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Joint Incremental Inference and Belief Space Planning for Online
Operations of Autonomous systems

Abstract

Real life scenarios in Autonomous Systems (AS) and Artificial Intelligence (AI) involve agent(s)

that are expected to reliably and efficiently operate online under different sources of uncertainty,

often with limited knowledge regarding the environment. These settings necessitate probabilistic

reasoning regarding high dimensional problem-specific states. Attaining such levels of autonomy in-

volves two key processes, inference and decision making under uncertainty. The former maintains

a belief regarding the high-dimensional state given available information thus far, while the latter,

also often referred to as belief space planning (BSP), is entrusted with determining the next best

action(s). However, as these problems are computationally expensive, simplifying assumptions or

process streamlining are required in order to provide with online or real-time performance. In recent

years the similarities between inference and control triggered much work, from developing unified

computational frameworks to pondering about the duality between the two. In spite of the aforemen-

tioned efforts, inference and control, as well as inference and belief space planning are still treated as

two separate processes.

We present in this work the ”Joint Inference and Belief Space Planning” ( JIP), a novel paradigm

that fully utilizes the similarities between probabilistic inference and BSP, thus enabling to re-use

computationally expensive calculations. Through the symbiotic relation enabled by JIP we devel-

oped new approaches for inference - Ru-Use Belief Inference (RUBI), and for decisionmaking under

uncertainty - Incremental eXpectationBSP(iX-BSP). InRUBIweupdate inferencewith a precursory

planning stage which can be considered as a deviation from conventional Bayesian inference. Rather

than updating the belief from the previous time instant with new incoming information (e.g. mea-

surements), RUBI exploits the fact that similar calculations are already performedwithin planning in

order to appropriately update the belief in inference far more efficiently while preserving accuracy.

1
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The iX-BSP approach exploits calculations performed as part of previous planning sessions to effi-

ciently solve a new planning session while accounting for the data that became available since then,

which is particularly important while operating in uncertain, potentially dynamically changing, envi-

ronments.

We demonstrate our novel paradigms on both simulation and real-world data considering active

visual SLAMexperiments, while benchmarking it against the current topof the line. Weshowthatour

paradigms save valuable computation timewithout introducing simplifying assumptions or affecting

accuracy, thus bringing these advanced capabilities more feasible for online setting.
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iML-BSP - incremental maximum likelihood Belief Space Planning
pdf - probability density function
ANPL - Autonomous Navigation and Perception Lab

4



Notation Description
□t|k Of time t while current time is k

ΔXk State perturbation around linearization point

Mt|k Data Association at time t

At|k Jacobian matrix at time t

bt|k RHS vector at time t

At|k Jacobian part related to all factors added at time t

Ft|k Jacobian part related to motion factor added at time t

Ht|k Jacobian part related to all factors added at time t without the motion factor

b̆t|k RHS vector related to all factors added at time t

b̆Ft|k RHS vector related to motion factor at time t

b̆Ht|k RHS vector related to all factors added at time t without the motion factor

Rt|k Factorized Jacobian, i.e. square root information matrix

dt|k Factorized RHS vector

AR
t|k Factorized

[
RT

t−1|k,AT
t|k

]T
RF

t|k Factorized
[
RT

t−1|k,FT
t|k

]T
dFt|k Factorized

[
dT
t−1|k, b̆

FT
t|k

]T
Raug

t|k Factorized Jacobian at time t−1 zero padded to match factorized Jacobian at time t

daug
t|k Factorized RHS vector at time t−1 zero padded to natch factorize RHS vector at

time t

QA
t|k Rotation matrix for factorizing At|k into Rt|k

Qt|k Rotation matrix for factorizing AR
t|k into Rt|k

QF
t|k Rotation matrix for factorizing

[
RT

t−1|k,FT
t|k

]T
into RF

t|k

QH
t|k Rotation matrix for factorizing

[
RFT

t|k,HT
t|k

]T
into Rt|k

FG t|k Factor graph (FG) at time t

Tt|k Bayes Tree (BT) at time t

Mt|k Data Association (DA) at time t while current time is k

M
∩
t Consistent DA at time t

Mrmv
t DA at time t from planning inconsistent with inference, indicating factors to be

removed

Madd
t DA at time t from inference inconsistent with planning, indicating factors to be added
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Notation Description
{fr}rmv

t Factors at time t from planning inconsistent with inference, to be removed

{fs}addt Factors at time t from inference inconsistent with planning, to be added

{X}invt All states at time t, involved in {fr}rmv
t and {fs}addt

T inv
t Sub-BT of Tt|k composed of all cliques containing {X}invt

{X}inv⋆t All states at time t, related to the sub-BT T inv
t

FG inv
t The detached part ofFG t|k containing {X}inv⋆t

FGupd
t The FGFG inv

t after DA update

T upd
t The sub-BT eliminated fromFGupd

t

FGupd
t|k The Factor Graph at time t with all-correct DA

T upd
t|k The Bayes Tree at time t with all-correct DA

Mt|k Data Association at time t while current time is k

b[Xt|k] belief at time t while current time is k

b−[Xt|k] belief at time t− 1 propagated only with action ut−1|k

Bk|k The entire belief tree from planning at time k
∼
b[Xt|k] The root of the selected branch for re-use in planning at time t

Bt|k The set of all beliefs from planning time k rooted in
∼
b[Xt|k]

Dist The distance between
∼
b[Xt|k] and the corresponding posterior b[Xt|t]

dist The distance between bs′−
α [Xt|k] and bs−

α [Xt|k+l]

data All available calculations from current and precursory planning session

u⋆k:k+L|k The (sub)optimal action sequence of length L chosen in planning at time k

εc belief distance critical threshold, above it re-use has no computational advantage

εwf wildfire threshold, bellow it distance is considered close-enough for re-use without
any update

useWF a binary flag determining whether or not the wildfire condition is considered

D(.) belief divergence / metric

D2(.) squaredD(.)
D√

J(p, q) The distance between distributions p and q according to theD√
J distance

DDA(p, q) The divergence between distributions p and q according to the data association
difference

Δ equalsD2(b+1 , b+2 )− D2(b1, b2), where bip denotes bi propagated with motion
and measurements
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Notation Description
bs[Xt|k+l] The sth sampled belief representing b[Xt|k+l]

bs−
α [Xt+1|k+l] The sampled belief bs[Xt|k+l] propagated with the α candidate action

{br
α[Xt|k+l]}nr=1 A set of n sampled beliefs that are first order children of bs−

α [Xt|k+l] and are
representing b[Xt|k+l]

bs′−
α [Xt+i|k] A propagated belief fromBt|k closest to bs−

α [Xt+i|k+l]

nu number of candidate actions per step

(nx · nz) number of samples for each candidate action

βσ σ acceptance range parameter, for considering measurements as representative

ωn
i the weight corresponding to the nth measurement sample for lookahead step i

qi(z
g
t:i) importance sampling distribution at lookahead step i, from which zg

t:i were
sampled

P(z□t:i |H, u) the nominal distribution at lookahead steps t : i

ni the number of samples considered at lookahead step i

Mi number of distributions at look ahead step i from which measurements are
being sampled

nm the number of measurements sampled from the mth distribution at look ahead
step i

ωi(z
m,g
t:i ) Balance Heuristic likelihood ratio at lookahead step i corresponding to zm,g

t:i

ωi(z
g
t:i) private case of ωi(z

m,g
t:i )where m = 1

zm,g
t:i the gth set of future measurements at time instances t : i sampled from the mth

distribution

bm,g[Xt|k+l] the sampled belief representing bm,g[Xt|k+l]which consider the measurements
zm,g
k+l+1:t

qm() the mth marginal importance sampling distribution at lookahead step i,
m ∈ [1,Mi]

{ri(b[Xt|k], u)}j1 j immediate rewards of lookahead step i

pi() the marginal nominal distribution at lookahead step i

p̃i() the nominal distribution at lookahead step i

q̃m() the mth importance sampling distribution at lookahead step i, m ∈ [1,Mi]

λα the reward function α−H..older constant

α the reward function α−H..older exponent

rst|k the immediate reward at lookahead step t, related to bs[Xt|k]
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Before I refuse to take your questions,
I have an opening statement.

Ronald Reagan

1
Introduction

From Isaac Asimov’s ”Three Laws of Robotics”1, formulated in October 1941, till our
days, Autonomous Systems (AS) andArtificial Intelligence (AI)havecomea longway.
But what is AI? or what makes AS autonomous ? These questions have many answers, stretching
across computer sciences as well as philosophy. Although the definition of AS/AI might be multiva-
lent, at their core, regardless of the specific definition you favor, any AS or AI system is required to
have two basic processes - inference and decisionmaking. In the following we break-down those two
processes to better understand their functionality and importance, using a simple general example of
some agent tasked with completing an objective.

The inference problem refers to determining the current state of our agent, given the information
it gathered so far and possibly some additional prior knowledge over the agent or the environment.
The ability of the agent to infer its current state is crucial in its effort to accomplish the designated
objective (whatever it may be). Although the state of the agent is problem sensitive, most real-world
problems involve reasoning over high-dimensional state space, e.g. the simultaneous localization and
mapping (SLAM) problem dealing with localizing the agent within an unknown environment while

1First presented in the science fiction short story ”Runaround”, published by Issac Asimov in March 1942

9



mapping the same environment. As the state can not always be measured directly, or without any
stochastic noise, the reasoning about the state is probabilistic rather than deterministic, i.e. we can
only infer a probability over the state of the agent denoted as belief. Solving the aforementionedbelief
is a synonym to performing inference, or obtaining an estimation of the desired state.

As the inference problem is usually required to be solved sequentially throughout an agents mis-
sion, the agent can either consider each instance as a stand-alone problem and solve it from scratch
(usually referred to as the batch approach), or to incrementally updated some previous solution with
newly acquired information (surprisingly referred to as the incremental approach). As long as there is
shared information history between inference sessions, the incremental approach is computationally
superior as it only updates some existing solution with new information rather than solving it from
scratch. One way to incrementally solve the inference problem is the Bayesian inference approach,
in-which Bayes theorem is being used to incrementally update the last posterior belief with newly
received information, in order to obtain the new posterior belief.

In addition to the ability to infer its current state, in order to fulfill its objective our agent also
requires to decide on its next optimal action. The process of decision making under uncertainty, is
tasked with locating the next optimal action given some posterior belief over the current state of the
agent. The action optimality is in accordance with its contribution to achieve the desired objective.
As discussed in Chapter 2, decision making under uncertainty is an intractable problem, and as such
it has and still is the focus of numerous research efforts that try to decrease the computational load
by sacrificing performance.

The decision making under uncertainty problem, or more specifically the belief space planning
(BSP) approach, locates the optimal action by considering for each candidate action all possible fu-
ture interactions with the environment (i.e. measurements) given the current posterior belief. In
other words, as part of the BSP process, for each possible action, the agent considers all possible fu-
ture measurements and the corresponding future beliefs.

In the general case, each of the aforementioned future beliefs should be solved in order to provide
the prediction of the corresponding future state. In this sense, BSP can be considered as solving nu-
merous inference problems using future measurements.

While the similarities between these two fundamental processes in AI/AS are apparent even be-
fore going into their mathematical representations, and in-spite some research effort in this area (see
Chapter 2), they are still being treated as two separate processes. As part of our research we came
across a built-in inefficiency within these two key processes. The motivation and inspiration for our
research is derived from thenon-artificial intelligent systemweall know - theHumanBrain. Although
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today, inference and decision-making are treated as two separate processes, the human brain consid-
ers them both as part of the same process. In an effort to unlock the symbiosis possibilities between
inference and decision making, we present the novel paradigm for Joint Inference and belief space
Planning or JIP. In addition to encapsulating both bayesian inference and standard BSP, JIP en-
ables new relations that save valuable computation time without sacrificing accuracy by mimicking
similar connections already available in the human brain.

Our research vision is that calculations can be re-used between inference and precursory BSP, and
within BSP fromdifferent time instances. Our key observation is that inference and BSP have a built-
in inefficiency. As part of our researchwe introduce twonew connections toJIP, wewill now explain
each connection using a simple example. Imagine youhave an important businessmeeting scheduled
for tomorrow. You will probably spend the rest of the day, preparing yourself for the meeting, going
over all possible questions youmight be asked. Tomorrow, during themeeting, if youwill encounter a
question youprepared yourself for, your responsewould be instantaneous. In case youwill encounter
a question you have not prepared yourself for, your response would take longer since you will have to
think it through. While this scenario is elementary to every human, this is not howcurrentAS/AIwill
perform. Autonomous Systems and Artificial Intelligence, as formulated today, will always think of
the answer during the meeting, even if it was previously covered during the decision-making (plan-
ning) phase. The first novel symbiotic connection we introduce to JIP allows to Re-Use previous
Belief space planning session to incrementally update Inference (denoted as RUB Inference), so
the agent can incrementally re-use the available answers rather than re-thinking the answers during
the meeting.

Now, imagine you have a followup business meeting to prepare for, as before, in order to prepare
for the meeting you will go over all possible questions you might be asked. But now, in case similar
questions already appear in your old plan, you will re-use them, either as is or by slightly updating
them. While this is again elementary for us as humans, an AS/AI would not make use of previous
planning sessions for the current plan. The second novel symbiotic connection we introduce to JIP
allows to selectively re-use previous planning sessions in order to incrementally create the current
plan (denoted as iX-BSP), so the agent can re-use old answers from previous planning sessions.

As part of our research we formulated and tested these new connections both on simulative and
real-world data, proving the advantages of the symbiotic relations enabled by JIP over the standard
top of the line in inference and BSP. It is worth stressing that these connections do not pose an ap-
proximation of the general problem, instead they simply allow to avoid repeating similar calculations
across inference and planning.
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1.1 ResearchOutline

The thesis is organized into 23 chapters in the following manner:

Chapter 2 : surveys the relevant related work on inference and BSP as well as the research efforts on
joint inference and planning.

Chapter 3 : introduces the novel concept of joint inference and belief space planning. Starting
with the standard inference and BSP in a JIP framework, followed by the new connections for re-
using previous planning sessions for inference update (RUB Inference) and for incremental BSP
(iX-BSP).

Chapter 4 : introduces the novel concept of RUB Inference. Provides the theoretical background
required for the formulation ofRUB Inference. We first formulateRUB Inference under a simpli-
fying assumption of consistent data association and test this simplified version in simulation. In the
following we relieve this simplifying assumption, and complete the formulation of RUB Inference
by formulating how to account for inconsistent data association. We test the full formulation of
RUB Inference both in simulation and real-world data. Before concluding this chapter we provide
the reader with some broader perspective of RUB Inference.

Chapter 5 : provides an in-depth survey of closely related research efforts. Stating the contribu-
tions of iX-BSP the theoretical background required for the formulation of iX-BSP. Defining the
iX-BSP problem and providing some insight over the commonmaximum likelihood assumption in
BSP.

Chapter 6 : begins with comparing two planning sessions and discuss the similarities between them
as the foundation for iX-BSP. Followed by a complete in-depth overview of iX-BSP, as well as
results comparing iX-BSP to the standard X-BSP in simulation. We also introduce a non-integral
approximation for iX-BSP denoted as the wildfire assumption, along with its full formulation, as
well as both analytical and empirical proofs of the affects wildfire holds over iX-BSP. Before con-
cluding this chapter we provide the reader with some broader perspective of iX-BSP.

Chapter 7 : presents the novel iML-BSP approach. In an effort to demonstrate how iX-BSP can
be utilized to benefit existing approximations of the standard BSP paradigm (X-BSP). We present
the formulation for iML-BSP as well as testing it both in simulation and live robot experiments.

Chapter 8 : Concluding remarks for our extensive research efforts, along with some possible future
research directions.

Chapters A - O : to improve coherence some relevant proofs and derivations are presented in these
chapters as appendix.
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1.2 ResearchContributions

In this section we summarize the main contributions of our research.

• We introduce JIP, a novel framework allowing to consider both inference and BSP as part of
the same process. We demonstrate how standard inference and BSP are encapsulated within
JIP, as well as two new symbiotic connections for re-using BSP for inference update and pre-
vious planning sessions .

• We introduce RUB Inference, a novel approach for saving computation time during the in-
ference stage by reusing calculations made during the precursory planning stage

• We provide four exact methods, that utilize our concept under the assumption of consistent
DA. We evaluate these four methods and compare them to the state of the art in simulation.

• Weprovide aparadigm for incrementally updating inconsistentDA, thereby relaxing the afore-
mentioned assumption.

• We evaluate the RUB Inference paradigm and compare it to the state of the art both in simu-
lation and on real-world data, considering the problemof autonomous navigation in unknown
environments.

• We present a novel paradigm for incremental expectation belief space planning with selective
resampling (iX-BSP). Our approach incrementally calculates the expectation over future ob-
servationsby a set of samples comprisingof newly sampledmeasurements and re-used samples
generated at different planning sessions.

• We identify the problem of iX-BSP with selective resampling as a Multiple Importance sam-
pling problem, and provide the proper formulation while considering the balance heuristic.

• We evaluate iX-BSP in simulation and provide statistical comparison to X-BSP, which cal-
culates expectation from scratch, while considering the problem of autonomous navigation in
unknown environments, across different randomized scenarios.

• We introduce the wildfire approximation into iX-BSP, which enables one to controllably
trade accuracy for performance.

• We provide an analytical proof of the affect the choice of a wildfire threshold would have over
the objective value, in the form of bounds over the objective value error.
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• We provide empirical results of using wildfire within iX-BSP, as well as the affect wildfire
holds over the objective value error.

• We support our claim, that iX-BSP can be used to improve approximations of the general
problem of X-BSP, by introducing to iX-BSP the commonly used ML approximation, and
denote it as iML-BSP. The novel approach of iML-BSP, incrementally calculates the expec-
tation over future observations, while considering either the most likely observation or some
previously sampled observation, given from a precursory planning session.

• We evaluate iML-BSP in simulation as well as in real-world experiments and compare it to
the commonly used approximation for theX-BSP problem, ML-BSP, while considering the
problemof autonomousnavigation inunknownenvironments and active visual-SLAMsetting
with belief over high dimensional state space.
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Get your facts first,
then you can distort them as you please.

Mark Twain

2
Literature Survey

Autonomous Systems and Artificial Intelligence related problems, can be divided
into two categories, the passive problem, usually referred to as estimation, inference or percep-
tion and the active problem, usually referred to as control, planning, decision making under uncer-
tainty, or active perception.

Since a deterministic scheme can only provide limited representation for the real life passive and
active problems (e.g. a deterministic model for real outdoor environments is not feasible), both pas-
sive and active problems often involve maintaining and reasoning about a probability density func-
tion (pdf), also known as the belief, over the state of interest conditioned on available information.
Although belief representation is more expensive computationally when compared to deterministic
models, it serves abetterfit to realworld scenarios. Thecurrent research effort in thefieldofASandAI
is twofold: coming up with paradigms that would better fit real life scenarios and streamlining those
methods to achieve real-time performance. Our research proposal deals with both aforementioned
aspects, while inspired by Mother Nature.
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2.1 The Passive Problem: Inference GivenData

Theinferenceproblem, entrustedwithmaintaining abelief over variables of interest (e.g, robot poses)
given available information and robot actions, has been addressed by the research community ex-
tensively over the past decades. In particular, focus was given to inference over high-dimensional
state spaces, with Simultaneous Localization AndMapping (SLAM) being a representative problem,
and to computational efficiency to facilitate online operation, as required in numerous robotics sys-
tems. Over the years, the solution paradigm for the inference problem has evolved. From EKF based
methods (e.g. [12], [27]), through information form recursive (e.g. [68]) and smoothing methods
(e.g. [14], [16])), and in recent years up to incremental smoothing approaches, such as iSAM [33]
and iSAM2 [36].

The inference problem is naturally represented using graphical models such as factor graph [44]
and Bayes Tree (BT) [35]. This representation enabled more efficient paradigms as will be reviewed
later on. Figure A.1 presents the connections between those different representations that are ex-
ploited by incremental smoothing approaches such as iSAM2 [36]. The factor graph ((a) in Fig-
ure A.1) encodes a joint probability density function (pdf) for a full-SLAM problem (state is com-
posed out of poses and landmarks), or equivalently forGaussian distributions, the original non-linear
least squares problem. On the other hand, BT represents a factorization of the joint pdf in terms of
conditionals for a given variable elimination order. For Gaussian distributions, BT efficiently repre-
sents the square root information matrix R and the RHS vector d, where each clique over a subset of
variables encodes non-zero entries in appropriate sub-blocks and entries of R and d, see illustration
in (c) and (d) in Figure A.1. When new information is received, the iSAM2 algorithm efficiently
updates only the impacted parts in BT, an operation that corresponds to updating an existing factor-
ization rather than calculating a new one from scratch.

The incremental approach of iSAM and iSAM2, suggests updating the existing belief estimation
with new acquiredmeasurements. While iSAM can only update linear systems incrementally and re-
quires periodic batch steps for reordering and re-linearization, iSAM2offers a fully incremental algo-
rithm for nonlinear least-squares (NLS)problemswhenboth variable reordering and re-linearization
are being done incrementally.
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2.2 TheActive Problem: DecisionMakingUnderUncertainty andBelief

Space Planning

Given the posterior belief from the inference stage, decision making under uncertainty and Belief
Space Planning (BSP) approaches are entrusted with providing the next optimal action sequence
given a certain objective. The aforementioned is accomplished by reasoning about belief evolution
for different candidate actions while taking into account different sources of uncertainty. The corre-
sponding problem is an instantiation of a partially observable Markov decision process (POMDP)
problem, known as PSAPCE-complete [55], hence computationally intractable for all but the small-
est problems, i.e. no more than a few dozen states [32].

