porates both inference and decision making stages into a
single process. Each node in the graph represents a belief, i.e.
b[Xk+1|k] denotes the joint belief of state X at a future time
instant k+1 given that the current time is k. The right facing
arrows i.e. (a) in Figure 1 denote inference at sequential time
instances. The diagonal arrows i.e. (b) in Figure 1 represent
optimal controls that lead up to the appropriate beliefs. The
upward facing arrows denote either future belief update i.e.
(d) in Figure 1 or inference update i.e. (c) in Figure 1, while
both by using precursory future belief.

We provide a novel paradigm for saving computation
time by updating each inference stage with its precursory
planning stage, corresponds to the upward facing arrow (c)
in Figure 1. We present four methods that utilize calculation
from the planning stage in inference, along with a thorough
analysis and comparison of those methods to the regular
batch inference and the efficient iSAM paradigms.

To summarize, our contributions in this paper are as
follows: (a) We present JIP, a novel approach to address
both Inference and Planning as a single process, which
enables to share information between the two in a single
paradigm. (b) We introduce a novel approach for saving
computation time during the inference stage by reusing
calculations made during the precursory planning stage. (c)
We provide four methods, that utilize our main contribution.
(d) We evaluate our methods and compare them to the
state of the art in simulation considering the problem of
autonomous navigation in unknown environments.

II. NOTATIONS AND PROBLEM FORMULATION

The joined Inference and belief space Planning problem
consists out of two main successive and recursive stages, the
Inference stage and the Planning stage. The Inference stage

produces a state estimate using all information up to present
time, while the Planning stage produces the next control
action using the former inference stage information and a
Cost/Reward function. Both the inference and belief space
planning stages will be reviewed in the following sections.

Let xt denote the robot’s state in time instance t and L
represent the world state if the latter is uncertain or unknown.
For example, for SLAM problem, it could represent land-
mark locations. The joint state, up to and including time t,
is defined as Xt = {x0, ..., xt,L} ∈ Rn. Throughout this
paper we shall use the notation t|k to refer to some time
instant t while considering information up to time k - as will
be shown in the sequel, this notation will allow to refer to
sequential inference and planning phases in a unified manner.

Let zt|k and ut|k denote, respectively, the obtained mea-
surements and the applied control action at time t, while the
current time is k. For example, zk+1|k represents measure-
ments from a future time instant k+1 while zk−1|k represents
measurements from a past time instant k−1, with the present
time being k in both cases. For a stochastic state sequence,
the conditional probability density function (pdf) over the
joint state can be formulated. Representing the measurements
and controls up to time t, given current time is k, as

z1:t|k
.
= {z1|k, ..., zt|k} , u0:t−1|k

.
= {u0|k, ..., ut−1|k}, (1)

the joint pdf, the belief, is given by

b[Xt|k]
.
= P(Xt|z1:t|k, u0:t−1|k). (2)

Eq. (2) represents the posterior at current time k for t =
k, while for t > k it represents the posterior from the
planning phase for a specific sequence of future actions and
observations. Using Bayes rule, Eq. (2) can be rewritten as

P(Xt|z1:t|k, u0:t−1|k) ∝ P(x0)·
t∏

i=1

P(xi|xi−1, ui−1|k)
∏

j∈Mi|k

P(zji|k|xi, lj)

 , (3)

where P(x0) is the prior on x0, and P(xi|xi−1, ui−1|k)

and P(zji|k|xi, lj) denote, respectively, the motion model
and measurement likelihood terms. Data association given
information up to time k, i.e. landmark indices observed at
each time i, is denoted by the set Mi|k, while a particular
observation of landmark j is represented by zji|k ∈ zi|k. The
motion and observation models from Eq. (3) are assumed to
be with additive Gaussian noise

xi+1 = f(xi, ui) + wi , wi ∼ N (0,Σw) (4)

zji = h(xi, lj) + vi , vi ∼ N (0,Σv), (5)

where Σw and Σv are the process and measurement noise
covariance matrices, respectively.