Themain cause for the BSP problem intractability, resides with the use of expectation in the objec-
tive function, i.e. reasoning about belief evolution alongdifferent candidate actionswhile considering
all possible future measurements

J(U) = E
z
{
∑

i

ri (bi, ui−1)}. (2.1)

The objective over a candidate action sequence U , is obtained by calculating the expected value of
all possible rewards (costs) r received from following U . Since the reward (cost) function is a func-
tion of the belief b and the action led to it u, in practice the objective considers all future beliefs ob-
tained from followingU , i.e. the expectation considers the jointmeasurement likelihood of all future
measurements z. We refer to this general problem as the full solution of BSP, denoted by X-BSP,
eXpectation based BSP.

The exponential growth of possible measurements and candidate actions, usually denoted as the
curse of history, is the key aspect targeted by a lot of research efforts. Performing inference over multi-
ple future beliefs is the key reason for the costly computation time of X-BSP. In a planning session
with a horizon of 3 steps ahead, 3 candidate actions per step and 3 samples per action, we are re-
quired to solve a staggering number of 819 beliefs. Cutting down on the computation time of each
belief would benefit the overall computation time of the planning process.

As in any computational problem, one can either streamline the solution process or change the
problem, i.e. take simplifying assumptions or approximations.

Indeed, over the years, numerous approaches have been developed that trade-off suboptimal per-
formance with reduced computational complexity of POMDP, see e.g. [28, 45, 57, 70]. While the
majorityof these approaches, including [5, 58, 59, 73], assumed somesourcesof absolute information
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(GPS, known landmarks) are available or considered the environment to be known, recent research
relaxed these assumptions, accounting for the uncertainties in the mapped environment thus far as
part of the decision making process [29, 40] at the price of increased state dimensionality.

Other than assuming available sources of absolute information, some approaches use discretiza-
tion in order to reduce computational complexity. Sampling based approaches, e.g. [1, 5, 28, 59], dis-
cretize the state space using randomized exploration strategies to locate the belief ’s optimal strategy.
Other approaches, e.g. [61], discretize the action space thus trading optimality with reduced compu-
tational load. Whilemany sampling based approaches, including probabilistic roadmap (PRM) [39],
rapidly exploring random trees (RRT) [47], RRT* [38] and rapidly exploring random graph (RRG)
[37] assume perfect knowledge of the state (i.e. MDP framework) along with deterministic control
and known environment, efforts have been made to assuage these simplifying assumptions. These
efforts vary in the alleviated-assumptions, from the belief roadmap (BRM) [59] and the rapidly
exploring random belief trees (RRBT) [5], through, Partially Observable Monte-Carlo Planning
(POMCP) [64], Determinized Sparse Partially Observable Tree (DESPOT) [49, 76] and up to ac-
tive full SLAM in discrete [65] and continuous [29] domains accounting for uncertainties in the
environment mapped thus far as part of the decision making process (e.g. [29, 40, 65, 72]) at the
price of increased state dimensionality.

While all the aforementioned research efforts tackle the curse of history through providing various
approximations to the X-BSP problem, a common denominator for some of them is the Maximum
Likelihood (ML) assumption [58], which allows topruneX-BSPby considering only themaximum
likelihoodmeasurements rather than all possible ones. Wedenote the use ofML inBSP asML-BSP.

Other aspects of BSP have also been addressed in recent years, one of which is informative plan-
ning. Informative planning is the problem of choosing an action sequence that maximizes the sen-
sor information obtained about an underlying field of interest, e.g. [4]. The aforementioned field
of interest could be anything from minimizing the estimation uncertainty [28], through refining the
environment model [51] and up to streamlining perception measurements’ quality [8].

Another aspect that has been addressed in the context of decisionmaking under uncertainty is un-
knownenvironments. Since creating or obtaining an accurate probability distributionof anunknown
environment is unfeasible, research efforts has been made in order to overcome this difficulty, while
the majority of them turn to Reinforcement Learning (RL) or for the POMDP case, Bayesian Rein-
forcement Learning (BRL) [22].

For example, [61] offers high speed navigation POMDP planner based on Machine Learning in
order to categorize obstacles beyond the known regions of the map. Using the movement history
as a training set along with an offline calculated database of discretized possible actions for different
velocities, [61] predicts collision probabilities in uncharted territories of the environment online.
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Recent researchhasbeen trying to streamline theplanningparadigm itself, inparallel to simplifying
assumptions inorder to save computation time. Anexample for suchwork is givenby [2, 3], which are
extensions of [1], offering feedback-based information roadmap or FIRM, a multi-query approach
for planning under uncertainty, which is a belief space variant of probabilistic roadmap methods.
FIRM offers to streamline inefficiencies in the formof similar repeating calculations, found inModel
Predictive Control (MPC) paradigm, by performing some of the calculations offline and utilizing
them in the expense of accuracy and optimal performance. Under the assumption of a known en-
vironment (i.e. not high dimensional state POMDP), FIRM samples the belief space offline using
PRM, when each node is a belief. The covariance of each belief is defined by considering only few of
the possible paths to this node, thus trading-off the dependency over history with accuracy. These
sampled beliefs are represented in a graph while the costs associated with each are independent from
one another. The purpose of FIRM is to use those offline pre-calculated solutions of sampled beliefs
during planning. It does so by forcing the current belief to reach a sampled belief at the end of each
horizon. In addition to sacrificing accuracy, this paradigm dismisses Data Association (DA) aspects
as measurement noise and is not applicable for a Multi Robot (MR).

Another example for such work is [7], which offers to reduce computational complexity by elim-
inating redundant computations between similar candidate action sequences from the same horizon.
Using a BT representation along with iSAM2 efficient updatemethodologies, belief evolution along
candidate actions is being done incrementally thus saving valuable computation time.

A crucial component in both inference and BSP is data association (DA), i.e. associating between
sensor observations and the corresponding landmarks. Incorrect DA in inference or BSP can lead
to catastrophic failures, due to wrong estimation in inference or incorrect belief propagation within
BSP that would result in incorrect, and potentially unsafe, actions. Recent research thus focused on
developing approaches that are robust to incorrect DA, considering both passive [6, 30, 54, 66] and
active perception [56].
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2.3 AUnified Perspective for Active and Passive Problems

Regardless of the decisionmaking approach being used, in order to determine the next (sub)optimal
actions the current belief is propagated using various action sequences. The propagated beliefs are
then solved in order to provide an objective function value, thus enabling to determine the (sub)
optimal actions. Solving a propagated belief is equivalent to performing inference over the belief,
hence solving multiple inference problems is inevitable when trying to determine the (sub) optimal
actions.

Obvious similarities between inference and decisionmaking, triggeredmuchwork in recent years.
For example, Kobilarov et al. [41] and Ta et al. [67] developed Differential Dynamic Programming
(DDP) and Factor Graph (FG) based unified computational frameworks, respectively, for inference
and decision making. Toussaint and Storkey [71] provided an approximate solution to the Markov
Decision Process (MDP) problem using inference optimization methods, and Todorov [69] inves-
tigated the duality between optimal control and inference for the MDP case. Both Toussaint and
Storkey [71] and Todorov [69] refer to the MDP case, rather than the more general case where the
state is partially observable and thus has to be inferred probabilistically within a POMDP framework.
Interestingly, be the decisionmaking approach as it may, it has to solve numerous inference problems
in order to determine the (sub)optimal actions. However, despite the aforementioned research ef-
forts, inference and BSP are still handled as two separate processes.

Our work revolves around finding a unified paradigm for both inference and decision making un-
der uncertainty within a POMDP framework while considering unknown environment. We believe
this unified framework would help streamline both inference and BSP as we would show in the fol-
lowing chapters.

Thriving for a unified paradigm for both inference and decision making can get validation when
considering the idealAS/AI providedbyMotherNature - theHumanBrain. Making use of biological
models, even from brain sciences, is not an uncharted territory in AS and AI, e.g. [53] made use of
rodent hippocampus model in order to create RatSLAM, a passive vision-only SLAM paradigm.

Interestingly enough, inference and decision making under uncertainty in the human brain are
tightly entwined, hence it provides motivation to pursue an equivalent paradigm for AS and AI. For
example, as discussed in [60, 62, 63], simulating possible future events in the human brain is done
by the same mechanism used to remember the past. Both regions of the Medial Temporal Lobe
(MTL), i.e. the hippocampus and the parahippocampal cortex, are engaged when individuals build
simulations of events located in the future, past or present. Moreover, amnesia patients have shown
symmetry between their ability to recall past events and compose future events, i.e. severely amnesic
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patients who couldn’t remember any specific episodes from their past couldn’t envision any specific
episodes in their future, although having no physical damage to their MTL. These findings validate
our research ideas and provide us with a conceptual foundation that a joint inference and planning
approach would prove to be more efficient.
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The distinction between past, present and future
is only a stubbornly persistent illusion.

Albert Einstein

3
Introducing JIP

In this chapter we present the Joint Inference and belief space Planning approach,
or JIP. We start by describing the standard inference and BSP under JIP (Section 3.1), and con-
tinuewith presenting twoparadigms that unlock the potential ofJIP: RUB Inference (Section 3.2)
allowing for efficient inference update through the re-use of BSP calculations , and iX-BSP (Sec-
tion 3.3) allowing to perform BSP through incrementally updating previous planning sessions. Here
we shortly introduce the main concept of RUB Inference and iX-BSP, but in the following chap-
ters we dive-into each of which and provide a thorough formalization analysis and validation.

3.1 JIP- Joint Inference and belief space Planning

The Joint Inference and belief space Planning (JIP) approach, considers both inference and decision
making under uncertainty as part of a single process. In this section we describe how both inference
and BSP can be considered as part of the same process.

Figure 3.1.1 provides an abstract 3D-graph visualization of JIP. Each node in the graph denotes ei-
ther a posterior (blue sphere)or predicted (silver sphere) belief, and each edgedenotes the action and

23



(a) (b)

(c) (d)

Figure 3.1.1: Abstract 3D visualization of JIP, addressing both inference and belief space planning under a single process. Nodes
represent posterior and future beliefs denoted by blue and silver respectively. Edges represent actions and corresponding measurements,
either candidate actions with sampled measurements in white or executed actions and actual measurements in light blue. To avoid clutter
only few candidate action sequences are presented for each belief, and for each action sequence only a single belief instantiation. In (a),
a single posterior belief (blue) with 5 candidate action sequences branching out of it, each with appropriate future beliefs (silver). After
executing the action selected in (a) (denoted as watermark in (b)), the obtained measurements are used to calculate the new posterior
belief as illustrated in (b). (c) considers 4 candidate action sequences for the new posterior belief. (d) Illustrating a plan-act-infer system
with two more executed steps.

measurement that led to it. We will now explain how Figure 3.1.1d represents a plan-act-infer frame-
workusingFigures 3.1.1a-3.1.1c. Consider the single bluenode inFigure 3.1.1a, as representingprob-
ability distribution over the current joint state (i.e. belief). Under a plan-act-infer framework we will
need to plan for the next optimal action sequence. We examine several candidate action sequences,
by sampling measurements and propagating beliefs along each of which. Those future beliefs along
candidate action sequences are denoted respectively by silver nodes and white edges branching out
of our blue node. The length of each tentacle, i.e. the number of silver nodes, denote the planning
horizon of the appropriate candidate action sequence. For each candidate action sequence we can
calculate a reward (cost) value, thus eventually choosing the best candidate action as the one with

24



the maximum reward value. We then execute this action and receive measurements (both denoted
by the light-blue edge in Figure 3.1.1b), and calculate the next posterior belief, i.e. the newly added
blue node. The chosen candidate action sequence is denoted by a watermark in Figure 3.1.1b. Given
the newly calculated posterior belief, Figure 3.1.1c considers candidate action sequences and propa-
gate future beliefs. We are now in position to understandFigure 3.1.1d, illustrating inference andBSP
over a single graph. In order to avoid clutter only few candidate action sequences are considered for
each planning session (i.e. the degree of each node), for each candidate action only a single predicted
belief is considered, and all selected action sequences (e.g. watermarks in Figures 3.1.1b-3.1.1c) were
pruned.

Planning
Inference(a)

(b)

Legend:

Horizon = 0

Horizon = 1

Horizon = 2

Inference

Figure 3.1.2: A fractional 2D visualization of JIP, a novel approach to address both inference and belief space planning under a single
process. Here, b[Xk+1|k] stands for the belief of the joint state in time instance k + 1 while current time is k and each row stands for a
different planning horizon. The relations between different beliefs in the graph are denoted by different arrows. (a) Inference; (b) Planning
step.

As Figure 3.1.1d might be too abstract to convey how inference and BSP are incapsulated within
JIP, we provide its atrophied 2D visualization in Figure 3.1.2. Each node in Figure 3.1.2 represents
a belief, i.e. b[Xk+1|k] denotes the joint belief of state X at a future time instant k + 1 given that the
current time is k. Adding the subscript□t|k denoting current time k, allows us to consider past present
and future related parameters using the same unified notation. The right facing arrows i.e. (a) in
Figure 3.1.2 denote inference at sequential time instances, corresponding to the light-blue edges in
Figure 3.1.1d. From each node there is a possible planning action distinguished by different possible
controls. The optimal planning action is denoted as a diagonal arrow in the 2D representation i.e. (b)
in Figure 3.1.2, corresponding to the watermarks in Figures 3.1.1b-3.1.1c. Each row in Figure 3.1.2
represents a different planning horizon step. While the first row denotes inference (corresponding
to the blue nodes in Figure 3.1.1d), each of the others denote future beliefs (corresponding to the
silver nodes in Figure 3.1.1d). Each column in Figure 3.1.2 contains beliefs which reason about the
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same time instance, but the deeper we go down the column, the older the information this reasoning
is based upon. For example, b[Xk+1|k+1], b[Xk+1|k] and b[Xk+1|k−1] all denote the joint belief of state X
at time instant k+1 but for different current time instances.

Although Figure 3.1.2 visualize only a fraction of JIP as presented in Figure 3.1.1d, it is adequate
for demonstrating some of the re-use potential enabled through JIP, as will be discussed in the fol-
lowing sections.

3.2 RUB Inference- Re-Use Belief space planning for inference update

In this section we present a paradigm which utilizes JIP in an effort to improve inference update.
Introducing one of our main contributions, Re-Use Belief space planning for Inference update, de-
noted as RUB Inference. Instead of updating the last posterior belief with current information,

Planning
Inference(a) (c)

(b)

Update Inference with Planning (RUBI)
Legend:

Horizon = 0

Horizon = 1

Horizon = 2

Inference

Figure 3.2.1: A fractional 2D visualization of JIP, a novel approach to address both inference and belief space planning under a single
process. Here, b[Xk+1|k] stands for the belief of the joint state in time instance k + 1 while current time is k and each row stands for a
different planning horizon. The relations between different beliefs in the graph are denoted by different arrows. (a) Inference; (b) Planning
step; (c) Updating Inference with precursory planning (Chapter 4).

under RUB Inference we update some previously calculated belief, given from a previous planning
session. The advantage of not necessarily using the last posterior for inference update is that there
might be some belief, available from previous planning session, that would require less information
to update. To better understand how RUB Inference fits within a plan-act-infer framework we pro-
vide a high-level walkthrough using Figure 3.2.1. Let us assume we are at current time k, we perform
BSP given the currently available posterior belief b[Xk|k] in an effort to find the optimal planning con-
trol, denoted by the diagonal arrows in Figure 3.2.1 or watermarks in Figures 3.1.1b-3.1.1c.

After executing the optimal action and receiving new measurements, under standard bayesian in-
ference update the posterior b[Xk|k] should be updated with the aforementioned in order to obtain
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the new posterior b[Xk+1|k+1]. Inference update under the standard Bayesian inference is denoted by
the right facing arrows in Figure 3.2.1, equivalent to the light-blue edges in Figure 3.1.1. One of our
key observations is that theremight be an available belief closer to the desired b[Xk+1|k+1] than b[Xk|k],
and so updating it instead of b[Xk|k] will result with the same posterior belief b[Xk+1|k+1] but with a
potentially reduced computational load. Although RUB Inference might be considered as a devi-
ation from the standard Bayesian inference, it is not an approximation. The reduced computational
effort is originated from needing to update less information in order to obtain the desired posterior
belief.

The upward facing arrows in Figure 3.2.1, illustrate RUB Inference when considering one of the
previously calculated beliefs b[Xk+1|k] from planning at time k, that considers the optimal action, as
the closest to the desired b[Xk+1|k+1].

By closest we mean
b[Xk+1|k] = argmin

b∈B
D(b, b[Xk+1|k+1]) (3.1)

where B denotes the set of all previously calculated available beliefs, and D is some belief distance.
It is worth stressing that the set B of candidate beliefs for re-use need not be necessarily from the
precursory planning session or to contain only beliefs with the same action sequence as b[Xk+1|k+1].

In Chapter 4 we formalize RUB Inference as well as putting it to the test using both simulative
and real-world data assuming a visual SLAM navigation problem in an unknown environment and
high-dimensional state space.

3.3 iX-BSP- Incremental eXpectation BSP

In this section we present a paradigm which utilizes JIP in an effort to improve the planning pro-
cess. Introducing another one of our main contributions, Incremental eXpectation BSP, denoted as
iX-BSP. Considering the full un-approximated problem we denoted as X-BSP, we selectively re-
use beliefs, previously calculated in precursory planning sessions, in order to incrementally create the
current planning tree. As belief propagation is computationally expensive, we can save valuable com-
putation time by incrementally updating previously calculated beliefs with relevant information. It is
worth stressing that iX-BSP is not an approximation to X-BSP, and bares no integral assumptions
other than access to previous planning sessions.

To better understand how iX-BSP fits within a plan-act-infer framework we provide a high-level
walkthrough using Figure 3.3.1. Let us assume we are at current time k, we perform BSP given the
currently available posterior belief b[Xk|k] in an effort to find the optimal planning control, denoted
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Planning
Inference

(d)
(a) (c)
(b) Update Planning with Planning (iX-BSP)

Update Inference with Planning (RUBI)
Legend:

Horizon = 0

Horizon = 1

Horizon = 2

Inference

Figure 3.3.1: A fractional 2D visualization of JIP, a novel approach to address both inference and belief space planning under a single
process. Here b[Xk+1|k] stands for the belief of the joint state in time instance k+1 while current time is k and each row stands for a different
planning horizon. The relations between different beliefs in the graph are denoted by different arrows. (a) Inference; (b) Planning step; (c)
Updating Inference with precursory planning (Chapter 4); (d) Update planning with precursory planning (Chapters 5-6).

by the diagonal arrows in Figure 3.3.1 or watermarks in Figures 3.1.1b-3.1.1c. Under X-BSP, we
calculate the reward of each candidate action sequence by considering the cumulative rewards along
the action sequence. For the general case of belief based reward, this will require propagating and
solving beliefs along the planning horizon. This propagation is represented by the diagonal arrows in
Figure 3.3.1 or the white edges connected to the blue nodes in Figure 3.1.1.

Theupward facing arrows denoted by (d) inFigure 3.3.1, illustrates iX-BSPunderJIP. By adding
the upward facing arrows denoted by (d) in Figure 3.3.1, we can now generalize The upward facing
arrows in Figure 3.3.1 denote updating some future belief, i.e. belief from horizon larger than zero,
with new information, e.g. new measurement values and data association (DA). When updating fu-
ture beliefwe actually update the current time this belief is basedupon, e.g. whenupdating b[Xk+1|k−1]

with information from time step k, denoted in Figure 3.3.1 by (d), we obtain b[Xk+1|k]. Updating be-
lief from horizon of one is equivalent to the inference update stage, e.g. through (c) in Figure 3.3.1
b[Xk+1|k] is updated to b[Xk+1|k+1].

And so, instead of propagating future beliefs along the diagonal line of Figure 3.3.1 for each candi-
date action sequence, we incrementally update beliefs from previous planning sessions with current
information. In-spite of the way it is illustrated in Figure 3.3.1, the beliefs chosen for update do not
necessarily need to be from precursory optimal action sequences or referring to the same future time
step. Potentially, any previously calculated belief can be incrementally updated, assuming it is close
enough to current information so the update is worth while.

InChapters 5-6we formalize iX-BSP aswell as putting it to the test assuming a visual SLAMnavi-
gation problem in an unknown environment and high-dimensional state space. As iX-BSP is equiv-
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alent to the un-approximated X-BSP problem, in Chapter 7 we demonstrate how it can be utilized
also over approximations of X-BSP. Considering the common maximum likelihood (ML) approx-
imation of X-BSP denoted as ML-BSP, we utilize the iX-BSP paradigm and provide iML-BSP.
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Common sense is actually nothing more than
a deposit of prejudices laid down in the mind
prior to the age of eighteen.

Albert Einstein

4
RUBI

Through the symbiotic relation enabled by considering the joint inference and BSP
problemswemakethefollowingkeyresearchhypothesis: Inferencecanbeefficiently
updated using a precursory planning stage. In this chapter we investigate this novel concept
for inference update using BSP, considering operation in uncertain or unknown environments and
compare it against the current state of the art in both simulated and real-life environments. This chap-
ter is organized as follows. Section 4.1 introduces the concept of RUB Inference and reviews the
contributions of this chapter. Section 4.2 reviews current formulation of a plan-act-infer system, fo-
cusing on inference update. Section 4.4 presents RUB Inference under the simplifying assumption
of consistent data association. Section 4.5 presents a thorough analysis of the aforementioned and a
comparison to related work. Section 4.6 relieves the simplifying assumption of consistent DA and
presents RUB Inference while accounting for inconsistent DA. Section 4.7 presents a thorough
analysis of RUB Inference and a comparison to related work both on simulation and real-world
data. Section 4.8 discusses a broader perspective of RUB Inference. Section 4.9 captivates the con-
clusions of this chapter along with possible extensions and usage. To improve coherence, several
aspects are covered in appendices.
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Figure 4.1.1: High level algorithm for joint inference and BSP presented in a block diagram: (a) presents a standard plan-act-infer
framework with Bayesian inference and BSP treated as separate processes; (b) presents our novel approach for inference update using
precursory planning. Instead of updating the belief from precursory inference with new information we propose to update the belief from
a precursory planning phase. Since the only difference between (a) and (b) manifests in computation time within the inference block, it is
timed for comparison.

4.1 Introduction

Updating inference with a precursory planning stage can be considered as a deviation from conven-
tional Bayesian inference. Rather than updating the belief from the previous time instant with new
incoming information (e.g. measurements), we propose to exploit the fact that similar calculations
have already been performedwithin planning, in order to appropriately update the belief in inference
more efficiently. We denote this novel approach by Re-Use BSP for inference, or RUB Inference in
short.

Thestandardplan-act-infer frameworkof a typical autonomous systemwith conventionalBayesian
approach for inference update is presented in Figure 4.1.1a. First, BSP determines the next best ac-
tion(s) given the posterior belief at current time; the robot performs this action(s); information is
gathered and the former belief from the precursory inference is updated with new information (sen-
sor measurements); the new posterior belief is then transferred back to the planning block in order
to propagate it into future beliefs and provide again with the next action(s).

Our proposed concept, RUB Inference, is presented in Figure 4.1.1b. RUB Inference differs
from the conventional Bayesian inference in two aspects: The output of the BSP process and the
procedure of inference update. As opposed to standard Bayesian inference, in RUB Inference, BSP
output includes the next action(s) as well as the corresponding propagated future beliefs, no other
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Figure 4.1.2: Illustration for inconsistent DA between planning and succeeding inference: (a) at time k, our robot (i.e. the black jeep)
plans three steps into the future. For the future step k + 1 it predicts measurements from three landmarks (tree, traffic-light and taxi). (b)
After executing the first action our robot obtained three measurements from the environment. Two of them (i.e. tree and traffic-light)
match the predicted DA from precursory planning session, while the third is associated to a new landmark (i.e. the couple that came out of
the taxi).

changes are required inBSP inorder to facilitateRUB Inference. Thesebeliefs are used toupdate in-
ferencewhile potentially taking care of data association aspects, rather than using the belief frompre-
cursory inference as conventionally done under Bayesian inference. As can be seen in Figure 4.1.1b,
the inference block contains data association (DA) update before the actual inference update. There
are a lot of elements that can cause the DA in planning to be partially different than the DA estab-
lished in the successive inference, e.g. estimation errors, disturbances, and dynamic or un-modeled
unseen environments.

We start investigating this novel concept under a simplifying assumption that the DA considered
in planning is consistent to that acquired during the succeeding inference, e.g. we predicted an as-
sociation to a specific previously mapped landmark and later indeed observed that landmark. Since
data association only relates to connections between variables and not to themeasurement value, we
are leftwith replacing the (potentially) incorrectmeasurement values, usedwithin planning, with the
actual values. Under this assumption, we provide four exact methods to efficiently update inference
using the belief calculated by the precursory planning phase. As will be seen, these methods provide
the same estimation accuracy as the conventional Bayesian inference approach, with a significantly
shorter computation time.

We later relax the simplifying assumptionmentioned above, and show inference can be efficiently
updated using the precursory planning stage even when the DA considered in the two processes is
partially different. Figure 4.1.2 illustrates such a case of inconsistent DA using a simple navigation
problem. At time k our automated car (denoted by a black jeep), performs planning with a horizon
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of three steps. Figure 4.1.2a presents the chosen candidate action sequence along with the predicted
measurements for future timek+1. Our automatedcarpredicts that at future timek+1 itwouldobtain
measurements from the tree, the traffic-light and the taxi from the opposite lane. In addition to asso-
ciation, these predicted measurements also have values (e.g. pixels, distance) which depend on the
state estimation (of both robot position and landmarks). Under an MPC framework, Figure 4.1.2b
presents the succeeding inference for current time k + 1, in which our automated car advanced a bit
more than planned, and indeed obtained three measurements. Two of these measurements are to
the tree and the traffic-light (i.e. with consistent DA), while the third is to the couple that left the
taxi (i.e. inconsistent DA). In such a case, merely updating the measurement values will not resolve
the difference between the aforementioned DAs; instead the DA should be updated to match the
acquired data, before updating the measurement values. We provide a novel paradigm to update in-
consistent DA, leveraging iSAM2 graphical model basedmethodologies, thus setting the conditions
for complete inference update via BSP regardless of DA consistency.

To summarize, our contributions in this chapter are as follows: (a)We introduceRUB Inference,
a novel approach for saving computation timeduring the inference stage by reusing calculationsmade
during the precursory planning stage; (b) We provide four exact methods, that utilize our concept
under the assumption of consistent DA. We evaluate these four methods and compare them to the
state of the art in simulation. (c) We provide a paradigm for incrementally updating inconsistent
DA, thereby relaxing the afore-mentioned assumption; (d)We evaluate our complete paradigm and
compare it to the state of the art both in simulation and on real-world data, considering the problem
of autonomous navigation in unknown environments.

4.2 Inference& BSP Today

In this work, we consider the joint inference and belief space planning problem in a model predic-
tive control (MPC) setting, i.e. BSP is performed after each inference phase. This problem can be
roughly divided into two successive and recursive stages, namely inference and planning. The former
performs inference given all information up to current time, updating the belief over the state with
incoming information (e.g. sensor measurements). The latter produces the next control action(s),
given the belief from the former inference stage and a user defined objective function.

Let xt denote the robot’s state at time instant t andL represent the world state if the latter is uncer-
tain or unknown. For example, for SLAM problem, it could represent objects or 3D landmarks. The
joint state, up to time k, is defined as

Xk = {x0, ..., xk,L} ∈ Rn. (4.1)
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We shall be using the notation t|k to refer to some time instant t while considering information up
to time k; as will be shown in the sequel, this notation will allow to refer to sequential inference and
planning phases in a unified manner.

Let zt|k and ut|k denote, respectively, the measurements and the applied control action at time t,
while the current time is k. For example, zk+1|k represents measurements from a future time instant
k+ 1while zk−1|k representsmeasurements from a past time instant k− 1, with the present time being
k in both cases. Representing the measurements and controls up to time t, given current time k, as

z1:t|k
.
= {z1|k, ..., zt|k} , u0:t−1|k

.
= {u0|k, ..., ut−1|k}, (4.2)

the posterior probability density function (pdf) over the joint state, denoted as the belief, is given by

b[Xt|k]
.
= P(Xt|z1:t|k, u0:t−1|k). (4.3)

For t= k, Eq. (4.3) represents the posterior at current time k, while for t> k it represents planning
stage posterior for a specific sequence of future actions and observations. Using Bayes rule, Eq. (4.3)
can be rewritten as

P(Xt|z1:t|k, u0:t−1|k) ∝ P(x0) ·
t∏

i=1

P(xi|xi−1, ui−1|k)
∏

j∈Mi|k

P(zj
i|k|xi, lj)

 , (4.4)

where P(X0) is the prior on the initial joint state, P(xi|xi−1, ui−1|k) and P(zj
i|k|xi, lj) denote, respec-

tively, the motion and measurement likelihood models. The setMi|k contains all landmark indices
observed at time i, i.e. it denotes data association (DA).Themeasurement of some landmark j at time
i is denotedby zj

i|k ∈ zi|k. Under graphical representation of the belief, the conditional probabilities of
the motion and observation models as well as the prior, can be denoted as factors (see Appendix-B).
Eq. (4.4) can also be represented by a multiplication of these factors

P(Xt|z1:t|k, u0:t−1|k) ∝
t∏

i=0

{fj}i|k , (4.5)

where {fj}i|k represents all factors added at time i while current time is k. The motion and measure-
ment models are conventionally modeled with additive zero-mean Gaussian noise

xi+1 = f(xi, ui) + wi , wi ∼ N (0, Σw) (4.6)

zj
i = h(xi, lj) + vi , vi ∼ N (0, Σv), (4.7)
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where f and h are known possibly non-linear functions, Σw and Σv are the process and measurement
noise covariance matrices respectively.

4.2.1 Inference

For the inference problem, t ≤ k, i.e time instances that are equal or smaller than current time. The
maximum a posteriori (MAP) estimate of the joint state Xk for time t = k is given by

X⋆
k|k = argmax

Xk

b[Xk|k] = argmax
Xk

P(Xk|z1:k|k, u0:k−1|k). (4.8)

For the Gaussian case, the MAP solution produces the first two moments of the belief through solv-
ing a Non-linear Least Squares (NLS) problem, as will be shown later on. The MAP estimate from
Eq. (4.8) is referred to as the inference solution in which, all controls and observations until time in-
stant k are known.

4.2.2 Planning in the Belief Space

As mentioned, the purpose of planning is to determine the next optimal action(s). Finite horizon
belief space planning for L look ahead steps involves inference over the beliefs

b[Xk+l|k] = P(Xk+l|z1:k+l|k, u0:k+l−1|k) , l ∈ [k + 1, k + L] (4.9)

where we use the same notation as in Eq. (4.3) to denote the current time is k. The belief (4.9) can
be written recursively as a function of the belief b[Xk|k] from the inference phase as

b[Xk+l|k] = b[Xk|k] ·
k+l∏

i=k+1

P(xi|xi−1, ui−1|k)
∏

j∈Mi|k

P(zj
i|k|xi, lj)

 , (4.10)

for the considered action sequence uk:k+l−1|k at planning time k, and observations zk+1:k+l|k that are
expected to be obtained upon execution of these actions. The setMi|k denotes landmark indices
that are expected to be observed at a future time instant i. It is worth stressing that the future belief
(4.10) is determined by a specific realization of unknown future observations zk+1:k+l|k, as stated in
thebelief definition in (4.9). Since terms for future belief of the formP(Xk+l|z1:k+l|k, u0:k+l−1|k)will be
used frequently in this paper in order not to burden the reader we use themore compact form b[Xi|k].
Whenever i > k the reader should consider the belief b[Xi|k] as a function of a specific realization of
future observations.
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One can now define a general objective function

J(uk:k+L−1|k)
.
= E

zk+1:k+L|k

[
k+L∑

i=k+1

ci
(
b[Xi|k], ui−1|k

)]
, (4.11)

with immediate costs (or rewards) ci andwhere the expectation considers all the possible realizations
of the future observations zk+1:k+L|k. Conceptually, one could also reasonwhether these observations
will actually beobtained, e.g. by considering alsodifferent realizationsofMi|k. Note that forGaussian
distributions considered herein and information-theoretic costs (e.g. entropy), it can be shown that
the expectation operator can be omitted under maximum-likelihood observations assumption [29],
while another alternative is to simulate future observations via sampling, e.g. [18, Section II-B], if
such a simulator is available. The optimal open-loop control can now be defined as

u⋆k:k+L−1|k = argmin
uk:k+L−1|k

J(uk:k+L−1|k). (4.12)

Evaluating the objective function (4.11) for a candidate action sequence involves calculating belief
evolution for the latter, i.e. solving the inference problem for each candidate action using predicted
future associations andmeasurements. Note that since we consider anMPC framework, the optimal
control is affectively not an open-loop control, since it is being recalculated at each single action step.

4.3 Utilizing Inference and BSP similarities

Calculating the next optimal action u⋆k|k ∈ u⋆k:k+L−1|k within BSP necessarily involves inference over
thebeliefb[Xk+1|k] conditionedon the sameactionu⋆k|k. Aswediscuss in the sequel, this beliefb[Xk+1|k]

can be different than b[Xk+1|k+1] (the posterior at current time k + 1) due to partially inconsistent
data association and difference between measurement values considered in planning and those ob-
tained in practice in inference. Our approach forRUB Inference, takes care of both of these aspects,
thereby enabling to obtain b[Xk+1|k+1] from b[Xk+1|k].

In the following, we analyze the similarities between inference and BSP and use them to formulate
RUB Inference. It is worth stressing that the only thing needed to be changed in any BSP algorithm
in order to support our paradigm for RUB Inference, is just addingmore information to its output.
More specifically, outputting not only the (sub)optimal action u⋆k|k, but also the corresponding future
belief b[Xk+1|k] (e.g. the difference between Figures 4.1.1a and 4.1.1b).
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4.3.1 Looking into Inference

To better understand the similarities between inference and precursory planning, let us break down
the inference solution to its components. Introducing Eqs. (4.4-4.7) into Eq. (4.8) and taking the
negative logarithm yields the following non-linear least squares problem (NLS)

X⋆
k|k = argmin

Xk

∥x0 − x⋆0∥2Σ0
+

k∑
i=1

∥xi−f(xi−1, ui−1|k)∥2Σw
+
∑

j∈Mi|k

∥zj
i|k−h(xi, lj)∥2Σv

, (4.13)

where ∥a∥2Σ
.
= aTΣ−1a is the squared Mahalanobis norm.

Linearizing each of the terms in Eq. (4.13) and performing standard algebraic manipulations (see
Appendix B for derivation) yields

ΔX⋆
k|k = argmin

ΔXk

∥Ak|kΔXk − bk|k∥2, (4.14)

where Ak|k ∈ Rm×n is the Jacobian matrix and bk|k ∈ Rm is the right hand side (RHS) vector. In a
more elaborated representation

Ak|k =

 Σ− 1
2

0

F1:k|k

H1:k|k

 , bk|k =

 0
b̆F1:k|k
b̆H1:k|k

 , (4.15)

whereF1:k|k,H1:k|k, b̆F1:k|k and b̆H1:k|k (see Appendix A) denote the Jacobian matrices and RHS vectors
of all motion and observation terms accordingly, for time instances 1 : k when the current time is k.
These Jacobians, along with the corresponding RHS can be referred to by

A1:k|k =

[
F1:k|k

H1:k|k

]
, b̆1:k|k =

[
b̆F1:k|k
b̆H1:k|k

]
, (4.16)

While there are a few methods to solve Eq. (4.14), we choose QR factorization as presented, e.g., in
[33]. The QR factorization of the Jacobian matrix Ak|k is given by the orthonormal rotation matrix
Qk|k and the upper triangular matrix Rk|k

Ak|k = Qk|kRk|k. (4.17)
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Eq. (4.17) is introduced into Eq. (4.14), thus producing

Rk|kΔXk = dk|k, (4.18)

where Rk|k is un upper triangular matrix and dk|k is the corresponding RHS vector, given by the orig-
inal RHS vector and the orthonormal rotation matrix Qk|k

dk|k
.
= QT

k|kbk|k. (4.19)

We can now solve Eq. (4.18) forΔXk via back substitution, update the linearization point, and repeat
the process until convergence. Eq. (4.18) can also be presented using a Bayes tree (BT) [34]. A BT is
a graphical representation of a factorized Jacobianmatrix (the square root informationmatrix)R and
the corresponding RHS vector d, in the form of a directed tree. More on the formulation of inference
using graphical models can be found in Appendix B. One can substantially reduce running time by
exploiting sparsity and updating the QR factorization from the previous step with new information
instead of calculating a factorization from scratch, see e.g. iSAM2 algorithm [36].

Given the inference solution, the belief b[Xk|k] can be approximated by the Gaussian

b[Xk|k]
.
= P(Xk|z1:k|k, u0:k−1|k) = N (X⋆

k|k, Λ
−1
k|k), (4.20)

while the information matrix is given by

Λk|k = AT
k|kAk|k = RT

k|kRk|k, (4.21)

and the factorized Jacobian matrix Rk|k along with the corresponding RHS vector dk|k can be used
to update the linearization point and to recover the MAP estimate. In other words, the factorized
Jacobian matrix Rk|k and the corresponding RHS vector dk|k are sufficient for performing a single
iteration within Gaussian belief inference.

4.3.2 Looking into Planning

An interesting insight, that will be exploited in the sequel, is that the underlying equations of BSP are
similar to those seen in Section 4.3.1. In particular, evaluating the belief at the Lth look ahead step,
b[Xk+L|k], involvesMAP inference over a certain action sequence uk:k+l−1|k and future measurements

39



zk+1:k+l|k, which in turn, as in Section 4.3.1, can be described as an NLS problem

X⋆
k+L|k = argmin

Xk+L

∥Xk − X⋆
k|k∥2Λ−1

k|k
+

k+L∑
i=k+1

∥xi − f(xi−1, ui−1|k)∥2Σw
+
∑

j∈Mi|k

∥zj
i|k − h(xi, lj)∥2Σv

 (4.22)

For i> k, the setMi|k contains predicted associations for future time instant i; hence, we can claim
that ∀i > k it is possible thatMi|k ̸= Mi|i. In other words, it is possible that associations from
the planning stage,Mk+1|k, would be partially different than the associations from the correspond-
ing inference stageMk+1|k+1. Moreover, the likelihood for inconsistent DA between planning and
the corresponding inference rises as we look further into the future, i.e. with the distance ∥i − k∥
increasing; e.g.Mk+j|k andMk+j|k+j are less likely to be identical for j = 10 than they are for j = 1.

Predicting the unknown measurements zk+1:k+L|k in terms of both association and values can be
done in various ways. In this paper the DA is predicted using current state estimation, and mea-
surement values are obtained using the maximum-likelihood (ML) assumption, i.e. assuming zero
innovation [14]. The robot pose is first propagated using the motionmodel (4.6). All landmark esti-
mations are then transformed to the robot’s new camera frame. Once in the robot camera frame, all
landmarks that are within the robot’s field of view are considered to be seen by the robot (predicted
DA).The estimated position of each landmark, that is considered as visible by the robot, is being pro-
jected to the camera image plane [26], thus generatingmeasurements. It isworthmentioning that the
aforementioned methodology is not able to predict occurrences of new landmarks, since it is based
solely on the map the robot built thus far, i.e. current joint state estimation. The ability to predict
occurrences of new landmarks would increase the advantage of RUB Inference over conventional
Bayesian inference (as discussed in the sequel), hence is left for future work.

Once the predicted measurements are acquired, by following a similar procedure to the one pre-
sented in Section 4.3.1, for each action sequence we get

ΔX⋆
k+L|k = argmin

ΔXk+L

∥Ak+L|kΔXk+L − bk+L|k∥2. (4.23)

The Jacobian matrix Ak+L|k and RHS vector bk+L|k are defined as

Ak+L|k
.
=

[
Ak|k

Ak+1:k+L|k

]
, bk+L|k

.
=

[
bk|k

b̆k+1:k+L|k

]
, (4.24)

whereAk|k and bk|k are taken from inference, see Eq. (4.14), andAk+1:k+L|k and b̆k+1:k+L|k correspond
to the new terms obtained at the first L look ahead steps (e.g. see Eq. (4.16)). Note that although
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Ak+1:k+L|k is not a functionof the (unknown)measurements zk+1:k+L|k, it is a functionof the predicted
DA,Mk+1:k+L|k [29]. Performing QR factorization, yields

Ak+L|k = QA
k+L|kRk+L|k, (4.25)

from which the information matrix, required in the information-theoretic cost, can be calculated.
Using Eq. (4.24) the belief that correlates to the specific action sequence can be estimated, enabling
evaluating the objective function (4.11). Determining the best action via Eq. (4.12) involves repeat-
ing this process for different candidate actions.

4.3.3 Similarities between Inference and BSP

In an MPC setting, only the first action from the sequence u⋆k:k+L−1|k is executed, i.e.

uk|k+1 = u⋆k|k ∈ u⋆k:k+L−1|k. (4.26)

In such case the difference between the belief obtained from BSP (for action u⋆k|k)

b[Xk+1|k] ≡ P(Xk+1|z1:k|k, u0:k−1|k, zk+1|k, u⋆k|k), (4.27)

and the belief from the succeeding inference

b[Xk+1|k+1] ≡ P(Xk+1|z1:k|k, u0:k−1|k, zk+1|k+1, uk|k+1), (4.28)

is rooted in the set of measurements (i.e. zk+1|k+1 vs. zk+1|k), and the corresponding factors added at
time instant k + 1. These factor sets, denoted by {fi}k+1|k and {fj}k+1|k+1 accordingly, can differ from
one another in data association and measurement values. Since solving the belief requires lineariza-
tion (4.14), it is important to note that both beliefs, b[Xk+1|k] and b[Xk+1|k+1], make use of the same
initial linearization point X̄k+1 for the common variables. In particular, as in this work we do not
reason within planning about new, unmapped thus far, landmarks, it follows that

Xk+1|k =

[
Xk|k

xk+1

]
, Xk+1|k+1 =

Xk|k

xk+1

Lnew
k+1

 (4.29)

where Lnew
k+1 represents the new landmarks that were added to the belief for the first time at time

instant k + 1. The linearization point for the common variables is [X⋆
k|k , f(xk, u⋆k|k)] for planning,
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and [X⋆
k|k , f(xk, uk|k+1)] for succeeding inference, where f(.) is the motion model (4.6). Since the

(sub)optimal action provided by BSP is the one executed in the succeeding inference i.e. Eq. (4.26),
the motion models are identical hence the same linearization point is used in both inference and
precursory planning.