A. Inference

For the inference problem t ≤ k, i.e time instances that are
equal or smaller than current time. The maximum a posteriori



(MAP) estimate of the joint state Xk is given by

X?
k|k = arg max

Xk

P(Xk|z1:k|k, u0:k−1|k) (6)

The MAP estimate from Eq. (6) is referred to as the inference
solution, in which, all controls and observations until time
instance k are known. Introducing Eqs. (3-5) into Eq. (6) and
taking the negative logarithm yields the following non-linear
least squares problem (NLS)

X?
k|k = arg min

Xk

‖x0 − x?
0‖2Σ0

+

k∑
i=1

‖xi−f(xi−1, ui−1|k)‖2Σw
+
∑

j∈Mi|k

‖zji|k−h(xi, lj)‖2Σv

 (7)

where ‖a‖2Σ
.
= aT Σ−1a is the Mahalanobis norm. Lineariz-

ing each of the terms in Eq. (7) and performing standard
algebraic manipulations (see, e.g., [10]) yields

∆X?
k|k = arg min

∆Xk

‖Ak|k∆Xk − bk|k‖2 (8)

where Ak|k ∈ Rm×n is the Jacobian matrix and bk|k ∈ Rm

is the right hand side (RHS) vector. In a more elaborated
representation

Ak|k =

 Σ
− 1

2
0

F1:k|k
H1:k|k

 , bk|k =

 0

b̆F1:k|k
b̆H1:k|k

 (9)

where F1:k|k, H1:k|k, b̆F1:k|k and b̆H1:k|k denote the Jacobian
matrices and RHS vectors of all motion and observation
terms accordingly, for time instances 1:k when current time
is k. These Jacobians, with the RHS can be referred to by

A1:k|k =

[
F1:k|k
H1:k|k

]
, b̆1:k|k =

[
b̆F1:k|k
b̆H1:k|k

]
(10)

While there are few methods to solve Eq. (8), we choose QR
factorization as presented, e.g., in [13] The QR factorization
of the Jacobian matrix Ak|k is given by the Orthonormal
rotation matrix Qk|k and the upper triangular matrix Rk|k

Ak|k = Qk|kRk|k (11)

Eq. (11) is introduced into Eq. (8) thus producing

Rk|k∆Xk = dk|k, (12)

where Rk|k is un upper triangular matrix and dk|k is the
corresponding RHS vector, given by the original RHS vector
and the orthonormal rotation matrix Qk|k

dk|k
.
= QT

k|kbk|k (13)

We can now solve Eq. (12) for ∆Xk via back substitution,
updating the linearization point, and repeat the process until
convergence. One can substantially reduce running time by
exploiting sparsity and updating the QR factorization from
the previous step with new information instead of calculating
a factorization from scratch, see e.g. iSAM2 algorithm [12].
The information matrix is thus given by

Λk|k = AT
k|kAk|k (14)

To summarize this section, the belief b[Xk|k] can be repre-
sented as the Gaussian

b[Xk|k]
.
= P(Xk|z1:k|k, u0:k−1|k) = N (X?

k|k,Λ
−1
k|k). (15)

B. Planning in the Belief Space

Finite horizon belief space planning for L look ahead steps
involves inference over the beliefs b[Xk+L|k]

b[Xk+l|k] = P(Xk+l|z1:k+l|k, u0:k+l−1|k) (16)

with l ∈ [k + 1, k +L], and where we use the same notation
as in Eq. (2) to denote the current time is k. The belief (16)
can be written recursively as a function of the belief b[Xk|k]
from the inference phase as

b[Xk+l|k] = b[Xk|k]·
k+l∏

i=k+1

P(xi|xi−1, ui−1|k)
∏

j∈Mi|k

P(zji|k|xi, lj)

 , (17)

for the considered action sequence uk:k+l−1|k at planning
time k, and observations zk+1:k+l|k that are expected to
be obtained upon execution of these actions. The set Mi|k
denotes landmark indices that are expected to be observed
at a future time instant i.

One can now define an objective function

J(uk−1:k+L−1|k)
.
= E
zk+1:k+L|k

k+L∑
i=k+1

ci
(
b[Xi|k], ui−1|k

)
, (18)

with immediate costs (or rewards) ci and where the expec-
tation considers all the possible realizations of the future
observations zk+1:k+L|k. Conceptually, one could also reason
whether these observations will actually be obtained, e.g. by
considering also different realizations of Mi|k. Note that
for information-theoretic costs (e.g. entropy) and Gaussian
distributions considered herein, it can be shown that the
expectation operator can be omitted (see e.g. [10]), while
another alternative is to simulate future observations via
sampling (see e.g. [18]), if such a simulator is available.

The optimal control can now be defined as

u?
k:k+L−1|k = arg min

uk:k+L−1|k

J(uk:k+L−1|k). (19)

Evaluating the objective function (18) for a candidate action
sequence involves calculating belief evolution for different
look ahead steps. An interesting insight, that we will exploit
in the sequel, is that the underlying equations are similar to
those seen in Section II-A.

In particular, evaluating the belief at the lth look ahead
step, b[Xk+l|k], involves MAP inference

X?
k+L|k = arg min

Xk+L

‖Xk −X?
k|k‖

2
Λ−1

k|k
+ (20)

k+L∑
i=k+1

‖xi − f(xi−1, ui−1|k)‖2Σw
+
∑

j∈Mi|k

‖zji|k − h(xi, lj)‖2Σv


Following a similar procedure as in Section II-A, i.e. lin-



earizing and re-writing in a matrix form, we get

∆X?
k+L|k = arg min

∆Xk+L

‖Ak+L|k∆Xk+L − bk+L|k‖2. (21)

The Jacobian matrix Ak+L|k and RHS vector bk+L|k are
defined as

Ak+L|k
.
=

[
Ak|k

Ak+1:k+L|k

]
, bk+L|k

.
=

[
bk|k

b̆k+1:k+L|k

]
, (22)

where Ak|k and bk|k are taken from inference, see Eq. (8),
and Ak+1:k+L|k and b̆k+1:k+L|k correspond to the new terms
obtained at the first L look ahead steps (e.g. see Eq. (10)).
Note that Ak+1:k+L|k is not a function of the (unknown)
measurements zk+1:k+L|k.

Performing QR factorization, yields

Ak+L|k = Qk+L|kRk+L|k, (23)

from which the information matrix, required in the
information-theoretic term in cost, can be calculated.

C. Problem Statement

Our goal is to save computation time in the inference stage
by reusing calculations made during the precursory planning
stage. In other words, instead of performing inference over
b[Xk+1|k+1] at time k + 1 by updating the belief b[Xk+1|k]
from the previous time with newly acquired information
(actions, measurements), we investigate whether inference
over b[Xk+1|k+1] can be performed by exploiting b[Xk+1|k],
which was already calculated as part of the planning phase
at time k. This concept of re-using planning for inference
is denoted in Figure 1 by the upward facing arrow (c),
which connects the appropriate first horizon of the precursory
planning phase to the current inference phase. In terms of
the graphical representation of the joint inference-planning
system in Figure 1, we wish to ”shortcut” the regular
inference procedure using pre-calculated planning step and
through it to save precious calculation time.

III. APPROACH

While different approaches exist for calculating the opti-
mal actions (19), all such approaches necessarily calculate
belief evolution, i.e. Eqs. (21)-(22), for the optimal action.
This optimal action is then executed, and new observations
are obtained at the next time instant k + 1, followed by a
new inference stage.

Our key observation is that the involved calculations in the
inference stage (Section II-A) and belief evolution, as part of
a precursory planning stage (Section II-B), are similar and
therefore can be re-used. In terms of Figure 1, this observa-
tion refers to the beliefs from the first row (inference) and
the second row (first look ahead step in precursory planning
stage). We now discuss the actual difference between the
corresponding beliefs, considering without loosing generality
b[Xk+1|k+1] and b[Xk+1|k] from the inference and planning
stages, respectively, where b[Xk+1|k] was evaluated, as part
of the planning stage, for the determined optimal action.

Both b[Xk+1|k+1] and b[Xk+1|k] are Gaussian beliefs.
Thus, they are represented by the first two moments, see
e.g. Eq. (15), that are calculated via MAP inference as a
function of the square root information matrix R and RHS
vector d. Performing inference over b[Xk+1|k+1] involves
calculating Rk+1|k+1 and dk+1|k+1, as described in Section
II-A. On the other hand, the terms Rk+1|k and dk+1|k de-
scribing b[Xk+1|k] are already available from the precursory
planning stage.

Rather than updating b[Xk+1|k+1] from b[Xk|k] and the
new information from time k + 1, we propose to update
b[Xk+1|k+1] from b[Xk+1|k], where similar calculations have
already been made, so that a valuable computation time
would be spared.

In this paper we make the following simplifying assump-
tion that will be relaxed in future research: we assume
that the considered data association in the first look ahead
step of the planning stage at time k is identical to the
actual data association in the succeeding inference stage at
time k + 1. We would denote this as the consistent data
association assumption. Recalling the definition ofMi|k (see
e.g. Eq. (3)), this assumption is equivalent to writing

Mk+1|k ≡Mk+1|k+1. (24)

In other words, landmarks considered to be observed at a
future time k+ 1, will indeed be observed at that time. Note
this does not necessarily imply that actual measurements and
robot poses will be as considered within the planning stage.