When considering thebelief fromplanning (4.27), which is propagatedwith thenext action (4.26)
and predicted measurements, with the previously factorized form of Ak|k and bk|k, we get

AR
k+1|k

.
=

[
Rk|k

Ak+1|k

]
, bd

k+1|k
.
=

[
dk|k

b̆k+1|k

]
. (4.30)

Similarly, when considering the a posteriori belief from inference (4.28), propagated with the next
action (4.26) and acquiredmeasurements, with the previously factorized form ofAk|k and bk|k, we get

AR
k+1|k1

.
=

[
Rk|k

Ak+1|k+1

]
, bd

k+1|k+1
.
=

[
dk|k

b̆k+1|k+1

]
. (4.31)

For the same action (4.26), the difference between Eq. (4.30) to the equivalent representation of
standard Bayesian inference (4.31) originates from the factors added at time k + 1

Ak+1|k
?
= Ak+1|k+1 , (4.32)

b̆k+1|k
?
= b̆k+1|k+1 . (4.33)

Since the aforementioned share the same action sequence, the same linearization point and the same
models, the differences remain limited to the DA and measurement values at time k + 1.

In planning, DA is based on predicting which landmarks would be observed. This DA could very
possibly be different than the actual landmarks the robot observes, as presented in Sec. 4.3.2. This
inconsistency in DA manifests in both the Jacobian matrices and the RHS vectors. Even in case of
consistent DA, the predicted measurements (if exist) would still be different than the actual mea-
surements due to various reasons, e.g. the predicted position is different than the ground truth of the
robot, measurement noise, inaccurate models.

While for consistent DA and the same linearization point Eq. (4.32) will always be true, the RHS
vectors, specifically Eq. (4.33), would still be different due to the difference in measurement values
considered in planning and actually obtained in inference.

It is worth stressing that consistent data association between inference and precursory planning
suggests that all predictions for state variable (new or existing) associations were in fact true. In addi-
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tion to the new robot state added each time instant, new variables could also manifest in the form of
landmarks. ConsistentDA implies that the future appearance of all new landmarks has been perfectly
predicted during planning. Since for the purpose of this work, we use a simple predictionmechanism
unable to predict new landmarks (see Section 4.3.2), consistent DA would inevitably mean no new
landmarks in inference, i.e Lnew

k+1 is an empty set.
We start developing RUB Inference by assuming consistent DA between inference and precur-

sory planning (Section 4.4). In such a case the difference is limited to the RHS vectors. Later we
relax this assumption by dealing with possible DA inconsistency prior to the update of the RHS vec-
tor, thus addressing the general and complete problem of inference update using RUB Inference
paradigm (Section 4.6).

4.4 ConsistentDAAssumption

Let us assume that the DA between inference and precursory planning is consistent, whether the
cause is a ”lucky guess” during planning or whether the DA inconsistency has been resolved before-
hand. Recalling the definition ofMi|k (see e.g. Eq. (4.10)), this assumption is equivalent to writing

Mk+1|k ≡Mk+1|k+1. (4.34)

In other words, landmarks considered to be observed at a future time k + 1, will indeed be observed
at that time. Note this does not necessarily imply that actualmeasurements and robot poses will be as
considered within the planning stage, but it does necessarily state that both are considering the same
variables and the same associations.

We now observe that the motion models in both b[Xk+1|k+1] and b[Xk+1|k] are evaluated consid-
ering the same control (i.e. the optimal control u⋆k). Moreover, the robot pose xk+1 is initialized to
the same value in both cases as f(xk, u⋆k), see e.g. Eq.(27) in [29], and thus the linearization point of
all probabilistic terms in inference and planning is identical. This, together with the aforementioned
assumption (i.e. Eq. (4.34) holds) allows us to write Ak+1|k = Ak+1|k+1, and hence

Rk+1|k+1 ≡ Rk+1|k, (4.35)

for the first iteration in the inference stage at time k + 1.
Hence, in order to solve b[Xk+1|k+1] we are left to find the RHS vector dk+1|k+1, while Rk+1|k+1 can

be entirely re-used.
In the sequel we present four methods that can be used for updating the RHS vector, and examine
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Variable Description
□t|k Of time t while current time is k

ΔXk State perturbation around linearization point

Mt|k Data Association at time t

At|k Jacobian matrix at time t

bt|k RHS vector at time t

At|k Jacobian part related to all factors added at time t

Ft|k Jacobian part related to motion factor added at time t

Ht|k Jacobian part related to all factors added at time t without the motion factor

b̆t|k RHS vector related to all factors added at time t

b̆Ft|k RHS vector related to motion factor at time t

b̆Ht|k RHS vector related to all factors added at time t without the motion factor

Rt|k Factorized Jacobian, i.e. square root information matrix

dt|k Factorized RHS vector

AR
t|k Factorized

[
RT

t−1|k,AT
t|k

]T
RF

t|k Factorized
[
RT

t−1|k,FT
t|k

]T
dFt|k Factorized

[
dT
t−1|k, b̆

FT
t|k

]T
Raug

t|k Factorized Jacobian at time t− 1 zero padded to match factorized Jacobian at time t

daug
t|k Factorized RHS vector at time t− 1 zero padded to natch factorize RHS vector at

time t

QA
t|k Rotation matrix for factorizing At|k into Rt|k

Qt|k Rotation matrix for factorizing AR
t|k into Rt|k

QF
t|k Rotation matrix for factorizing

[
RT

t−1|k,FT
t|k

]T
into RF

t|k

QH
t|k Rotation matrix for factorizing

[
RFT

t|k,HT
t|k

]T
into Rt|k

Table 4.1: Notations for Section 4.4
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computational aspects of each. The four methods use two different approaches to update the RHS
vector: while the first two (OTM and OTM-OO), utilize the rotation matrix available from fac-
torization, the last two (DU and DU-OO) utilize information downdate / update principles. After
we review the methods we shortly discuss the advantages and disadvantages of each (Sec. 4.4.5). It
is worth stressing that each of these methods results in the same RHS vector which is also identical
to the RHS vector that would have been obtained by the standard inference update. With both the
factorized Jacobian matrix (i.e. R) and the RHS vector identical to the standard inference update
approach, RUB inference provides the same estimation accuracy for the inference solution.

4.4.1 The Orthogonal Transformation Matrix Method - OTM

In the OTM method, we obtain dk+1|k+1 following the definition as written in Eq. (4.19). Recall that
at time k+ 1 in the inference stage, the posterior should be updated with new terms that correspond,
for example, to motion model and obtained measurements. The RHS vector’s augmentation, that
corresponds to these new terms is denoted by b̆k+1|k+1, see Eq. (4.16). Given Rk|k and dk|k from the
inference stage at time k, the augmented system at time k + 1 is

AR
k+1|k+1ΔXk+1

.
=

[
Rk|k

Ak+1|k+1

]
ΔXk+1 =

[
dk|k

b̆k+1|k+1

]
(4.36)

which after factorization of AR
k+1|k+1 (see Eqs. (4.17)-(4.19)) becomes

Rk+1|k+1ΔXk+1 = dk+1|k+1, (4.37)

where

dk+1|k+1 = QT
k+1|k+1

[
dk|k

b̆k+1|k+1

]
. (4.38)

As deduced from Eq. (4.38), the calculation of dk+1|k+1 requires Qk+1|k+1 . Since AR
k+1|k ≡ AR

k+1|k+1

(see Section 4.4), we get Qk+1|k+1 = Qk+1|k. However, Qk+1|k, is already available from the precur-
sory planning stage, see Eq. (4.25), and thus calculating dk+1|k+1 via Eq. (4.38) does not involve QR
factorization in practice. To summarize, under the OTM method we obtain the RHS vector dk+1|k+1

in the following manner:

dk+1|k+1 = QT
k+1|k

[
dk|k

b̆k+1|k+1

]
. (4.39)

whereQT
k+1|k is available from the factorization of precursory planning, dk|k is theRHS from inference

at time k, and b̆k+1|k+1 are the new un-factorized RHS values obtained at time k + 1.
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4.4.2 The OTM - Only Observations Method - OTM-OO

The OTM-OO method is a variant of the OTM method. OTM-OO aspires to utilize even more
information from the planning stage. Since the motion models from inference and the precursory
planning first step are identical, i.e. same function f(., .), see Eqs. (4.13) and (4.22), and as in both
cases the same control is considered - Eq. (4.26), there is no reason to change themotionmodel data
from the RHS vector dk+1|k. In order to enable the aforementioned, we require thematching rotation
matrix. One way would be to break down the planning stage as described in Section 4.3.2 into two
stages, inwhich themotion andobservationmodels are updated separately. Usually this breakdown is
performed either way since a propagated future pose is required for predicting future measurements.

So following Section 4.4.1, instead of using dk|k, we attain from planning the RHS vector already
with the motion model (dFk+1|k), augment it with the newmeasurements and rotate it with the corre-
sponding rotation matrix obtained from the planning stage

dk+1|k+1 = QHT

k+1|k

[
dFk+1|k

b̆Hk+1|k+1

]
. (4.40)

The rotation matrix QH
k+1|k is given from the precursory planning stage where

QH
k+1|kRk+1|k =

[
RF

k+1|k

Hk+1|k

]
, (4.41)

and where RF
k+1|k is the factorized Jacobian propagated with the motion model given by

QF
k+1|kR

F
k+1|k =

[
Rk|k

Fk+1|k

]
. (4.42)

As will be seen later on, theOTM-OOmethodwould prove to be themost computationally efficient
between the four suggested methods.

4.4.3 The Downdate Update Method - DU

In theDUmethodwe propose to re-use the dk+1|k vector from the planning stage to calculate dk+1|k+1.

While not necessarily required within the planning stage, dk+1|k could be calculated at that stage
from bk+1|k and Qk+1|k, see Eqs. (4.24)-(4.25). However, bk+1|k (unlike Ak+1|k) is a function of the
unknown future observations zk+1|k, which would seem to complicate things. Our solution to this
issue is as follows: We assume some value for the observations zk+1|k and then calculate dk+1|k within

46



the planning stage. As in inference at time k + 1, the actual measurements zk+1|k+1 will be different,
we remove the contribution of zk+1|k to dk+1|k via information downdating [11, Sec. V-A], and then
appropriately incorporate zk+1|k+1 to get dk+1|k+1 using the same mechanism.

More specifically, downdating the measurements zk+1|k from dk+1|k is done via [11, Sec. V-A]

daug
k+1|k = Raug−T

k+1|k (R
T
k+1|kdk+1|k −AT

k+1|kb̆k+1|k), (4.43)

where b̆k+1|k is a function of zk+1|k, see Eqs. (4.22)-(4.24), and where Raug
k+1|k is the downdated Rk+1|k

matrix which is given by

RaugT

k+1|kR
aug
k+1|k = ART

k+1|kA
R
k+1|k −AT

k+1|kAk+1|k. (4.44)

Interestingly, the above calculations are not really required: Since we already have dk|k from the pre-
vious inference stage, we can attain the downdated daug

k+1|k vector more efficiently by augmenting dk|k

with zero padding.

daug
k+1|k =

[
dk|k

0

]
(4.45)

where daug
k+1|k is the downdated RHS vector and 0 is a zero padding to match dimensions. Similarly,

Raug
k+1|k can be calculated as

Raug
k+1|k =

[
Rk|k 0
0 0

]
, (4.46)

where Rk|k is zero padded to match dimensions of Rk+1|k .

Now, all which is left to get dk+1|k+1, is to incorporate the new measurements zk+1|k+1 (encoded
in b̆k+1|k+1). We utilize the information downdating mechanism in [11, Sec. V-A], in order to up-
date information. Intuitively, instead of downdating information from dk+1|k, we would like to add
information to daug

k+1|k. So by appropriately adjusting Eq.(4.43) this can be done via

dk+1|k+1 = R−T
k+1|k+1(R

augT

k+1|kd
aug
k+1|k +A

T
k+1|k+1b̆k+1|k+1), (4.47)

where according to Eq. (4.34) Rk+1|k+1 ≡ Rk+1|k andAk+1|k+1 ≡ Ak+1|k, R
aug
k+1|k is given by Eq.(4.46),

daug
k+1|k is given by Eq.(4.45), and b̆k+1|k+1 are the new un-factorized RHS values obtained at time k+ 1.

To summarize, under the DU methodwe obtain the RHS vector dk+1|k+1 in the followingmanner:

dk+1|k+1 = R−T
k+1|k

([
Rk|k 0
0 0

]T [
dk|k

0

]
+AT

k+1|kb̆k+1|k+1

)
. (4.48)
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4.4.4 The DU - Only Observations Method - DU-OO

The DU-OO method is a variant of the DU method, where, similarly to Section 4.4.2, we utilize the
fact that there is no reason to change the motion model data from the RHS vector dk+1|k. Hence we
would downdate all data with the exception of the motion model, and then update accordingly. As
opposed to Section 4.4.3, now we do need to downdate using [11, Sec. V-A]

dFk+1|k = RF−T

k+1|k(R
T
k+1|kdk+1|k −HT

k+1|kb̆
H
k+1|k), (4.49)

where dFk+1|k is the RHS vector, downdated from all predicted measurements with the exception of
the motion model, and RF

k+1|k is the equivalent downdated Rk+1|k matrix which is given by

RFT

k+1|kR
F
k+1|k = ART

k+1|kA
R
k+1|k −HT

k+1|kHk+1|k, (4.50)

whereHk+1|k denotes the portion of the planning stage Jacobian, of the predicted factors with the
exception of themotionmodel. Now, all which is left, is to update dFk+1|k with the newmeasurements
from the inference stage

dk+1|k+1 = R−T
k+1|k+1(R

FT

k+1|kd
F
k+1|k +HT

k+1|k+1b̆
H
k+1|k+1), (4.51)

where according to Eq. (4.34) Rk+1|k+1 ≡ Rk+1|k andHk+1|k+1 ≡ Hk+1|k, RF
k+1|k is given by Eq.(4.50),

dFk+1|k is given by Eq.(4.49), and b̆k+1|k+1 are the new un-factorized RHS values obtained at time k+ 1.
By introducing Eq. (4.49) into Eq.(4.51) we can also avert from calculating RF

k+1|k so under the
DU-OO assumption we obtain the RHS vector dk+1|k+1 in the following manner:

dk+1|k+1 = R−T
k+1|k

(
RT

k+1|kdk+1|k +HT
k+1|k

(
b̆Hk+1|k+1 − b̆Hk+1|k

))
, (4.52)

which can be rewritten as

dk+1|k+1 = dk+1|k + R−T
k+1|kH

T
k+1|k

(
b̆Hk+1|k+1 − b̆Hk+1|k

)
. (4.53)

4.4.5 Discussion - RHS update Methods

In this section we would like to give the reader some intuition regarding the advantages and disad-
vantages of the OTM approach when compared to the DU approach. Since both provide the same
desired solution, the difference between them would manifest in computation time and ease of use.
In the sequel we cover both starting with the complexity of each.
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Figure 4.4.1: Illustration of the Jacobian matrix AR
k+1|k+1 introduced in Eq. (4.31), on its components and dimensions. These nota-

tions are used along Section 4.4.5, and brought here for the reader’s convenience.

Let us compare the complexity required for updating the RHS by OTM, see Eq. (4.39), against
the complexity required for updating the RHS by DU, see Eq. (4.48). For OTM we have a single
multiplication between a sparse rotation matrix Qk+1|k and a vector, both in the dimension of the
joint state at time k plus the number of rows of the linearized new factors (i.e. depending on number
of factors and their types). The complexity of OTM would be given by the number of non zeros
in the rotation matrix Qk+1|k. In Appendix C we provide some understanding on the creation of the
rotationmatrixQk+1|k, andalsodevelopanexpression for thenumberof nonzeros inQk+1|k. Wedirect
the reader to Figure 4.4.1 for illustration of the new notations used in this discussion. Following the
development in Appendix C, the number of non zeros in Qk+1|k is represented by two potentially
dominant terms separated by a simple condition

O(OTM) =

O
((

ns
k + nf

k+1 − j
)2)

nf
k+1 ≥ ns

k ≥ 6

O
(
ns
k · n

f
k+1

)
nf
k+1 < ns

k

(4.54)

where j denotes the column index of the left-most entry inAk+1|k+1, ns
k denotes the size of the joint

state vector at the precursory time k, nf
k+1 denotes the number of rows in the linearized new factors

Ak+1|k+1. The condition in Eq. (4.54) is a simple upper bound to the real expression (see Eq. (C.20)),
resulting with a cleaner condition without affecting the solution.

It isworth stressing that dependingon its type, each state occupiesmore than a single row/column
in the Jacobian, e.g. 6DOF robot pose occupies six rows and six columns. Similarly, depending on
its type, each factor occupies more than a single row in the Jacobian, e.g. a monocular factor occupies
two rows in the Jacobian.

For DU in addition to multiplications between upper triangular matrices and vectors, we have a
matrix inverse. Differently fromOTM here thematrix dimensions are of the joint state vector at time
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k + 1, hence the worst case scenario for DU is a fully dense upper triangular matrix inverse

O(DU) = O
(
ns
k+1

2) , (4.55)

where ns
k+1 represents the size of the joint state vector at time k + 1.

For the case of nf
k+1 < ns

k we should compare

ns
k · n

f
k+1

?

≶ ns
k+1 · ns

k+1. (4.56)

Assuming states are not removed from the state vector, we can say

ns
k ≤ ns

k+1, (4.57)

then evidently
ns
k · n

f
k+1 < ns

k+1 · ns
k+1. (4.58)

For the case of nf
k+1 ≥ ns

k ≥ 6we should compare

ns
k + nf

k+1 − j
?

≶ ns
k+1 , j ∈ [1, ns

k], (4.59)

so for this case OTM is computationally superior to DU if

nf
k+1 < ns

k+1 − ns
k + j , j ∈ [1, ns

k]. (4.60)

It is worth stressing that unlike Eq. (4.58), Eq. (4.60) is dependent on state ordering in the form of
the left-most non zero entry inAk+1|k+1.

Concluding the complexity analysis of OTM and DU, OTM will be computationally superior to
DU if the following holds(

nf
k+1 < ns

k

)
∪

(
nf
k+1 < ns

k+1 − ns
k + j ∩ nf

k+1 ≥ ns
k

)
. (4.61)

In other words, if the number of rows inAk+1|k+1 is smaller than the size of the state vector at time k
OTM is computationally superior to DU. If the number of rows inAk+1|k+1 is larger or equal to the
size of the state vector at time k, than OTM is computationally superior to DU only if the number of
rows inAk+1|k+1 is smaller than the size of the added states at time k+ 1 plus the column index of the
left-most state inAk+1|k+1.

Although most of the time DU is computationally inferior, unlike OTM that requires access to
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the rotationmatrix whichmight not be easily available in every planning paradigm, DU makes use in
amore readily available information: the inference solution of precursory time, the predicted factors,
thenewRHSvector at time k+1, and the factorized Jacobian fromprecursoryplanning. Therefore the
advantage in using DU lies in the information availability with minimal adjustments to the planning
stage.

Since OTM-OO would prove to perform the best empirically, let us get some intuition on why it
is more efficient than OTM. The OO addition to OTM, refers to the use of the motion propagated
belief RF

k+1|k dFk+1|k rather than the use of precursory inference solution Rk|k dk|k. The dimension of
RF

k+1|k is larger from that ofRk|k by a single robot pose, while the number of rows ofHk+1|k+1 is smaller
by a single robot pose from that ofAk+1|k+1. Let us assumewithout affecting generality that our robot
pose dimension is α. Under this assumption we can calculate Eq. (4.54) for both OTM and OTM-
OO. Let n¬f

k+1 denote the number of rows of the newly added factors at time k+ 1without themotion
factor, i.e.Hk+1|k+1 number of rows, so the complexity of OTM would be

O(OTM) =

O
((

ns
k +
(
n¬f
k+1 + α

)
− j
)2) (

n¬f
k+1 + α

)
≥ ns

k

O
(
ns
k ·
(
n¬f
k+1 + α

))
= O

(
ns
k · n

¬f
k+1 + α · ns

k

) (
n¬f
k+1 + α

)
< ns

k

, (4.62)

while the complexity of OTM-OO would be

O(OTM-OO) =

O
((

(ns
k + α) + n¬f

k+1 − j′
)2)

n¬f
k+1 ≥ (ns

k + α)

O
(
(ns

k + α) · n¬f
k+1

)
= O

(
ns
k · n

¬f
k+1 + α · n¬f

k+1

)
n¬f
k+1 < (ns

k + α)
, (4.63)

where j′ ∈ [1, (ns
k + α)], opposed to j ∈ [1, ns

k]. FromcomparingEqs. (4.62 - 4.63), for the casewhere
the size of added factors is larger than the state, we can deduce that other than the difference between
j and j′, they are the same. Judging the second case, we can see they differ by the difference between
the size of the state at time k and the number ofAk+1|k+1 rows. As we will see later on, OTM-OO
empirically proves to bemore efficient thanOTM, whichmeans that the state at time k is in fact larger
than the number of size ofAk+1|k+1 rows.

Revisiting Eq. (4.61) in-light of the understanding that the state at time k is in fact larger than
the number ofAk+1|k+1 rows we can say that OTM is computationally superior to DU without any
restricting conditions.
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4.5 Results - ConsistentDA

In this section we present an extensive analysis of the proposed paradigm for RUB inference under
the simplifying assumption of consistent DA and benchmark it against the standard Bayesian infer-
ence approach using iSAM2 efficient methodologies as a proving-ground.

We consider the problem of autonomous navigation and mapping in an unknown environment
as a testbed for the proposed paradigm in a simulated environment. The robot performs inference to
maintain a belief over its current and past poses and the observed landmarks thus far (i.e.full-SLAM),
and uses this belief to decide its next actions within the framework of belief space planning. As men-
tioned earlier, our proposed paradigm is indifferent to a specific method of inference or decision
making.

In order to test the computational effort, we compared inference update using iSAM2 efficient
methodology, once based on the standard Bayesian inference paradigm [36] (here on denoted as
iSAM), and second based on our proposed RUB inference paradigm.

All of our complementary methods (see Section 4.4), required to enable inference update based
on theRUB inferenceparadigm,were implemented inMATLABand are encasedwithin the inference
block. The iSAM approach uses the GTSAM C++ implementation with the supplied MATLAB
wrapper [13]. Considering the general rule of thumb, that MATLAB implementation is at least one
order of magnitude slower, the comparison to iSAM as a reference is conservative. All runs were ex-
ecuted on the same Linuxmachine, with Xeon E3-1241v3 3.5GHz processor with 32GBofmemory.

In order to get better understanding of the difference between our proposed paradigm and the
standard Bayesian inference, we refer to the high-level algorithmdiagram given in Figure 4.1.1, which
depicts a plan-act-infer framework. Figure 4.1.1a represents a standard Bayesian inference, where
only the first inference update iteration is timed for comparison reasons. Figure 4.1.1b shows our
novel paradigmRUB inference, while theDAupdate, alongwith the first inference update iteration,
are being timed for comparison. As the results of this section are under the simplifying assumption
of consistent DA, no DA update is required. The computation time comparison is made only over
the inference stage, since the rest of the plan-act-infer framework is identical in both cases.

As mentioned, our proposed paradigm does not affect estimation accuracy. We verify that in the
following experiments, by comparing the estimation results obtained using our approach and iSAM.
Both provide essentially the same results in all cases as they are both algebraically identical - share the
same factor graph.
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Figure 4.5.1: Method comparison through basic analysis simulation, checking sensitivity to new added measurements and the size of
the inference state vector over all the tested methods i.e. STD, iSAM and our four methods, i.e. OTM, UD, OTM-OO and UD-OO.
Each graph represents a different number for new rows added to the Jacobian matrix (a) 2 rows (b) 100 rows (c) 200 rows (d) 300 rows (e)
400 rows (f) 500 rows. Due to orders of magnitude issues we also provide zoom-in to our four methods in Figure 4.5.2

4.5.1 Basic Analysis - Sanity Check

Thepurposeof this experiment is toprovidewith abasic comparisonbetween the suggestedparadigm
for RUB inference and the existing standard Bayesian inference. This simulation performs a single
horizon BSP calculation, followed by an inference step with a single inference update. The simula-
tion provides a basic analysis of running time for eachmethod, denoted by the vertical axis, for a fully
dense information matrix and with no loop closures. The presented running time is a result of an aver-
age between 103 repetitions per step per method. Although a fully dense matrix does not represent a
real-world scenario, it provides a sufficient initial comparison. The simulation analyzes the sensitivity
of each method to the initial state vector size, denoted by the horizontal axis, and to the number of
new factors, denoted by the different graphs. Since we perform a single horizon step with a single
inference update, no re-linearization is necessary; hence, iSAM comparison is valid. The purpose of
this check is to provide a simple sensitivity analysis of our methods to state dimension and number
of new factors per step, while compared against standard batch update (denoted as STD) and iSAM
paradigm. While both STD and iSAM are based on the standard Bayesian inference paradigm, the
rest of the methods are based on the novel RUB inference paradigm.
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Figure 4.5.2: Zoom-in on Figure 4.5.1, checking sensitivity to new added measurements and the size of the inference state vector over
our four methods i.e. OTM, UD, OTM-OO and UD-OO. Each graph represents a different number for new rows added to the Jacobian
matrix (a) 2 rows (b) 100 rows (c) 200 rows (d) 300 rows (e) 400 rows (f) 500 rows.

Figure 4.5.1 presents average timing results for all methods, while Figures 4.5.1a - 4.5.1f repre-
sent different number of new rows added to the Jacobian matrix (equivalent to adding new mea-
surements), [2 100 200 300 400 500] respectively. After inspecting the results, we found that for all
methods, running time is a non-linear, positive-gradient function of the inference state vector size
and a linear function of the number of newmeasurements. Moreover, the running time dependency
over the number of new measurements diminish as the inference state vector size grows. For all in-
spected parameters our methods score the lowest running time with a difference of up to three orders
of magnitude comparing to iSAM.

Figure 4.5.2 provides a zoom-in of Figure 4.5.1, focusing on our suggested methods. Interestingly
while we can clearly see that the OTM methodology is more efficient than the DU method, and
the DU-OO is more efficient than DU, no such think can be said on OTM and OTM-OO. From
inspecting Figures 4.5.2a - 4.5.2f we can see that up to a state vector size of about 2500 there is no
visible difference betweenOTM andOTM-OOperformance, while for larger sizes the latter slightly
outperforms the former.

Thus scoring all methods from the fastest to the slowest with a time difference of four orders of
magnitude between the opposites:

OTM-OO⇒OTM⇒DU-OO⇒DU⇒ iSAM⇒ STD
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Figure 4.5.3: Second simulation layout and results: (a)The Synthetic Environment, where landmarks are marked in green, targets are
numbered and marked with red crosses, the ground truth is denoted by a blue line, the estimated trajectory is denoted by a red line while
the covariance is visualized by red ellipse (b) Total average running time of inference update for each method.

4.5.2 BSP in Unknown Environment - Consistent DA

The purpose of this experiment is to further examine the suggested paradigm of RUB inference,
in a real world scenario, under the simplifying assumption of consistent DA. The second simulation
performs BSP over continuous action space, in an unknown synthetic environment. In contrast to
Section 4.5.1, since now the synthetic environment replicates a real world scenario, the obtained in-
formationmatrix is now sparse (e.g. Fig. A.1). A robot was given five targets (see Figure 4.5.3a) while
all landmarks were a-priori unknown, andwas required to visit all targets whilst not crossing a covari-
ance value threshold. The largest loop closure in the trajectory of the robot, and the first in a series of
large loop closures, is denoted by a yellow⟳ sign across all relevant graphs. The robot performs BSP
over continuous action space, with a finite horizon of five look ahead steps [29]. During the inference
update stage each of the aforementioned methods were timed performing the first inference update
step. It is worthmentioning that our paradigm is agnostic to the specific planningmethod orwhether
the action space is discrete or continuous.

The presented running time is a result of an average between 103 repetitions per step per method.
Similarly to Section 4.5.1, as can be seen in Figure 4.5.3b, the suggested MATLAB implemented
methods are up to two orders of magnitude faster than iSAM used in a MATLAB C++ wrapper. In-
terestingly, the use of sparse information matrices changed the methods’ timing hierarchy. While
OTM-OO still has the best timing results (3×10−3 sec), two orders of magnitude faster than iSAM,
OTM and DU-OO switched places. So the timing hierarchy from fastest to slowest is:
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Figure 4.5.4: Second simulation timing results for the scenario presented in Figure 4.5.3a. Upper part of each graph provides indi-
cation on new factors and new states per computation step while the lower presents the methods timing results: (a) All six methods (b)
OTM, DU, OTM-OO, DU-OOand iSAM methods (c) OTM-OO and DU-OO methods.

OTM-OO⇒DU-OO⇒OTM⇒DU⇒ iSAM⇒ STD

After demonstrating the use of our novel paradigm drastically reduce cumulative running time, we
continue on to showing that in a few aspects it is also less sensitive. Figure 4.5.4 presents the perfor-
mance results of each of the methods per simulation step. The upper graphs presents the number of
new factors and new states per each step, while the lower graph presents the average running time of
eachmethod as a function of the simulation step. The⟳ sign, represents the first largest loop closure
in a series of large loop closures. While some of the behavior presented in Figure 4.5.4 can be related
to machine noise, from carefully inspecting Figure 4.5.4, alongside the trajectory of the robot in Fig-
ure 4.5.3a, a few interesting observations can still be made. The first observation relates to the ”flat
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line” area noticeable in the upper graph of Figure 4.5.4b between time steps 60− 90. This time steps
range is equivalent to the path between the third and fourth targets, were the only factor added to the
belief is motion based. As a result, a single new state (the new pose) is presented to the belief, along
with a single motion factor. In this range, the timing results of iSAM DU and OTM present a linear
behavior with a relatively small gradient. This gradient is attributed to the computational effort of in-
troducing a single factor, containing a new state, to the belief. While the vertical difference between
the aforementioned can be attributed to the sensitivity of each method to the number of states and
factors in the belief.

From this observation, we can try to better understand the reason for the substantial time differ-
ence between the methods. Basing a method on RUB inference, rather than on standard Bayesian
inference, will not magically change the computational impact of introducing factors or new states
to the belief. However, because RUB inference is re-using calculations from precursory planning,
the computational burden is being ”paid” once, rather than twice as in the standard Bayesian infer-
ence. For the simple example of strictly motion propagation, since this motion based factor has al-
ready been introduced during precursory planning, under RUB inference it offers no additional
computational burden. In the same manner, the reason RUB inference is less sensitive to the state
dimensionality originates in calculations re-use. Under incremental update performed by iSAM, the
state dimension is mostly noticeable when in need of re-ordering and/or re-eliminating states. Al-
though samemechanisms also affect RUB inference, our method avoids themwhenever they were
adequately performed during the precursory planning, thus reducing inference computation time.

Another interesting observation refers to ”pure” loop closures, were there are measurements with
no addition of new variables to the state vector, i.e. measurements to previously observed landmarks.
For the case of ”pure” loop closures,STD, iSAM and theDU basedmethods (i.e. DU andDU-OO)
experienced the largest timing spikes throughout the trajectory of each method while both OTM
based methods experienced minor spikes if any.

By introducing the OO methodology to both DU and OTM, we drastically reduce the methods
sensitivity to the motion propagation e.g. the once-positive gradient line in DU during time steps
60 − 90, turned into a flat line in DU-OO as can easily be seen in Figure 4.5.4c. Moreover, while
both DU and OTM present some sensitivity to different occurrences, i.e. the size of the state vector,
new measurements and loop closures, this sensitivity is drastically reduced by introducing the OO
methodology, e.g. OTM-OO is basically a flat line throughout the simulation as can easily be seen
in Figure 4.5.4.

In conclusion, our methods, based on RUB inference, particularly OTM-OO, seem to be more
resilient to large loop closures that were already detected during planning, state vector size, belief size,
number of newly added measurements or even the combination of the aforementioned.

57



4.6 RUBI: Re-Use BSP for Inference update

In order to address the more general and realistic scenario, the DA might require correction before
proceeding to update the new acquired measurements. In the sequel we cover the possible scenarios
of inconsistent data association and its graphical materialization, followed by a paradigm to update
inconsistentDA fromplanning stage according to the actualDA attained in the consecutive inference
stage. We later examine both the computational aspects and the sensitivity of the paradigm to various
parameters both on simulated and real-life data.

4.6.1 Types of inconsistent DA

We would now discuss, without losing generality, the actual difference between the two aforemen-
tioned beliefs b[Xk+1|k] and b[Xk+1|k+1]. As already presented in Section 4.4, in case of a consistentDA
i.e.Mk+1|k =Mk+1|k+1, the difference between the twobeliefs is narroweddown to theRHSvectors
dk+1|k and dk+1|k+1 which encapsulates the measurements zk+1|k and zk+1|k+1 respectively. However,
in the real world it is possible that the DA predicted in precursory planning would prove to be incon-
sistent to the DA attained in inference.

There are six possible scenarios representing the relations betweenDA in inference and precursory
planning:

• In planning, association is assumed to either a new or existing variable, while in inference no
measurement is received.

• In planning it is assumed there will be no measurement to associate to, while in inference a
measurement is received and associated to either a new or existing variable.

• In planning, association is assumed to an existing variable, while in inference it is to a new
variable.

• In planning, association is assumed to a new variable, while in inference it is to an existing
variable.

• In planning, association is assumed to an existing variable, while in inference it is also to an
existing variable (whether the same or not).

• In planning, association is assumed to a new variable, while in inference it is also to a new
variable (whether the same or not).
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While the first four bullets always describe inconsistent DA situations (e.g. in planning we assumed a
known tree would be visible but instead we saw a new bench, or vice versa), the last two bullets may
provide consistent DA situations. In case associations in planning and in inference are to the same
(un)known variables we would have a consistent DA.

While different planning paradigms might diminish occurrences of inconsistent DA, e.g. by bet-
ter predicting future associations, none can avoid it completely. Methods to better predict future
observations/associations will be investigated in future work, potentially leveraging Reinforcement
Learning (RL) techniques. As mentioned in Section 4.3.2, in this paper we do not predict occur-
rences of new landmarks, hence every new landmark in inference would result in inconsistent DA.

In the following section we provide a method to update inconsistent DA, regardless of a specific
inconsistency scenario or a solution paradigm. This method utilizes the incremental methodologies
of iSAM2 [36] in order to efficiently update the belief from the planning stage to have consistent DA
with the succeeding inference.

4.6.2 Updating Inconsistent DA

Inconsistent DA can be interpreted as disparate connections between variables. As discussed ear-
lier, these connections, denoted as factors, manifest in rows of the Jacobian matrix or in factor nodes
of a FG. Two FGs with different DA would thus have different graph topology. We demonstrate
the inconsistent DA impact over graph topology using the example presented in Figure 4.6.1: Fig-
ure 4.6.1a represents the belief b[Xk+1|k] from planning stage, and Figure 4.6.1b represents the belief
b[Xk+1|k+1] from the inference stage. Even-though the same elimination order is used, the inconsis-
tent DA would also create a different topology between the resulting BTs, e.g. the resulting BTs for
the aforementioned FGs are Figure 4.6.1d and Figure 4.6.1e accordingly.

Performing action uk|k+1, provides us with new measurements zk+1|k+1, which are gathered to the
factor set {fj}k+1|k+1 (see Appendix-B for factor definition). From the precursory planning stage we
have the belief b[Xk+1|k] along with the corresponding factor set {fi}k+1|k for time k + 1. Since we
performed inference over this belief during the planning stage, we have already eliminated the FG,
denoted asFGk+1|k, into a BT denoted as Tk+1|k, e.g. see Figure 4.6.1a and Figure 4.6.1d, respectively.

We would like to update both the FG FGk+1|k and the BT Tk+1|k from the planning stage, using
the new factors {fj}k+1|k+1 from the inference stage. Without losing generality we use Figure 4.6.1 to
demonstrate and explain the DA update process. Let us consider all factors of time k + 1 from both
planning {fi}k+1|k and inference {fj}k+1|k+1. We can divide these factors into three categories:

Thefirst category contains factorswith consistentDA -GoodFactors. These factors originate from
only the last two DA scenarios, in which both planning and inference considered either the same ex-
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Variable Description
□t|k Of time t while current time is k

FG t|k Factor graph (FG) at time t

Tt|k Bayes Tree (BT) at time t

Mt|k Data Association (DA) at time t

M
∩
t Consistent DA at time t

Mrmv
t DA at time t from planning inconsistent with inference, indicating factors to be

removed

Madd
t DA at time t from inference inconsistent with planning, indicating factors to be added

{fr}rmv
t Factors at time t from planning inconsistent with inference, to be removed

{fs}addt Factors at time t from inference inconsistent with planning, to be added

{X}invt All states at time t, involved in {fr}rmv
t and {fs}addt

T inv
t Sub-BT of Tt|k composed of all cliques containing {X}invt

{X}inv⋆t All states at time t, related to the sub-BT T inv
t

FG inv
t The detached part ofFG t|k containing {X}inv⋆t

FGupd
t The FGFG inv

t after DA update

T upd
t The sub-BT eliminated fromFGupd

t

FGupd
t|k The Factor Graph at time t with all-correct DA

T upd
t|k The Bayes Tree at time t with all-correct DA

Table 4.1: Notations for Section 4.6.2

isting variable or a new one. Consistent DA factors do not require our attention (other than updating
themeasurements in the RHS vector). Indices of consistent DA factors can be obtained by intersect-
ing the DA from planning with that of inference:

M
∩
k+1 =Mk+1|k

∩
Mk+1|k+1. (4.64)

The second category - Wrong Factors, contains factors from planning stage with inconsistent DA to
inference, which therefore should be removed fromFGk+1|k. These factors can originate from all DA
scenarios excluding the second. Indices of inconsistent DA factors from planning, can be obtained
by calculating the relative complement ofMk+1|k with respect toMk+1|k+1:

Mrmv
k+1 =Mk+1|k \Mk+1|k+1. (4.65)
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The third category - New Factors, contains factors from the inference stage with inconsistent DA to
planning; hence, these factors should be added toFGk+1|k. These factors can originate from all DA
scenarios excluding the first. Indices of inconsistent DA factors from inference, can be obtained by
calculating the relative complement ofMk+1|k+1 with respect toMk+1|k:

Madd
k+1 =Mk+1|k+1 \Mk+1|k. (4.66)

We now use our example from Figure 4.6.1 to illustrate these different categories:

• Thefirst category -GoodFactors, contains all factors from time k+1 that appear both in Figure
4.6.1a and 4.6.1b, i.e. the motion model factor between xk to xk+1.

• The second category -Wrong Factors, contains all factors that appear only in Figure 4.6.1a, i.e.
the star marked factor in Figure 4.6.1a. In this case the inconsistent DA is to an existing vari-
able, landmark lj was considered to be observed in planning but is not seen in the succeeding
inference.

• The third category - New Factors, contains all factors that appear only in Figure 4.6.1b, i.e. the
star marked factors in Figure 4.6.1b. In this case the inconsistent DA is both to an existing
and a new variable. Instead of landmark lj that was considered to be observed in planning, a
different existing landmark li has been seen, along with a new landmark lr.

Once the three aforementioned categories are determined, we use iSAM2 methodologies, pre-
sented in [36], to incrementally update FGk+1|k and Tk+1|k, see Alg. 1. The involved factors are de-
noted by all factors from planning needed to be removed (Wrong Factors), and all factors from infer-
ence needed to be added (New Factors),

{fr}rmv
k+1 =

∏
r∈Mrmv

k+1

fr , {fs}addk+1 =
∏

s∈Madd
k+1

fs. (4.67)

The involved variables, denoted by {X}invk+1, are all variables related to the factor set {fr}rmv
k+1 and the

factor set {fs}addk+1 (Alg. 1, line 6), e.g. the colored variables in Figures 4.6.1a and 4.6.1b accordingly. In
Tk+1|k, all cliques between the ones containing {X}invk+1 up to the root are marked and denoted as the
involved cliques, e.g. colored cliques in Figure 4.6.1d. The involved cliques are detached and denoted
by T inv

k+1 ⊂ Tk+1|k (line 7). This sub-BT T inv
k+1, contains more variables than just {X}invk+1. The involved

variable set{X}invk+1, is then updated to contain all variables fromT inv
k+1 and denoted by{X}inv⋆k+1 (line 8).
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Figure 4.6.1: The process of incremental DA update, following on iSAM2 methodologies. (a) and (b) show factor graphs for b[Xk+1|k]
and b[Xk+1|k+1], respectively, which differ due to incorrect association considered in the planning phase - lj was predicted to be observed
within planning, while in practice li and lr were observed at time instant k + 1. In (a), current-time robot pose is bolded, horizon factors
and states are dotted. Involved variables from DA comparison are marked in red in (a) and green in (b). The belief b[Xk+1|k], represented
by a Bayes tree shown in (d), is divided in two: sub Bayes tree containing all involved variables and parent cliques up to the root (marked
in blue) and the rest of the Bayes tree in white. The former sub Bayes tree is re-eliminated by (i) forming the corresponding portion of the
factor graph, as shown in the left figure of (c); (ii) removing incorrect DA and adding correct DA factors, which yields the factor graph
shown in the right figure of (c); (iii) re-eliminating that factor graph into a sub Bayes tree, marked blue in (e), and re-attaching the rest of
the Bayes tree. While the obtained Bayes tree now has a correct DA, it is conditioned on (potentially) incorrect measurement values for
consistent-DA factors, which therefore need to be updated to recover the posterior belief b[Xk+1|k+1].

The part of FGk+1|k, that contains all involved variables {X}inv⋆k+1 is detached and denoted by FG inv
k+1

(line 9). While T inv
k+1 is the corresponding sub-BT to the acquired sub-FGFG inv

k+1.