We now observe that the motion models in both
b[Xk+1|k+1] and b[Xk+1|k] are evaluated considering the
same control (i.e. the optimal control u?

k). Moreover, the
robot pose xk+1 is initialized to the same value in both cases
as f(xk, u

?
k), see e.g. [10], and thus the linearization point of

all probabilistic terms in inference and planning is identical.
This, together with the above assumption (i.e. Eq. (24) holds)
allows us to write Ak+1|k = Ak+1|k+1, and hence

Rk+1|k+1 ≡ Rk+1|k, (25)

for the first iteration in the inference stage at time k + 1.
Hence in order to solve b[Xk+1|k+1] we are left to find the

RHS vector dk+1|k+1, while Rk+1|k+1 can be entirely re-
used. In the sequel we present four methods that can be used
for this purpose, and examine computational aspects of each.
First, however, we discuss a graphical models perspective for
the above concept, and relate it to the iSAM2 algorithm [12].

A. JIP - Joint Inference and Belief Space Planning

Figure 1 provides a 2D graphical representation of JIP.
Our approach interleaves both inference and decision making
stages into a single process.

Each node in the graph represents a belief, i.e. b[Xk+1|k]
denotes the joint belief of state X at a future time instant k+1
given that the current time is k. The right facing arrows i.e.
(a) in Figure 1 denote inference at sequential time instances.
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Fig. 2: The relations between different problem representations. (a) Factor graph (b)
Jacobian matrix A with RHS vector b (c) Bayes Tree (d) Factorized Jacobian matrix
R with equivalent RHS vector d.

From each node there is a possible planning action distin-
guished by different possible controls. The optimal planning
action is denoted as a diagonal arrow in the 2D representation
i.e. (b) in Figure 1. While the full 3D representation of JIP
would contain more branches, going into and outside of the
2D plane, denoting all possible actions and the according
beliefs. For simplicity reasons we would continue to refer
only the 2D representation.

Each row in Figure 1 represents a different planning
horizon step, while the first row denotes inference, each of
the others denote future beliefs. Each column in Figure 1
contains beliefs which reason about the same time instance,
but the deeper we go down the column, the older the
information this reasoning is based upon, e.g b[Xk+1|k+1],
b[Xk+1|k] and b[Xk+1|k−1] all denote the joint belief of state
X at time instant k+1 but for different current time instances.
The upward facing arrows denote update using precursory
belief, e.g. (d) in Figure 1 denote updating the current time
the belief is based upon, when the upward facing arrows
from the second row to the first i.e. (c) in Figure 1 denote
updating the precursory first planning horizon step with the
new obtained measurements. Following methods provides an
implementation for (c) in Figure 1. While the implementation
for (d) in Figure 1 is preserved for future work.

B. Graphical Models Perspective

The inference problem is naturally represented using
graphical models such as factor graph [16] and Bayes Tree
(BT) [11]. Figure 2 presents the connections between those
different representations that are exploited by incremental
smoothing approaches such as iSAM2 [12]. The factor graph
((a) in Figure 2) encodes the joint pdf (3), or equivalently for
Gaussian distributions, the original non-linear least squares
problem (7). On the other hand, BT represents a factorization
of the joint pdf in terms of conditionals for a given variable
elimination order. For Gaussian distributions, BT efficiently

represents the square root information matrix R and the RHS
vector d, where each clique over a subset of variables en-
codes non-zero entries in appropriate sub-blocks and entries
of R and d, see illustration in (c) and (d) in Figure 2. When
new information is received, the iSAM2 algorithm efficiently
updates only the impacted parts in BT, an operation that
corresponds to updating an existing factorization rather than
calculating a new one from scratch.

Our approach can be also framed within the Bayes tree
graphical model. The simplifying assumption regarding con-
sistent data association between the inference stage and its
precursory planning stage leads to Eq. (25). Hence, Bayes
trees from both stages will have the same clique formation
and entries that correspond to the R matrix, and will only
differ by the RHS vector d. Thus, to get to the succeeding BT
(inference) from the already-available BT (from planning),
only appropriate values of the RHS vector d, that are
stored within the impacted cliques, need to be updated. This
observation suggests that the same iSAM2 machinery could
be used to identify and appropriately update these entries
within the d vector, further reducing running time. We leave
further investigation of this direction to future research, and
consider in this paper updating the entire d vector.