In order to finish updating theDA, all that remains is updating the sub-FGFG inv
k+1 with the correct

DA and re-eliminate it to get an updated BT. All factors {fr}rmv
k+1 are removed from FG inv

k+1, then all
factors {fr}addk+1 are added (line 10). The updated sub-FG is denoted byFGupd

k+1, e.g. update illustration
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Algorithm 1 - Data Association Update
1: function UpdateDA(FGk+1|k ,Mk+1|k ,FGk+1|k+1 ,Mk+1|k+1)

2: Mrmv
k+1←Mk+1|k \Mk+1|k+1 ▷ indices of factors required to be removed

3: Madd
k+1←Mk+1|k+1 \Mk+1|k ▷ indices of factors required to be added

4: {fr}rmv
k+1←

∏
r∈Mrmv

k+1

{fr}k+1 ▷ factors required to be removed

5: {fs}addk+1←
∏

s∈Madd
k+1

{fs}k+1 ▷ factors required to be added

6: {X}invk+1← Variables({fr}rmv
k+1)

∪
Variables({fs}addk+1) ▷ get involved variables

7: T inv
k+1←T

{X}inv
k+1

k+1|k ▷ get corresponding sub-BT

8: {X}inv⋆k+1
get all variables←−−−−−−−T inv

k+1 ▷ update involved variables

9: FG inv
k+1←FG

{X}inv⋆
k+1

k+1|k ▷ get corresponding sub-FG

10: FGupd
k+1← [FG inv

k+1\{fr}rmv
k+1]
∪
{fs}addk+1 ▷Update the sub Factor Graph

11: T upd
k+1

eliminate←−−−−FGupd
k+1 ▷ re-eliminate the updated sub-FG into BT

12: FGupd
k+1|k← [FGk+1|k\FG inv

k+1]
∪
FGupd

k+1 ▷Update the Factor Graph

13: T upd
k+1|k← [Tk+1|k\T inv

k+1]
∪
T upd

k+1 ▷Update the Bayes Tree

14: returnFGupd
k+1|k , T upd

k+1|k .

15: end function

in Figure 4.6.1c.

By re-eliminatingFGupd
k+1, a new updated BT, denoted by T upd

k+1 , is obtained (line 11), e.g. the col-
ored sub-BT in Figure 4.6.1e. This BT is then re-attached back to Tk+1|k instead of T inv

k+1, subsequently
the newBT is nowwith consistentDA and is denoted asT upd

k+1|k (line 13). In a similarmannerFGupd
k+1|k

is obtained by re-attachingFGupd
k+1 instead ofFG inv

k+1 toFGk+1|k(line 12). At this point theDA in both
the FG and the BT is fixed. For example, by completing the aforementioned steps, Figures 4.6.1a and
4.6.1d will have the same topology as Figures 4.6.1b and 4.6.1e.

After the DA update, the BT T upd
k+1|k has consistent DA to that ofMk+1|k+1. However, it is still

not identical to Tk+1|k+1 due to difference between measurement values predicted in planning to the
values obtained in inference. The DA update dealt with inconsistent DA factors and their counter-
parts. For these factors the new measurements from inference were updated in the corresponding
RHS vector values within the BT.The consistent DA factors, on the other hand, were left untouched;
therefore, these factors do not contain the new measurement values from inference but measure-
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ment values from the planning stage instead. These inconsistent measurements are thus baked into
the RHS vector dk+1|k and in the appropriate cliques of the BT T upd

k+1|k. In order to update the RHS
vector dk+1|k, or equivalently update the corresponding values within relevant cliques of the BT, one
can use any of the methods presented in Section 4.4.

4.7 Results - RUBI

In this section we present an extensive analysis of the proposed paradigm for RUB Inference and
benchmark it against the standard Bayesian inference approach using iSAM2 efficientmethodologies
as a proving-ground.

We consider the problem of autonomous navigation and mapping in an unknown environment
as a testbed for the proposed paradigm, first in a simulated environment and later-on in a real-world
environment (as discussed in the sequel). The robot performs inference to maintain a belief over
its current and past poses and the observed landmarks thus far (i.e.full-SLAM), and uses this belief
to decide its next actions within the framework of belief space planning. As mentioned earlier, our
proposed paradigm is indifferent to a specific method of inference or decision making.

In order to test the computational effort, we compared inference update using iSAM2 efficient
methodology, once based on the standard Bayesian inference paradigm [36] (here on denoted as
iSAM), and second based on our proposed RUB Inference paradigm.

All scripts required to enable inference update based on the RUB Inference paradigm, were im-
plemented inMATLAB and are encased within the inference block. The iSAM approach uses the GT-
SAM C++ implementation with the supplied MATLAB wrapper [13]. Considering the general
rule of thumb, thatMATLAB implementation is at least one order of magnitude slower, the compar-
ison to iSAM as a reference is conservative. All runs were executed on the same Linuxmachine, with
Xeon E3-1241v3 3.5GHz processor with 32GB of memory.

In order to get better understanding of the difference between our proposed paradigm and the
standard Bayesian inference, we refer to the high-level algorithmdiagram given in Figure 4.1.1, which
depicts a plan-act-infer framework. Figure 4.1.1a represents a standard Bayesian inference, where
only the first inference update iteration is timed for comparison reasons. Figure 4.1.1b shows our
novel paradigmRUB Inference, while theDAupdate, alongwith thefirst inferenceupdate iteration,
are being timed for comparison. The computation time comparison is made only over the inference
stage, since the rest of the plan-act-infer framework is identical in both cases.

As mentioned, our proposed paradigm does not affect estimation accuracy. We verify that in the
following experiments, by comparing the estimation results obtained using our approach and iSAM.
Both provide essentially the same results in all cases; we provide an explicit accuracy comparison
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Figure 4.7.1: Simulation layout and results: (a)The Synthetic Environment, where landmarks are marked in green, targets are num-
bered and marked with red crosses, the ground truth is denoted by a blue line, the estimated trajectory is denoted by a red line while the
covariance is visualized by red ellipse. (b) Total average running time of inference update for each method, when 50% of the steps were
with inconsistent DA.

with real-world data experiment (Section 4.7.2).

4.7.1 Relaxing The Consistent DA Assumption

The purpose of this experiment is to further examine the suggested paradigm of RUB Inference, in
a real world scenario, while relaxing the simplifying assumption of consistent DA. The third simu-
lation performs BSP over continuous action space, in an unknown synthetic environment. A robot
was given twelve targets (see Figure 4.7.1a) while all landmarks were a-priori unknown, and was re-
quired to visit all targets whilst not crossing a covariance value threshold. The experiments presented
in Section 4.5 were based on the simplifying assumption of consistent DA between inference and
precursory planning, which can often be violated in real world scenarios. In this simulation we relax
this restricting assumption and test our novel paradigmunder themore general case whereDAmight
be inconsistent.

The main reason for inconsistent data association lies in the perturbations caused by imperfect
system and environment models. These perturbations increase the likelihood of inconsistent DA
between inference and precursory planning. While the planning paradigm uses state estimation to
decide on future associations, the further it is from the ground truth the more likely for inconsis-
tent DA to be received. This imperfection is modeled by formulating uncertainty in all models (see
Section 4.2).
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For amore conservative comparison, in addition to the aforementioned, we force inconsistentDA
between inference and precursory planning for all new variables. In contrast to planning paradigms
that can provideDA to new variables, in addition to an unknownmap, the robot’s planning paradigm
considers only previously-mapped landmarks. As a result of this limitation, theDA received from the
planning stage can not offer new landmarks to the state vector. Consequently, each new landmark
would essentially mean facing inconsistent DA, while the single scenario in which a consistent DA
is obtained (see Section 4.6), occurs when both planning and inference are considering the same
known landmark. Bothperturbations causedbyuncertainty andconsideringonlypreviouslymapped
landmarks, resulted in just 50% DA consistency between planning and succeeding inference in this
experiment.

Following the findings of Section 4.5, out of the four suggested methods we choose to continue
the comparison just with the OTM-OO method. While OTM-OO assumed consistent DA, the
more general approach deals with inconsistent DA before updating the RHS vector. We denote the
complete approach, updating DA followed by OTM-OO, as UD-OTM-OO, where UD stands for
Update Data association. It is important to clarify that UD-OTM-OO and for consistent DA also
OTM-OO, yield the same estimation accuracy as iSAM, since the inference update using RUB
inference results in the same topological graph with the same values. Such comparison will be pre-
sented later on using a real-world data in Section 4.7.2. For that reason, the accuracy aspect will not
be discussed further in this section. While the scenario presented in Figure 4.7.1a contains at least ten
large loop closures, for the readers convenience we marked two of them using yellow⟳ signs. Same
loop closures are also marked in Figure 4.7.2 for comparison.

Figure 4.7.1b presents the cumulative computation time of the inference update phase throughout
the simulation. We can see that the majority of UD-OTM-OO computation time, i.e. 96.4%, is
dedicated to DA update while only 3.6% for updating the RHS vector. Although the need for DA
update increased running time (as to be expected), UD-OTM-OO still outperforms iSAM by an
order of magnitude.

In addition to the improvement in total computation time of the inference update stage, we con-
tinue on analyzing the ”per step” behavior of UD-OTM-OO, and demonstrate that in a few aspects
it is less sensitive than iSAM. Figure 4.7.2a presents per step computation time of both UD-OTM-
OO and iSAM, as well as theRHSupdate running time of UD-OTM-OO. Our suggested paradigm
not only outperforms iSAM in the cumulative computation time, but also outperforms it for each in-
dividual step. While Figure 4.7.2a presents the difference in average computation time per-step, Fig-
ures 4.7.2b and 4.7.2c capture the reason for this difference as suggested in Section 4.4. Figure 4.7.2c
presents the number of added factors in iSAM denoted by a green line, as opposed to in UD-OTM-
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Figure 4.7.2: Per-step analysis of the simulation presented in Figure 4.5.3. In 50% of the steps, planning and succeeding inference are
with consistent DA: (a) Per-step timing results of iSAM performing standard Beysian inference in green, UD-OTM-OO performing
RUB inference in orange and the RHS update portion out of UD-OTM-OO in yellow. (b) Number of eliminations per-step, in the
inference update stage for both iSAM and UD-OTM-OO. (c) Number of newly added factors in iSAM per step, newly added factors in
UD-OTM-OO per step, and the number of new variables introduced to the belief per step.

OO denoted by an orange line, and the number of new variables per step denoted by a black line.
Figure 4.7.2b presents the number of eliminations made during inference update in both methods.
Number of eliminations reflects the number of involved variables in the process of converting FG
into a BT (see Appendix A and Algorithm 1 line 11 for the equivalent processes in iSAM and UD-
OTM-OO accordingly).

After carefully inspecting both figures, alongside the robot’s trajectory in Figure 4.7.1a, the follow-
ing observations can bemade. Evenwith the limitation over the planning paradigm, both the number
of new factors added and the number of re-eliminations during the inference update stage, are sub-
stantially smaller than their iSAM counterparts. These large differences are some of the reasons for
UD-OTM-OO’s better performance. Due to the limitation over the planning paradigm, new obser-
vation factors (i.e. new landmarks added each step) in both iSAM and UD-OTM-OO are identical.
While in iSAM new observation factors constitute a small fraction of total factors, for UD-OTM-
OO, they constitute more than half of total factors. After comparing the re-elimination graph with
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the timing results for each of themethods, it appears both trends and peaks align, so we assume UD-
OTM-OO as well as iSAM to bemostly sensitive to the amount of re-eliminations (further analysis
is required).

Both re-elimination and added factors amounts, can be further reduced by smart reordering and
relaxing the limitation over the planning paradigm accordingly.

As observed in Section 4.4, our method seems to bemore resilient to loop closures. By inspecting
the yellow⟳ signs in Figure 4.7.2c, we can see that in both cases, iSAM introduce around 50 factors
of previously known variables (i.e. the black line representing new variables is zeroed), while UD-
OTM-OO introduces no factors at all. These two loop closure examples beautifully demonstrate
the advantage of using RUB Inference. For cases of consistent or partially consistent DA, when en-
countering a loop closure (i.e. observing a previously mapped landmark) our method saves valuable
computation time since loop closures are only calculated once, in the planning stage (e.g. see timing
response for loop closure at the appropriate yellow⟳ signs in Figure 4.7.2a).

Ourmethod also seems to be less sensitive to state dimensionality. Inspecting steps 192− 208 and
263 − 275 in Figure 4.7.2c, we observe there are no new factors, i.e. the computation time is a result
of motion factors; inspecting Figure 4.7.2a we observe that in spite of the aforementioned, iSAM
computation time ismuch larger than ourmethod. From this comparisonwe can infer our suggested
method is less sensitive to state dimensionality. As explained earlier, this originates in the reduced
number of re-eliminations and state re-ordering in RUB inference when compared to iSAM, e.g.
when the amount of re-eliminations in Figure 4.7.2b is almost the samebetween the two (like in steps
171, 262, 310), the equivalent computation time in Figure 4.7.2a is also almost identical.

4.7.2 Real-World Experiment Using KITTI Dataset

After the promising performance in a simulated environment, we tested our paradigm for inference
update via BSP in a real-world environment using KITTI dataset [21]. The KITTI dataset, recorded
in the city of Karlsruhe, contains stereo images, Laser scans andGPS data. For this work, we used the
raw images of the left stereo camera, from the Residential category file: 2011_10_03_drive_0027, as
measurements, as well as the supplied ground truth for comparison.

In this experiment we consider a robot, equippedwith a singlemonocular camera, performingAc-
tive Full-SLAM in the previously unknown streets of Karlsruhe Germany. The robot starts with a
prior over its initial pose and with no prior over the environment. At time k the robot executes BSP
on the single step action sequence taken in the KITTI dataset at time k + 1. At the end of each BSP
session, the robot executes the chosen action, and receives measurements from the KITTI dataset.
Inference update is then being performed in two separate approaches, the first following the standard
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Bayesian inference approach and the second following our proposedRUB inference approach. The
inference update following each is compared for computation time and accuracy. The following sec-
tions explain in-detail how planning and perception are being executed in this experiment.

Experiment Parameters

For the readers convenience, this section covers all the parameters used for this experiment and were
not provided by KITTI.

Prior belief standard deviation
[
1o · I3x3 0

0 1[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
1[px] 0
0 1[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]

Table 4.1: Parameters for Section 4.7.2

The motion and observation models that were used are (4.6) and (4.7) appropriately, where h(.)
is given by the pinhole camera model, and the zero mean Gaussian noise is stated above.

Planning using KITTI dataset

Our proposed approach forRUB Inference, leverages calculationsmade in the precursory planning
phase to update inference more efficiently. KITTI is a pre-recorded dataset with a single action se-
quence, i.e. the ”future” actions of the robot are pre-determined. Nevertheless, we can still evaluate
our approach by appropriately simulating the calculations that would be performed within BSP for
that specific (and chosen) single action sequence. In other words, BSP involves belief propagation
and objective function evaluations for different candidate actions, followed by identifying the best
action via Eq. (4.12) and its execution.

In our case, the performed actions over time are readily available; hence, we only focus on the cor-
responding future beliefs for such actions given the partial information available to the robot at plan-
ning time. Specifically, at each time instant k, we construct the future belief b[Xk+1|k] via Eq. (4.10)
using the supplied visual odometry asmotionmodel and future landmark observations. Future land-
mark observations are generated by considering only landmarks projected within the camera field
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of view using MAP estimates for landmark positions and camera pose from the propagated belief
b[Xk+1|k]. As in this work the planning phase considers only the already-mapped landmarks, with-
out reasoning about expected new landmarks, each new landmark observation in inference would
essentially mean facing inconsistent DA.

To conclude, planning using the KITTI dataset is simulated over a single action in the following
manner: current belief is propagated with future action, future measurements are generated by con-
sidering already-mapped landmarks, and future belief is solved. Since the ”optimal” action is pre-
determined by the KITTI dataset there is no need for an objective function evaluation.

Perception using KITTI dataset

After executing the next action, the robot receives a corresponding raw image from theKITTIdataset.
The image is being processed through a standard vision pipeline, which produces features with cor-
responding descriptors [48]. Landmark triangulation is being made after the same feature has been
observed at least twice, while following different standard conditions designed to filter outliers. Once
a feature is triangulated, it is considered as a landmark, and is added as a new state to the belief. Note
that the robot has access only to its current joint belief, consisting of the estimated landmark loca-
tions, and the robot past and present pose estimations. Once the observation factors (4.7) are added
to the belief, the inference update is beingmade in two different and separate ways. The first, used for
comparison, follows the standardBayesian inference, by using the efficientmethodologies of iSAM2
in order to update inference. The belief of the preceding inference b[Xk|k] is being updated with the
newmotionP(xk+1|xk, uk) and observation factors

∏
j∈Mk+1|k+1

P(zj
k+1|xk+1, lj), thus obtaining b[Xk+1|k+1].

The secondmethod follows our proposed paradigm for RUB Inference. The belief from the pre-
ceding planning phase, b[Xk+1|k], which corresponds to uk|k+1 (see (4.26)), is updated with the new
measurements. This update is done using UD-OTM-OO which consists of two stages, first using
our DA update method (Section 4.6) which updates the predicted DA to the actual DA, followed by
the OTM-OO method (Section 4.4.2) which updates measurement values.

Results - KITTI dataset

The robot travels 1400 steps in the unknown streets of Karlsruhe Germany, while relying only on
a monocular camera for localization and mapping and without encountering any substantial loop
closures. Differently than Section 4.5 and Section 4.7.1, where the landmarks were omnidirectional
and therefore can be spotted from every angle as long as they were in sensing range, when using
real world data the angle from which we see a landmark would have crucial affect on data associa-
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Figure 4.7.3: Experiment layout and results: (a)The city of Karlsruhe, Germany, provided by the KITTI dataset. The robot ground
truth is denoted in blue, the estimated trajectory denoted in dotted red line and the estimated landmark locations are denoted in green. (b)
Total average running time of inference update for each method, when 100% of the steps were with inconsistent DA.

tion.Figure 4.7.3a presents the ground truth of the robot’s trajectory in blue, the estimated robot’s
trajectory in dotted red and the estimated location of observed landmarks in green. Both iSAM
and UD-OTM-OO produce the same estimation; therefore, the dotted red-line as well as the green
marks represents both iSAM and UD-OTM-OO estimations.

Figure 4.7.3b presents the total computation time of inference update throughout the experiment,
for both iSAM, and UD-OTM-OO. The importance of real-world data can be easily noticed by
comparing Figures 4.7.3b and 4.7.1b. While the RHS update portion of UD-OTM-OO secured its
advantage of two orders of magnitude over iSAM, it is not the case with UD-OTM-OO as a whole.
Although for real-world data, UD-OTM-OO is still faster than iSAM, the difference has decreased
from order of magnitude in Figure 4.7.1b, to less than half the computation time in Figure 4.7.3b.
Since the samemachine has beenused in both cases, the differencemust originate from the data itself.
As will be seen later in Figure 4.7.5b, the number of measurements per step is substantially higher
whenusing the real-world data, aswell as the occurrences of inconsistentDA. It isworth stressing that
iSAM implementation for inference update is C++ based, while UD-OTM-OO implementation
consists of a mixture of MATLAB based and C++ based implementation, so under the use of the
same platform the computation time difference is expected to be higher.

We continue by discussing the estimation difference, between iSAM and ourmethodUD-OTM-
OO. Although our method is algebraically equivalent to estimation via iSAM, for the reader’s as-
surance we also provide estimation error comparison for both mean and covariance. Despite the
algebraic equivalence, we expect to obtain small error values, related to numerical noise, which are
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different from absolute zero. The estimation comparison results are presented in Figure 4.7.4: the
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Figure 4.7.4: Relative estimation error between iSAM and UD-OTM-OO, for KITTI dataset experiment (a) Relative translation
error, calculated by taking the norm of the difference between the two translation vectors (b) Relative rotation error, calculated by taking
the norm of the difference between the two orientation vectors, i.e. Euler angles (c) Relative position covariance error, calculated by taking
the determinant of the difference between the two covariance matrices (d) Relative orientation covariance error, calculated by taking the
determinant of the difference between the two covariance matrices.

translationmean in Figure 4.7.4a, themean rotation of the robot in Figure 4.7.4b and the correspond-
ing covariances in Figures 4.7.4c and 4.7.4d accordingly. The mean translation error is calculated by
taking the norm of the difference between the twomean translation vectors. Themean rotation error
is calculated by taking the norm of the difference between each of the mean body angles. The covari-
ance error is calculated by taking the norm of the difference between the covariance determinants.
As can be seen in Figure 4.7.4, the error has a noise like behavior, with values of 10−14

[m] for translation
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mean, 10−11
[deg] for mean rotation angles, 10−3

[m] for translation covariance and 10−2
[deg] for rotation angles

covariance. For all practical purposes, these values points to a negligible accuracy difference between
the two methods.
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Figure 4.7.5: Per-step analysis of computation time and added factors amount. (a) Inference update computation time per-step com-
parison between: iSAM - traditional Bayesian inference and UD-OTM-OO - inference update using belief from precursory planning.
For reference the RHS update portion out of UD-OTM-OO is denoted in yellow. (b) Number of added factors per step. Number of all
factors added in iSAM during inference at time k + 1, denoted in blue. Number of factors added in iSAM during inference at time k + 1
and relate to known variables, denoted in red. Number of factors that were originaly calculated during planning at time k + 1|k and were
added by UD-OTM-OO in inference at time k + 1, denoted in yellow.

Figure 4.7.5a presents the per-step computation time for inference update of UD-OTM-OO and
iSAM, as well as the RHS update portion out of UD-OTM-OO for reference. The RHS Update
timing of UD-OTM-OO, denoted by a yellow line, represents the per-step computation time of
inference update through RUB inference for consistent DA, i.e. computation time for updating the
RHSwith the correctmeasurement values after theDAhasbeenupdated. UD-OTM-OO represents
the per-step computation time of inference update through RUB inference for the entire process
- DA update followed by RHS update. The difference in computational effort between the two, as
seen in Figure 4.7.5a, is equivalent to the computation time of the DA update, which represents the
need to deal with inconsistent DA between belief from planning b[Xk+1|k] and succeeding inference
b[Xk+1|k+1]. The difference in computational effort between UD-OTM-OO and iSAM is attributed
to the re-use of calculations made during the precursory planning. This calculation re-use manifests
in salvaging factors that have already been considered during the precursory planning.

Thereason for the considerable computational timedifferencesbetweenUD-OTM-OO and iSAM
is better understood when comparing the factors involved in the computations of each method.

Figure 4.7.5b presents the sum of added factors per-step. In blue, the sum of all factors added at
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time k + 1|k + 1, as part of standard Bayesian inference update. In red, the portion of the aforemen-
tioned factors that relate to states which are already part of the belief b[Xk|k]. In yellow, the amount
of factors added in time k + 1 as part of UD-OTM-OO and are shared by both beliefs, b[Xk+1|k]

and b[Xk+1|k+1], i.e. the amount of factors that were originally calculated in the precursory planning
time, and were reused by UD-OTM-OO. It is worth stressing the noticeable difference between the
number of measurements per step in Figure 4.7.5b when compared to Figure 4.7.2c. The former is
exceeding the latter by an order of magnitude.

The difference between the yellow and blue lines in Figure 4.7.5b represents the amount of fac-
tors ”missing” from the belief b[Xk+1|k] in order to match b[Xk+1|k+1] (see Section 4.6.2), e.g. for step
725 only 142 have been reused (yellow line) while 675 were eventually added (blue line), leaving 533
new factors to be added during the DA update phase of UD-OTM-OO. This difference can be di-
vided into factors containing only existing states and factors containing new states. Since the red line
represents all factors of existing states, the difference between the red and blue lines represents all
factors containing new states per time step, e.g. for step 725, out of the 675 factors added during in-
ference (blue line), only 236 are related to previously known states (red line). As mentioned earlier
in Section 4.7.2, in this experiment the prediction of future factors does not involve new states, apart
from the next future pose(s). For that reason, the amount of factors added during planning has an
upper bound represented by the red line, e.g. for step 725, themaximumnumber of factors that could
have been utilized from precursory planning is 236 (red line). Future work can consider a prediction
mechanism for new states, such work would set the upper bound somewhere between the red and
blue lines.

The difference between the yellow and red lines, both related to factors of existing states, is at-
tributed to the prediction accuracy of the planning stage. Since the factors represented by the red line
are already part of the belief in planning time k, a perfect prediction mechanism would have added
themall to the belief b[Xk+1|k], e.g. for step 725, while there are 236 factors related to previously known
states (red line), planning predicted only 142 of them (yellow line). Since the prediction is inherently
imperfect (see Section 4.3.2), there would always be some difference between the two. Reducing the
gap between the red and yellow lines is a function of the predictionmechanism, while closing the gap
further up to the blue line is a function of predicting new variables during planning.

After better understanding themeaning of Figure 4.7.5b, comparing the two graphs in Figure 4.7.5,
reveals the connection between the added factors and the computation time, demonstrated by com-
paring steps 725 and 803 across the aforementioned. For time step 725, we have 675 new factors added
in iSAM at inference, while only 142 factors that have been reused by UD-OTM-OO, this difference
resulted in inferenceupdate running timeof4.2[s] toUD-OTM-OO and6.1[s] to iSAM. For time step
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Figure 4.7.6: Inference update computation time analysis between iSAM and UD-OTM-OO. The left vertical blue axis, repre-
sents the inference update computation time difference between iSAM and UD-OTM-OO, where positive values suggest tiSAM >
tUD-OTM-OO. The right vertical orange axis, represents the number of factors per step added by UD-OTM-OO that were not reused
from planning.

803, we have 145 new factors added in iSAM at inference, while only 33 factors that have been reused
by UD-OTM-OO, this difference resulted in inference update running time of 0.33[s] toUD-OTM-
OO and 6.9[s] to iSAM. Although 6825 new landmarks were added to the state vector between steps
725 and 803 (calculated by the cumulative difference between the blue and red lines between steps
725 and 803), the time difference between UD-OTM-OO and iSAM increased, while UD-OTM-
OO running time dropped. This increase in relative running time, in-spite of the substantial growth
of the state vector, can be attributed to the drop in the number of factors needed to be added by the
DA update phase of UD-OTM-OO.

As anticipated, the larger the gap between b[Xk+1|k] and b[Xk+1|k+1], i.e. more DA corrections to
b[Xk+1|k] are required in order to match b[Xk+1|k+1], the smaller the computation time difference be-
tween RUB inference and standard Bayesian inference, as demonstrated in Figure 4.7.6. The left
vertical axis (denoted in blue) presents the computation time difference between iSAM and UD-
OTM-OO such that positive values suggest tiSAM > tUD-OTM-OO. From this blue graph we notice
that the time difference between iSAM and UD-OTM-OO is strictly positive and ascending up to
fluctuations. While some of these fluctuations can be attributed to machine noise of the measure-
ment process, we provide some explanation for the large time difference drops, i.e. the steps in which
the computation difference between iSAM and UD-OTM-OO diminished. The number of factors
added by UD-OTM-OO and were not reused from precursory planning are denoted by the orange
line in Figure 4.7.6. We can see correlation between large spikes in the number of factors added dur-
ing the DA update phase of UD-OTM-OO (orange line), and the drops in the time difference be-
tween iSAM and UD-OTM-OO computation time difference (blue line), e.g. steps 554− 591 and
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720− 746.
In contrast to previous experiments over synthetic data, we can better see here some dependency

over the size of the belief in the UD-OTM-OO method. This dependency seems to be in corre-
lation with that of iSAM2 although less intense, as can be seen by comparing the two methods in
Figure 4.7.5a. As in Figure 4.7.2, we can attribute this correlation to the number of re-eliminations
performed per step, which are a function of the newly added factors for iSAM and the DA update
in UD-OTM-OO (see Section 4.6). As mentioned earlier, in each step UD-OTM-OO encounters
inconsistent DA, judging by the difference between the blue and yellow lines in Figure 4.7.5b, each
step UD-OTM-OO deals with at least 100 factors that were not reused from planning. Since UD-
OTM-OOmakes use of iSAM2methodologies in order to update inconsistentDA, as does iSAM2
to update inference, they share similar computational sensitivities, whichmanifest in similar compu-
tation time trends. This similarity sensitivity is attributed in our opinion to the elimination process
required in order to introduce new factors into the belief. Future work for reducing eliminations by
anticipating required ordering, would break this dependency and provide additional improvement
in computation time as well as in reducing the sensitivity to state dimensionality.

4.8 Some Broader Perspective

In this section we briefly discuss the motivation for RUB Inference and provide some broader per-
spective to possible future usage. As mentioned earlier, the RUB Inference paradigm deals with
inference update within a plan-act-infer framework. By re-using calculations from the precursory
planning session, it offers reduced computation time without affecting estimation accuracy.

Decisionmakingunderuncertainty inhighdimensional state spaces is computationally intractable,
and as such the majority of the plan-act-infer computation time can be ascribed to it. For example,
let us consider BSP under the simplified Maximum Likelihood (ML) assumption, with a planning
horizon of three lookahead steps and three candidate actions per step. The first level of the belief tree
would consist of three future beliefs, one for each candidate action, each of which is propagated with
each of the three candidate actions, resulting in nine future beliefs in the second level of the belief
tree, and again for the last lookahead step with 27 future beliefs in the third and last level of the belief
tree. This would result in total of 39 future beliefs that constitute the belief tree, i.e. 39 belief updates,
whereas only a single belief update is required during inference update. In this toy example the com-
putational load of inference update constitutes therefore only 2.5% of the plan-act-infer framework
(assuming all belief updates have the same computational load). So why should we bother with the
efficiency of the inference update process in the first place?

The answer to this question is twofold, the first part deals with RUB Inference paradigm as a
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stand-alone approach for inference update, and the second with its possible contribution to future
research.

Although we present RUB Inference as part of a plan-act-infer system, it can also be used in the
passive case, i.e. not as part of a plan-act-infer system. Imagine a set of candidate beliefs, calculated
offline and stored away for future usage. When in-need to perform belief update, we can search this
set of candidate beliefs for the belief closest to last posterior as well as to the newly received infor-
mation. Once we locate this closest belief, we use RUB Inference to update it to match current
information thus saving computational load without affecting accuracy. The reason we consider in
this work RUB Inference as part of a plan-act-infer system, lies within the problem of locating the
closest candidate belief. By using beliefs from precursory planning as candidates we have a small
set of candidates to look through, moreover we can ensure that in the worst case scenario (i.e. all
predictions from precursory planning are wrong) we would match Bayesian inference performance,
thus averting from the complicated problem of searching within belief space. For the general case of
having a set of previously calculated beliefs, used as candidates for re-use underRUB Inference, one
would need to deal with few issues, some ofwhich are: how to store the beliefs to facilitate an efficient
search, how to efficiently search the set of candidate beliefs, what high-dimensional belief-distance
to use, how to interpret belief-distance into computational load i.e. what will be considered as close
enough. It goes without saying that the computational load of locating the closest belief should be
small enough for RUB Inference to still have a computational advantage.

Secondly, the paradigmshift suggestedbyRUB Inferenceprovides a pathway tonewandexciting
research directions. For example, RUB Inference is a key building block in JIP (Chapter 3), first
presented in [17] and later in [19], which strives to create a unified framework that deals with both
inference andBSPunder the samegoverning system, thus allowing tomaximize the calculation re-use
potential available in both inference and planning.

While RUB Inference provides efficient inference update, it is also relied upon to facilitate cal-
culation re-use between different planning sessions (see Chapter 6). As part of BSP, it is required
to create a belief tree, as deep as the planning horizon, where each node in the said tree represents a
future belief with specific candidate actions and future measurements. In Chapter 6 we make use of
RUB Inference paradigm in order to incrementally update the belief tree as part of planning, thus
saving valuable computation time from the planning stage.

Consequently, apart from being a more computationally efficient approach for inference update,
the paradigm shift suggested by RUB Inference provides a basis for exciting new research, e.g. it is
the building block that facilitates the JIP concept as a whole.
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4.9 Concluding RUBI

Conventional Bayesian inference updates the belief from a previous time step with new incoming
information. In this chapter we introduced an alternative paradigm, utilizing the similarities between
inference and planning to efficiently update inference using information from precursory planning
phase. Given a future belief from precursory planning and newly acquired data, we appropriately
update the former with the latter while taking into consideration data association inconsistencies
which might occur. The resulting approach, RUB Inference, saves valuable computation time in
inference without affecting the estimation accuracy.

We evaluated our approach in simulation and using real-world data from the KITTI dataset, con-
sidering active SLAM as application, and compared it against iSAM2, a state-of-the-art incremen-
tal Bayesian inference approach. Results from real-world evaluation indicate that our approach is
more efficient computationally by at least a factor of two compared to iSAM2, without affecting the
solution accuracy. The improvement magnitude is in direct correlation with the quality of the pre-
diction mechanism being used in planning, meaning a better prediction mechanism would increase
the approach’s efficiency. A particular appealing aspect of our method, that we demonstrated using
synthetic data, is that loop closures computational burden during inference is elevated, thanks to the
utilization of similar calculations alreadymadeduring precursory planning. When loop closureswere
correctly predicted during the planning phase, our method utilized these calculations instead of re-
calculating them in inference, resulting in reducing computation time by a factor of two orders of
magnitude in the shown results.

This paper suggests a novel general concept for leveraging calculations from the decision mak-
ing stage for efficient inference update, thus enabling to reduce inference computation time with-
out affecting accuracy. Based on this concept, under the assumption of high-dimensional Gaussian
beliefs, we developed approaches based on the square root information matrix, to efficiently up-
date inference. We strongly believe this novel concept is applicable for more general distributions
in any autonomous system involving both inference and decision making under uncertainty. Based
on our findings, we strongly believe this paradigm shift opens new research directions and can be
further extended in various ways, e.g. iX-BSP- incremental expectation BSP (Chapter 6) leverages
RUB Inference to reuse calculations across different planning sessions.
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You have to learn the rules of the game.
And then you have to play better than anyone else.

Sen. Dianne Fienstein

5
Introducing iX-BSP

In this chapter we introduce Incremental eXpectation BSP, or iX-BSP, which incre-
mentally updates the expectation related calculations in X-BSP by re-using previ-
ous planning sessions. We suggest reformulating the original intractable problem of X-BSP to
account for calculation re-use, thus improving calculation time without affecting the solution accu-
racy. This chapter is organized as follows. Section 5.1 following Chapter 2, provides an in-depth
review of iX-BSP related work. Section 5.2 introduces the concept of iX-BSP and reviews the con-
tributions of this chapter. Section 5.3 reviews current formulation of a plan-act-infer system, focus-
ing on decisionmaking under uncertainty. Section 5.5 ponders about the expectation in the X-BSP
problem and the common Maximum Likelihood (ML) approximation and its repercussions.

5.1 RelatedWork

Asmentioned inChapter 2, in strike contrast to the vast amountof research invested in approximating
the X-BSP problem, only few tried re-using calculations, this section shortly reviews some of these
efforts to provide the reader with a better understanding of iX-BSP specific related work.

POMCP [64] is the POMDP generalization of MCTS [9]. POMCP is a point-based POMDP;
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as such, it is implicitly using particle filtering to express and update future beliefs, thus breaking the
curse of dimensionality. It also maintains a history search tree, containing all possible actions and
only sampled measurements, thus breaking the curse of history. At each planning session POMCP
develops the tree using a black box simulator and search for the optimal policy through maintaining
an upper bound over each tree node using the PO-UTC algorithm (see section 3.1 in [64]). Once an
action has been executed, POMCP is pruning the existing tree of all branches but the one containing
the current history, thus re-using the statistics obtained so far for the appropriate segment of the tree.
Other than parameter tuning, POMCP does not require any offline calculations, although it does
require the existence of a black box simulator for sampling future scenarios and their rewards.

Adaptive Belief Tree (ABT) [46] builds on POMCPbut thrives to reuse an existing policy instead
of calculating a new one from scratch. Given some offline calculated policy, ABT resamples only the
parts affected bynewly acquired information, thus re-using the rest of the policy. In addition to offline
policy calculation, ABT also requires as an input the set of all states affected by the newly acquired
information, which is considered as given. Although re-using unaffected parts of the policy, ABT
substitutes the affected parts of the policy with freshly sampled rather than incrementally updating
them with the new information.

DESPOT[76] is also a point-based POMDP,which implicitly uses particle filtering to express and
update the belief. Same as POMCP it also maintains a history search tree containing all possible ac-
tions and only sampled measurements. Similarly to POMCP, at each planning session DESPOT
incrementally develops the tree using a simulator while searching for the optimal policy. Unlike
POMCP,DESPOTmakesuseof upper and lowerboundsover anestimateof the regularizedweighted
return value of each tree node, which is supposed tobe less greedy than theuse of PO-UCT.The lower
bound is calculated over the user defined default policy (calculated offline). Once a policy has been
chosen, the DESPOT tree is pruned of all other actions; this action-pruned DESPOT is denoted as
the DESPOT policy. While following the DESPOT policy, if the agent encounters a scenario not
present in the DESPOT policy it will follow the default policy from then on. Similarly it follows the
default policywhen encountering a leaf nodeofDESPOTpolicy. DESPOTalsomakes use of regular-
ization in order to assure the desired performance bound while everting from potentially overfitting
due to the sampled scenarios. The regularization constant as well as other heuristic related param-
eters are calculated offline and are case sensitive. As opposed to POMPC which operates under an
MPC setting, DESPOT follows a DESPOT policy to the end of its horizon and does not make any
re-use of the statistical results.

is-DESPOT [50] builds on DESPOT [76] and introduces importance sampling into the scenario
sampling procedure. Under is-DESPOT, scenarios are sampled from some importance distribution.
The importance sampling distribution is calculated offline and is also case sensitivewithout explicitly
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addressing the deployment problem.
DESPOT-α [20] also builds on DESPOT [76] and introduces α vector approximation to the im-

plicit particle filtering problemof propagating andmaintaining future beliefs, thus better representing
belief uncertainty under relatively large measurement space.

In contrast to the aforementioned efforts, although under some more simplifying assumptions
amongst them ML, both [7] and [42] re-use computationally expensive calculations during plan-
ning. In their work, Chaves and Eustice [7], consider a Gaussian belief under ML-BSP in a Bayes
tree [35] representation. All candidate action sequences consider a shared location (entrance pose),
thus enabling to re-use a lot of the calculations through state ordering constrains. That work enables
to efficiently evaluate a single candidate action across multiple time steps, and is conceptually appli-
cable tomultiple candidate actions at a single time step. While Kopitkov and Indelman [42, 43], also
consider a Gaussian belief under ML-BSP, they utilize a factor graph representation of the belief
while considering an information theoretic cost. Using an (augmented) determinant lemma, they
are able to avert from belief propagation while re-using calculations throughout the planning session.
Although they consider calculation re-use within the same planning session, their work can be aug-
mented to consider re-use also between planning sessions.

To the best of our knowledge, in-spite of the aforementioned research efforts, calculation re-use
has only beendoneoverML-BSP, with restricting assumptions. WhileML-BSP is widely used, the
pruning of X-BSP by considering only the most likely measurements, might mean choosing a sub-
optimal action in case the biggest available reward is not themost likely one, in particular in presence
of significant estimation uncertainty. Although under some conditions few of the aforementioned
approaches re-use previously calculated policies, and even selectively re-calculate parts of the policy
to account for newly acquired information, they do not address the problem of identifying the parts
of the policy affected by the new information nor they incrementally update the policy to account
for it. As for today, up to our work, X-BSP approaches do not re-use calculations across planning
sessions.

5.2 iX-BSPContributions

While the aforementioned research efforts mainly focused on approximating the X-BSP, we sug-
gest a new paradigm, challenging the standard formulation of X-BSP by re-using calculations across
planning sessions thus saving valuable computation time not at the expense of accuracy.

In contrast to both POMPC and DESPOT which are point-based approximations of X-BSP,
iX-BSP is identical to the general intractable formulation of X-BSP with the single exception of
calculation re-use. iX-BSP requires no offline calculations and does not rely on any case sensitive
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(a) (b)

Figure 5.2.1: Illustrating the difference between iX-BSP and X-BSP using a simple decision making problem. Veronica would like
to cross the park with her son as quickly as possible. (a) Before entering the park Veronica, knowing the layout, considers all possible routs,
denoted by colored arrows. (b) After entering the park Veronica obtains new information which renders her existing plan suboptimal.
Under X-BSP Veronica would replan from scratch while under iX-BSP she would simply incrementally update her existing plan with the
new information.

heuristics. Instead of calculating the expected belief-dependent rewards, which form the objective
value, from scratch, iX-BSP selectively re-uses previously sampled measurements along with their
associated beliefs. While POMPC re-uses previously calculated statistics between planning sessions
of the pruned search tree it disregards impact of the newly received information over the sampled
scenarios. Although ABT accounts for this new information by re-calculating affected parts of the
policy, it does not address how to locate the affected segments of the policy or how to incremen-
tally update them rather then discard them. On the other hand, iX-BSP incrementally updates the
re-used beliefs with the updated posterior information, using our previous work on efficient belief
update under RUB Inference (see Chapter 4).

Selectively resampling measurements as part of iX-BSP, potentially results in estimating the ex-
pected objective value through multiple different distributions. We identify this problem within
the Multiple Importance Sampling (MIS) problem [74], residing in the field of importance sam-
pling [24] and formulate iX-BSP accordingly. Figure 5.2.1 illustrates the advantage of iX-BSP over
X-BSP througha simpledecisionmakingunderuncertaintyproblem, in-whichVeronica andher son
would like to cross the park in the fastest possible route. Assuming Veronica is already familiar with
the park layout, she could solve her decision making problem by considering all four possible routes
through the park (denoted by green, red, blue and black arrows in Figure 5.2.1a). As a result, Veron-
ica chooses the blue path and enters the park only to find it populated as illustrated in Figure 5.2.1b.
This newly acquired information changes the optimality and even validity of Veronica’s solution. Un-
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der X-BSP Veronica would calculate a new plan from scratch; instead, under iX-BSP Veronica can
simply update her existing planwith the newly acquired information, resulting with picking the black
path as the fastest one.

While Veronica’s planning problem in Figure 5.2.1 provides some intuition on how iX-BSP pro-
vides the same solution as X-BSP but faster, in real life scenarios the desirable accuracy sometime
lies within the bounds of a suboptimal solution. As mentioned, iX-BSP is not an approximation of
X-BSP, it updates some precursory planning tree with all of the new posterior information.

Additional contribution of our work comes to satisfy the desire to controllably sacrifice accuracy
for performance, introducing the wildfire approximation. While iX-BSP updates some existing
planning tree to exactly match current information, wildfire introduces a concept of ”close enough”
defined by a wildfire distance threshold. Under iX-BSP with wildfire, whenever a belief of the
existing planning tree is ”close enough” to its updated counterpart, this ”close enough” belief is con-
sidered as already updated, along with all of its decedents in the planning tree. The choice of wildfire
threshold valuewoulddirectly affect theobtainable objective value. When the threshold is taken to its
minimum, i.e. zero distance, there is no approximation and the obtainable objective value would sta-
tisticallymatch the one obtained by iX-BSPwithoutwildfire. Aswe increase the allowablewildfire
distance threshold, it is as if we consider some or even all of the newly acquired information as irrel-
evant, which would directly impact the obtainable objective value. In this work we formulate the
affect of the wildfire threshold over the obtainable objective value, and support it with both analyt-
ical proof and empirical results. Moreover, we provide results indicating considerable reduction in
computation time under the use of wildfire in iX-BSP.