C. The Orthogonal Transformation Matrix Method - OTM

In the OTM method, we obtain dk+1|k+1 following the
definition as written in Eq. (13). Recall that at time k + 1 in
the inference stage, the posterior should be updated with new
terms that correspond, for example, to motion model and
obtained measurements. The RHS vector’s augmentation,
that corresponds to these new terms is denoted by b̆k+1|k+1,
see Eq. (10). Given Rk|k and dk|k from the inference stage
at time k, the augmented system at time k + 1 is

Ak+1|k+1∆Xk+1
.
=

[
Rk|k

Ak+1|k+1

]
∆Xk+1 =

[
dk|k

b̆k+1|k+1

]
which after factorization of Ak+1|k+1 (see Eqs. (11)-(13))
becomes

Rk+1|k+1∆Xk+1 = dk+1|k+1, (26)

where

dk+1|k+1 = QT
k+1|k

[
dk|k

b̆k+1|k+1

]
. (27)

The above calculation of dk+1|k+1 requires Qk+1|k+1. Since
Ak+1|k ≡ Ak+1|k+1 (see Section III), we get Qk+1|k+1 =
Qk+1|k. However, Qk+1|k, is already available from the
precursory planning stage, see Eq. (23), and thus calculating
dk+1|k+1 via Eq. (27) does not involve QR factorization in
practice.

D. The Downdate Update Method - DU

In the DU method we propose to re-use the dk+1|k vector
from the planning stage to calculate dk+1|k+1.

While not actually required within the planning stage,
dk+1|k could be calculated at that stage from bk+1|k



and Qk+1|k, see Eqs. (22)-(23). However, bk+1|k (but not
Ak+1|k) is a function of the unknown future observations
zk+1|k, which would seem to complicate things. Our solution
to this issue is as follows: We assume some value for the
observations zk+1|k and then calculate dk+1|k within the
planning stage. As in inference at time k + 1, the actual
measurements zk+1|k+1 will be different, we remove the
contribution of zk+1|k to dk+1|k via information downdating
[3], and then appropriately incorporate zk+1|k+1 to get
dk+1|k+1.

More specifically, downdating the measurements zk+1|k
from dk+1|k is done via (see e.g. [3])

daugk+1|k = Raug−T

k+1|k (RT
k+1|kdk+1|k −AT

k+1|k b̆k+1|k), (28)

where b̆k+1|k is a function of zk+1|k, see Eqs. (21)-(22),
and where Raug

k+1|k is the downdated Rk+1|k matrix which is
given by

RaugT

k+1|kR
aug
k+1|k = AT

k+1|kAk+1|k −AT
k+1|kAk+1|k. (29)

Interestingly, the above calculations are not really required:
Since we already have dk|k from the previous inference stage,
we can attain the downdated daugk+1|k vector more efficiently
by augmenting dk|k with zero padding.

daugk+1|k =

[
dk|k

0

]
(30)

Similarly, Raug
k+1|k can be calculated as

Raug
k+1|k =

[
Rk|k 0

0 0

]
, (31)

where Rk|k is zero padded to match dimensions of Rk+1|k .
Now, all which is left to get dk+1|k+1, is to incorporate

the new measurements zk+1|k+1 (encoded in b̆k+1|k+1).
Following [3], this can be done via

dk+1|k+1 = R−Tk+1|k+1(RaugT

k+1|kd
aug
k+1|k +AT

k+1|k+1b̆k+1|k+1),

where Ak+1|k+1 ≡ Ak+1|k due to the assumption regarding
data association from Section III.

E. The OTM - Only Observations Method - OTM-OO

The OTM-OO method aspire to utilize more information
from the planning stage. Since the motion models from
inference and the precursory planning first step are identical,
i.e. same function f(., .), see Eqs. (7) and (21), and as in
both cases the same control is considered (the determined
optimal action), there is no reason to change the motion
model data from the RHS vector dk+1|k. In order to en-
able the aforementioned, the planning stage as described in
Section II-B has to be broken down into two stages, in which
the motion and observation models are updated separately.
The breakdown would impose no effect over the computation
time or accuracy of the planning stage solution. So following
Section III-C, we attain from planning the RHS vector
already with the motion model (dFk+1|k), augment it with
the new measurements and rotate it with the corresponding

rotation matrix obtained from the planning stage.

dk+1|k+1 = QF
T

k+1|k

[
dFk+1|k
b̆Hk+1|k+1

]
(32)

While the rotation matrix QFk+1|k is given from the precur-
sory planning stage where

QFk+1|kR
F
k+1|k =

[
Rk|k
Fk+1|k

]
= AFk+1|k (33)

F. The DU - Only Observations Method - DU-OO

The DU-OO method is a variant of the second method,
where, similarly to Section III-E, we utilize the fact that there
is no reason to change the motion model data from the RHS
vector dk+1|k. Hence we would downdate all data with the
exception of the motion model, and then update accordingly.
As opposed to the second method (Section III-D), now we
do need to downdate using [3]

dFk+1|k = RF
−T

k+1|k(RT
k+1|kdk+1|k −HT

k+1|k b̆
H
k+1|k), (34)

where dFk+1|k is the RHS vector, downdated from all new
measurements with the exception of the motion model and
RFk+1|k is the equivalent downdated Rk+1|k matrix which is
given by

RF
T

k+1|kR
F
k+1|k = AT

k+1|kAk+1|k −HT
k+1|kHk+1|k, (35)

where Hk+1|k denotes the portion of the planning stage
Jacobian, of the new factors with the exception of the motion
model. Now, all which is left, is to update dFk+1|k with the
new measurements from the inference stage.

dk+1|k+1 = R−Tk+1|k+1(RF
T

k+1|kd
F
k+1|k +HT

k+1|k+1b̆
H
k+1|k+1)

IV. RESULTS

All four methods were implemented in MATLAB. In order
to test our methods’ running time we compared them to the
batch inference update paradigm (here on denoted as STD)
and to iSAM2 efficient inference update paradigm [12] (here
on denoted as iSAM). The comparison was made in two
different simulations. The presented running time is a result
of an average between 103 repetitions per each method. The
iSAM approach uses the GTSAM C++ implementation with
the supplied MATLAB wrapper [5]. Considering the general
rule of thumb, that MATLAB implementation is at least one
order of magnitude slower, the comparison to iSAM as a
reference is extremely conservative. Both simulations were
executed on the same Linux machine, with Xeon E3-1241v3
3.5 GHz processor with 32 GB of memory.

Each method is required to provide with Rk+1|k+1 and
dk+1|k+1 while only data that was already calculated during
the precursory planning stage k + 1|k is given as an input.
All other calculations are considered a part of the method
hence timed along with it. The data association assumption
(see Eq. (25)) is kept in both simulations.

We will first review the reference paradigms formulation,
then present and discuss the results of each simulation
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Fig. 3: Method comparison through basic analysis simulation, checking sensitivity to
new added measurements and the size of the inference state vector: (a) All the tested
methods i.e. STD, iSAM and our four methods (b) Our four methods, i.e. OTM, UD,
OTM-OO and UD-OO.

In the batch inference update paradigm (STD), we follow
Eqs. (9)-(13) for time instance k + 1|k + 1 to receive both
the R matrix and RHS vector d.

Before covering iSAM paradigm there are few issues that
need to be addressed. First for consistency reasons, since
iSAM2 is formulated in terms of the FG and BT graphical
models (see Section III-B), the underlying calculations were
interpreted to the Jacobian matrix and its QR factorization.
Secondly, again for consistency reasons, since other methods
already consider the Jacobian is available, i.e. post lineariza-
tion e.g. Eq. (21), in timing iSAM2 we do not include the
linearization step so the comparison would be valid.

In iSAM2 efficient inference update paradigm (iSAM),
we first augment the inference factorized Jacobian matrix
and the RHS vector with new factors

Ak+1|k+1 =

[
Rk|k

Ak+1|k+1

]
, bk+1|k+1 =

[
dk|k

b̆k+1|k+1

]
(36)

Then we use Givens Rotations to incrementally update only
relevant entries in Eq. (36), thus obtaining the factorized
Jacobian and RHS.

A. First Simulation - Basic Analysis

The first simulation preforms a single horizon BSP calcu-
lation, followed by an inference step and a single inference
update. The simulation provides a basic analysis of running
time for each method, denoted by the z axis, for a fully
dense information matrix and with no loop closures. The
simulation analyzes the sensitivity of each method to the
initial state vector size, denoted by the y axis, and to the
number of new factors, denoted by x axis. Since we perform
a single horizon step with a single inference update no re-
linearization in necessary, hence iSAM comparison is valid.

Figure 3a presents average timing results for all methods.
After inspecting the results, we found that for all methods,
running time is a non linear, positive gradient function of the
inference state vector size and a linear function of the number
of new measurements. While the running time dependency
over the number of new measurements grows with the
inference state vector size. For all inspected parameters our
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Fig. 4: Second simulation layout and results: (a) The Synthetic Environment, where
landmarks are marked in green, targets are numbered and marked with red crosses,
the ground truth is denoted by a blue line, the trajectory is denoted by a red line while
the covariance is visualized by red ellipse (b) Total average running time of inference
update for each method.

methods scores the lowest running time with a difference of
up to three orders of magnitude comparing to iSAM.

Figure 3b presents running time of our suggested methods.
Interestingly, the OTM methodology proves to be more time
efficient than the DU methodology, while for both the OO
addition improves running time, thus scoring all methods
from the fastest to the slowest with a time difference of four
orders of magnitude between the opposites:
OTM-OO ⇒ OTM ⇒ DU-OO ⇒ DU⇒ iSAM⇒ STD

B. Second Simulation - BSP in Unknown Environment

The second simulation preforms continuous BSP in an
unknown synthetic environment. In contrast to Section IV-
A, since the synthetic environment replicates a real world
scenario, the information matrix is of course sparse (e.g.
Fig. 2). A robot was given five targets (see Figure 4a)
while all landmarks were a-priori unknown, and was required
to visit all targets whilst not crossing a covariance value
threshold. The largest loop closure in the trajectory of the
robot, and the first in a series of large loop closures, is
denoted by a yellow � sign across all relevant graphs. The
robot preforms continuous BSP with a finite horizon of five
look ahead steps (see [10]). During the inference update stage
each of the aforementioned methods were timed performing
a single inference update step.

Similarly to Section IV-A, as can be seen in Figure 4b,
the suggested MATLAB implemented methods are up to two
orders of magnitude faster than iSAM used in a MATLAB
C++ wrapper. Interestingly, the use of sparse information ma-
trices changed the methods timing hierarchy. While OTM-OO
still has the best timing results (3×10−3 sec), two orders
of magnitude faster than iSAM, OTM and DU-OO switched
places. So the timing hierarchy from fastest to slowest is:
OTM-OO⇒ DU-OO ⇒ OTM ⇒ DU⇒ iSAM⇒ STD
After demonstrating our methods drastically reduce run-

ning time, we continue on to showing that in few aspects they
are also less sensitive. From carefully inspecting Figure 5,
alongside the trajectory of the robot in Figure 4a the follow-
ing observations can be made. Our methods, in particularly



Steps
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ti
m

e [
s]

0 20 40 60 80 100 120

OTM
DU
OTM-OO
DU-OO
iSAM
STD

0
10
20
30
40

Am
ou

nt

new Factors
new States

(a)
Steps

0

1

2

3

4

5

6

7

Ti
m

e [
s]

10-3×

OTM
DU
OTM-OO
DU-OO
iSAM

0
10
20
30
40

Am
ou

nt

new Factors
new States

0 20 40 60 80 100 120

(b)

steps

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ti
m

e[
s]

10-4×

OTM-OO
DU-OO

0 20 40 60 80 100 120

0
10
20
30
40

Am
ou

nt

new Factors
new States

(c)

Fig. 5: Second simulation timing results for the scenario presented in Figure 4a. Upper
part of each graph provides indication on new factors and new states per computation
step while the lower presents the methods timing results: (a) All six methods (b) OTM,
DU, OTM-OO, DU-OOand iSAM methods (c) OTM-OO and DU-OO methods.

OTM-OO seems to be impervious to large loop closures,
variant state vector sizes, various new measurements or even
the combination of the aforementioned.

V. CONCLUSIONS

In this paper we presented a novel approach that utilizes
decision making calculations for inference and paves the
way towards JIP-joint inference and BSP paradigm. Under
the consistent data association assumption, we provided four
different methods to update inference using information
from precursory planning stage. We compared our methods
to iSAM with continuous BSP in unknown environment,
for both dense and sparse information matrix cases. We
successfully showed that updating inference with precursory
planning is more efficient by at least two orders of magnitude
when compared to iSAM.

Future work will include relaxing the consistent data
association assumption and utilizing iSAM methodologies
for efficient selective updates.
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