As iX-BSP is formulated over the original un-approximated problem of X-BSP, we go further
and support our claim made in [18], that iX-BSP can be utilized to also reduce valuable compu-
tation time of existing approximations of X-BSP. Considering the commonly used approximation
ML-BSP, we formulate incremental ML-BSP, referred to as iML-BSP, by simply enforcing the
ML assumption over iX-BSP, as being done over X-BSP. Under ML-BSP, beliefs are propagated
with zero innovation by considering just themost likelymeasurement for each candidate action, thus
averting from expectation and minimizing the curse of history. Given access to calculations from pre-
cursory planning, at each look ahead step i in the current planning session, iML-BSP considers the
appropriate sample from the ith look ahead step in the precursory planning session for re-use. If the
sample constitutes an adequate representation, of the measurement likelihood we would have con-
sidered at the ith look ahead step in current planning session, then iML-BSP utilizes the associated
previously solved belief from the precursory planning session. If the mentioned sample is consid-
ered as an inadequate representation of the mentioned measurement likelihood, iX-BSP follows
the course of ML-BSP, and the most likely measurement of the nominal measurement likelihood is
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considered instead.

To summarize, the contributions of our work on iX-BSP are as follows: (a) We present a novel
paradigm for incremental expectation belief space planning with selective resampling (iX-BSP).
Our approach incrementally calculates the expectation over future observations by a set of samples
comprising of newly sampledmeasurements and re-used samples generated at different planning ses-
sions. (b) We identify the problem of iX-BSP with selective resampling as a Multiple Importance
sampling problem, and provide the proper formulation while considering the balance heuristic. (c)
We evaluate iX-BSP in simulation and provide statistical comparison to X-BSP, which calculates
expectation from scratch, while considering the problem of autonomous navigation in unknown en-
vironments, across different randomized scenarios. (d) We introduce the wildfire approximation
into iX-BSP, which enables one to controllably trade accuracy for performance. (e) We provide
an analytical proof of the affect the choice of a wildfire threshold would have over the objective
value, in the form of bounds over the objective value error. (f) We provide empirical results of us-
ing wildfire within iX-BSP, as well as the affect wildfire holds over the objective value error. (g)
We support our claim, that iX-BSP can be used to improve approximations of the general prob-
lem of X-BSP, by introducing to iX-BSP the commonly used ML approximation, and denote it as
iML-BSP. The novel approach of iML-BSP, incrementally calculates the expectation over future
observations, while considering either themost likely observationor somepreviously sampledobser-
vation, given from a precursory planning session. (h)We evaluate iML-BSP in simulation as well as
in real-world experiments and compare it to the commonly used approximation for theX-BSPprob-
lem, ML-BSP, while considering the problemof autonomous navigation in unknown environments
and active visual-SLAM setting with belief over high dimensional state space.

5.3 BSP Today

This section provides the theoretical background for belief space planning (BSP), startingwith recap-
pingbelief definition, followedby theBSP formulation and the commonMaximumLikelihood(ML)
approximation. While the formulation, as well as the suggested paradigm, are impartial to a specific
belief distribution, throughout this chapter we also provide the conventional case which deals with
Gaussian distributions.

5.3.1 Belief Definition

Although already covered in Section 4.2, for the reader’s convenience we shortly recap the belief defi-
nition. Let xt denote the agent’s state at time instant t andL represent themapped environment thus
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far. The joint state, up to and including time k, is defined as Xk = {x0, ..., xk,L}. We shall be using
the notation t|k to refer to some time instant twhile considering information up to and including time
k. The unique time notation is required since this paper makes use of both current and future time
indices in the same equations. Let zt|k and ut|k denote, respectively, measurements and the control
action at time t, while the current time is k. Themeasurements and controls up to time t given current
time is k, are represented by

z1:t|k
.
= {z1|k, ..., zt|k} , u0:t−1|k

.
= {u0|k, ..., ut−1|k}, (5.1)

The posterior probability density function (pdf) over the joint state, denoted as the belief, is given by

b[Xt|k]
.
= P(Xt|z1:t|k, u0:t−1|k) = P(Xt|Ht|k). (5.2)

where Ht|k
.
= {u0:t−1|k, z1:t|k} represents history at time t given current time k. The propagated belief

at time t, i.e. belief b[Xt|k] lacking the measurements of time t, is denoted by

b−[Xt|k]
.
=b[Xt−1|k]· P(xt|xt−1, ut−1|k)= P(Xt|H−

t|k), (5.3)

where H−
t|k

.
=Ht−1|k ∪ {ut−1|k}. Using Bayes rule, Eq. (5.2) can be rewritten as

b[Xt|k] ∝ P(X0)
t∏

i=1

P(xi|xi−1,ui−1|k)
∏

j∈Mi|k

P(zi,j|k|xi, lj)

 , (5.4)

where P(X0) is the prior on the initial joint state, and P(xi|xi−1, ui−1|k) and P(zi,j|k|xi, lj) denote,
respectively, the motion and measurement likelihood models. Here, zi,j|k represents an observa-
tion of landmark lj from robot pose xi, while the setMi|k contains all landmark indices observed
at time i, i.e. it denotes data association (DA). The DA of a few time steps is denoted byM1:i|k

.
=

{M1|k, · · · ,Mi|k}.

5.3.2 Belief Space Planning Formulation

Although shortly mentioned in Section 4.2.2 as part of RUB Inference theoretical background,
we provide here a more thorough formulation of the belief space planning problem as required for
iX-BSP.

Thepurpose of BSP is to determine an optimal action given an objective function J, belief b[Xk|k] at
planning time instant k and, considering a discrete action space, a set of candidate actions Uk. While
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these actions can be with different planning horizons, we consider for simplicity the same horizon of
L look ahead steps for all actions, i.e. Uk = {uk:k+L−1}.

The optimal action for planning at time k for horizon of L look-ahead steps is given by

u⋆k:k+L−1|k = argmax
uk:k+L−1|k∈Uk

J(uk:k+L−1|k), (5.5)

where the general objective function J(.) is defined as

J(u) .= E
zk+1:k+L|k

[
k+L∑

i=k+1

ri
(
b[Xi|k], ui−1|k

)]
, (5.6)

with u .
= uk:k+L−1|k, immediate rewards (or costs) ri and where the expectation is with respect to

future observations zk+1:k+L|k while,

zk+1:k+L|k ∼ P(zk+1:k+L|k|Hk|k, uk:k+L−1). (5.7)

The expectation in (5.6) can be written explicitly

J(u) =
∫

zk+1|k

P(zk+1|k|Hk|k, uk|k) · rk+1(.) + . . .+

∫
zk+1:i|k

P(zk+1:i|k|Hk|k, uk:i−1|k) · ri(.) + . . . . (5.8)

Using the chain rule and the Markov assumption, we can re-formulate the joint measurement likeli-
hood (5.7), as

P(zk+1:k+L|k|Hk|k, uk:k+L−1) =
k+L∏

i=k+1

P(zi|k|H−
i|k) (5.9)

where H−
i|k is a function of a specific sequence of measurement realization, i.e.

H−
i|k = Hk|k ∪ {zk+1:i−1|k, uk:i−1|k}. (5.10)

Using (5.9), we can re-formulate (5.8) as

J(u) =
∫

zk+1|k

P(zk+1|k|H−
k+1|k)

rk+1
(
b[Xk+1|k], uk|k

)
+ . . .

∫
zi|k

P(zi|k|H−
i|k)
[
ri
(
b[Xi|k], ui−1|k

)
+ . . .

] ,

(5.11)
where each integral accounts for all possiblemeasurement realizations fromanappropriate lookahead
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step, with i ∈ (k + 1, k + L] and b[Xi|k] = P(Xi|k|H−
i|k, zi|k).

Evaluating the objective for each candidate action in Uk involves calculating (5.11), considering
all different measurement realizations. As solving these integrals analytically is typically not feasible,
in practice these are approximated by sampling future measurements. Although the measurement
likelihoodP(zi|k|H−

i|k) is unattainable, one can still sample from it. Specifically, consider the i-th future
step and the corresponding H−

i|k to some realization of measurements from the previous steps. In
order to sample fromP(zi|k|H−

i|k), we shouldmarginalize over the future robot pose xi and landmarks
L

P(zi|k|H−
i|k) =

∫
xi

∫
L

P(zi|k|xi,L) · P(xi,L|H−
i|k)dxidL, (5.12)

where P(xi,L|H−
i|k) can be calculated from the belief b−[Xi|k]

.
= P(Xi|k|H−

i|k). We approximate the
above integral via sampling as summarized in Alg. 2. One can also choose to approximate further by
considering only landmark estimates L̂ (i.e. without samplingL).

Algorithm 2 Sampling zi|k ∼ P(zi|k|H−
i|k)

1: χ i
.
= {xi,L} ∼ P(xi,L|H−

i|k)

2: Determine data associationMi|k(xi,L)
3: zi|k = {zi,j|k}j∈Mi|k(χ i)

with zi,j|k ∼ P(zi,j|k|xi, lj)
4: return zi|k and χ i

Each sample χ i and the determined DA (lines 1-2 of Alg. 2) define a measurement likelihood
P(zi|k|χ i,Mi|k(χ i)) =

∏
j∈Mi|k(χ i)

P(zi,j|k|xi, lj) fromwhich observations are sampled in line 3. Con-
sidering nx samples, {χn

i }
nx
n=1, we can approximate Eq. (5.12) by

P(zi|k|H−
i|k) ≈ ηi

nx∑
n=1

ωn
i · P(zi|k|χn

i ,Mi|k(χn
i )), (5.13)

where ωn
i represents the n-th sample weight, χn

i , and η−1
i

.
=
∑nx

n=1 ω
n
i . Here, since all samples are

generated from their original distribution (corresponding to the proposal distribution in importance
sampling), see line 1, we have identical weights.

For each sample χn
i ∈ {χ

n
i }

nx
n=1, we can generally consider nz measurement samples (line 3), pro-

viding the set{zn,m
i|k }nz

m=1. Inotherwords, Alg. 2 yieldsnx·nz sampledmeasurements, denotedby{zi|k},
for a given realization of zk+1:i−1|k. Thus, considering all such possible realizations, we get (nx · nz)

i−k

sampledmeasurements for the look ahead step at time instant i, i.e. the (i− k)-th look ahead step for
planning time instant k.
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We can nowwrite an unbiased estimator for (5.11), considering the (nx · nz)
i−k sampledmeasure-

ments. In particular, for the look ahead step at time i, we get

E
zk+1:i|k

[
ri
(
b[Xi|k], ui−1|k

)]
≈ηk+1

∑
{zk+1|k}

ωn
k+1

· · ·
ηi

∑
{zi|k}

ωn
i · ri

(
b[Xi|k], ui−1|k

) · · ·
 (5.14)

where H−
i|k varies with each measurement realization. When the measurements that are used to es-

timate the expectation are being sampled from their nominal distributions, then all weights equal
1, i.e. ωn

i = 1 ∀i, n , and evidently each normalizer equals the inverse of the sum of samples, i.e.
η−1
i = nx · xz ∀i

J(u) =
k+L∑

i=k+1

 1
(nx · xz)i−k

∑
{zk+1|k}

. . .
∑
{zi|k}

ri
(
b[Xi|k], ui−1|k

) . (5.15)

The above exponential complexity makes the described calculations quickly infeasible, due to both
curse of dimensionality and history. In practice, approximate approaches, e.g. Monte-Carlo tree
search [64], must be used. However, in this work we prefer to present our paradigm considering
the above formulation, without any further approximations, referring to it asX-BSP. We believe our
proposed concept can be applied in conjunctionwith existing approximate approaches; in particular,
we demonstrate this on the commonly used approximation for the X-BSP problem - theMaximum
Likelihood approximation.

5.3.3 Belief Space Planning under ML

A very common approximation to Eq. (5.6) is based on themaximum likelihood (ML) observations
assumption (see e.g. [29, 40, 58]). This approximation, referred to as ML-BSP, is often used in BSP
and in particular in the context of active SLAM: Instead of accounting for different measurement re-
alizations, only the most likely observation is considered at each look ahead step, which corresponds
to nx = nz = 1 where the single sample is the most likely one. So under ML, the expectation from
Eq. (5.6) is omitted, and the new objective formulation is given by

JML(u) .=
k+L∑

i=k+1

ri
(
b[Xi|k], ui−1|k

)
, (5.16)

thusdrastically reducing complexity at the expenseof sacrificingperformance. While the futurebelief
b[Xi|k] is given by P(X0:i|Hk|k, uk:i−1, zML

k+1:i|k), and for the Gaussian case zML
k+1:i|k are the measurement
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model mean-values.

5.4 Defining the iX-BSP problem

Consider the planning session at time instant k has been solved by evaluating the objective (5.6)
via appropriate measurement sampling for each action in Uk and subsequently choosing the optimal
action u⋆k:k+L−1|k. A subset of this action, u⋆k:k+l−1|k ∈ u⋆k:k+L−1|k with l ∈ [1, L), is now executed, new
measurements zk+1:k+l|k+l are obtained and the posterior belief b[Xk+l|k+l] in inference is calculated,
upon which a new planning session is initiated.

Determining the optimal action sequence at time instant k + l involves evaluating the objective
function for each candidate action u′ .

= uk+l:k+l+L−1|k+l ∈ Uk+l

J(u′) .= E

[
k+l+L∑

i=k+l+1

ri
(
b[Xi|k+l], u′i−1|k+l

)]
, (5.17)

where the expectation iswith respect to future observations zk+l+1:k+l+L|k+l. Existing approaches per-
form these costly evaluations from scratch for each candidate action. Our key observation is that ex-
pectation related calculations from two successive X-BSP planning sessions at time instances k and
k + l are similar and hence can often be re-used. The iX-BSP approach would evaluate the objec-
tive function (5.17) more efficiently by appropriately re-using calculations from preceding planning
sessions.

At this point, we summarize our assumptions for iX-BSP.

Assumption 1. Calculations from a previous planning session are accessible from the current planning
session.

Assumption2. Theplanning horizon of current time k+l, overlaps the planning horizon of the precursory
planning time k, i.e. l ∈ [1, L).

Assumption 3. Action sets Uk+l and Uk overlap in the sense that actions in Uk that overlap in the ex-
ecuted portion of the optimal action also partially reside in Uk+l. In other words, ∀u ∈ Uk with u .

=

{uk:k+l−1|k, uk+l:k+L−1|k}anduk:k+l|k ≡ u⋆k:k+l−1|k,∃u′ ∈ Uk+l such that u′ .
= {u′k+l:k+L−1, u′k+L:k+l+L−1}

and u′k+l:k+L−1 ∩ uk+l:k+L−1|k /∈ ∅.

Unlike assumption 1, which is an integral part of iX-BSP, assumptions 2-3 exist only as a mean
to create a smaller group of candidate beliefs for re-use. By limiting ourselves to beliefs with a shared
history, mostly the same action sequence and of the same future time, we obtain a relatively small set
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that is likely toproduce a viable candidate for re-use. One can relax these assumptions after addressing
the problem of efficiently searching a set of candidate beliefs.

5.5 Expectation and theMaximum Likelihood Assumption

In this section we provide a glimpse behind the curtains of X-BSP and ML-BSP. As seen in Sec-
tion 5.3.3, the ML assumption greatly simplify the X-BSP problem by eliminating the expectation
over future measurements, as formulated in Eq.(5.16). However this simplification comes with a
cost, which we will discuss in this section. By considering only the most likely measurement, rather
than taking into account all possible future measurements we risk choosing a sub-optimal action. In
order to have a tangible example to discuss and ponder about, we start with the results of a planning
session, for which X-BSP and ML-BSP produced different optimal actions. We show the results of
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Figure 5.5.1: Spatial sensitivity to the ground truth location in respect to the objective value when considering ”left” and ”forward”
actions accordingly. While X-BSP considers the weighted average of different possible measurements, denoted by colored area, ML-BSP
considers only the most likely measurement, resulted from the black square.

a single planning session, for which expectation and ML produced different optimal actions.
Consider a robot with initial estimated location and covariance, given two candidate actions ”left”

and ”forward”. Theworld consists out of two typesof landmarks, thefirstwithhigh covariance and the
secondwith low. Figures 5.5.1a-5.5.1b present the spatial cost values which are the result of choosing
”left” or ”forward” actions accordingly, and where warm colors denote higher cost values. Each pixel
in Figures 5.5.1a-5.5.1b denotes a possible ground truth location of the robot, where the colored area
represents the 1σ range of the prior covariance and the most likely state is denoted by a black square.
While ML considers only the cost value resulting from the most likely state, expectation considers
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multiple samples from different spatial locations. As a result expectation favored the ”left” action
while ML favored ”forward”. For 20k inference rollouts, each with a different ground truth location,
choosing left is statistically favorable in the sense ofminimizing cost (uncertainty), 74% of the times.
So as expected we can deduce that X-BSP is statistically superior to ML-BSP.

Under continuous state space, the possibility of the robot location to match exactly the ML loca-
tion is zero, and as canbe seen from the cost values inFigure 5.5.1a a small shift in robot location could
have drastic consequences over the cost value. Due to the fact that X-BSP takes different possible
spatial locations into consideration, it provides aweighted estimate of the cost value thatmight be ob-
tained, while ML-BSP consider a specific instance involving the ML location. After understanding
the advantage X-BSP holds over ML-BSP one can ponder wether there might be some configu-
ration allowing ML-BSP to match or at least get closer to the estimation performance of X-BSP.
For example under the scenario presented above, addingmore candidate actions toML-BSP should
improve the robustness of the estimated cost value. Of course thiswould resultwith a heavier compu-
tational load and some work is needed in order to determine how much of ML-BSP computational
advantage is required to be sacrificed in favor of accuracy, we leave this for future work.
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If you can’t describe what you are doing as a process,
then you don’t know what you are doing.

W. Edwards Deming

6
iX-BSP

In this chapter we formulate our incremental eXpectation BSP (iX-BSP) approach,
which enables to incrementally calculate the objective function by re-using calcu-
lations from previous planning sessions, thus saving valuable computation time while at the
same time preserving the benefits of the expectation solution provided by X-BSP. As explained
in Section 5.3.2, the immediate rewards, required for calculating the objective value, are in the gen-
eral case a function of candidate actions and future posterior beliefs calculated over sampled mea-
surements. The way iX-BSP re-uses previous calculations is by enforcing specific measurements
as opposed to sampling them from the appropriate measurement likelihood distribution. The mea-
surements being enforced, were considered and sampled in some precursory planning session(s),
in which each of the measurements had corresponding posterior belief and immediate reward. By
enforcing some previously considered measurement, we can make use of the previously calculated
posterior beliefs, instead of performing inference from scratch. In order to make use of the data ac-
quired since these re-used beliefs have been calculated, when needed, we can incrementally update
them to match the information up to current time.

This chapter is organized as follows. We first analyze the similarities between two successive plan-
ning sessions (Section6.1), anduse those insights as foundation todevelop theparadigm for iX-BSP.
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In Section 6.2 we provide an overview of the entire iX-BSP paradigm, and continue with covering
each of the building blocks of iX-BSP: Selecting beliefs for re-use and deciding whether there is suf-
ficient data for calculations re-use (Section 6.3), validating samples for re-use, incorporating forced
samples and belief update (Section 6.4), calculating expectation incrementally with forced samples
(Section 6.5). Section 6.6 provides a thorough analysis of iX-BSP, and a comparison to related
work. Section 6.7 introduces a non-integral approximation to iX-BSP denoted as wildfire. Sec-
tion 6.8 provides a thorough analysis of the affects wildfire holds over the iX-BSP solution. Sec-
tion ?? demonstrates how iX-BSP can be utilized to improve existing approximations of X-BSP
by introducing iML-BSP, denoting iX-BSP under the common ML assumption. Section ?? pro-
vides a thorough analysis of iML-BSP and a comparison to relatedwork. Section 6.9 discusses some
broader perspective of iX-BSP. Section 6.10 captivates the conclusions of this chapter along with
possible extensions and usage. To improve coherence some theoretical background as well as proofs
are covered in appendices.

It is worth mentioning that some of the following sections are accompanied by high-level algo-
rithms, describing key aspects of iX-BSP. In an effort to simplify these algorithms for the readers’
behalf, some of them are written in a sub-optimal manner (complexity-wise). When coming to im-
plement iX-BSP, we trust the readers to adhere to the governing principles of iX-BSPwhilewriting
the source code in a complexity efficient manner.

6.1 Comparing Planning Sessions

This section analyzes the similarities between two planing sessions that comply with Assumptions 1-
3. In order to do so, let us consider two planning sessions, bothwith horizon ofL steps ahead, the first
occurred at time k and the second at time k+ l. Under Assumption 2 both planning horizons overlap,
i.e. l < L, and under Assumption 3 both planning sessions share some actions. For this comparison
let us consider the action chosen at planning time k which also partially resides in a candidate action
from planning time k + l, and denote both as u⋆k:k+L = {u⋆k , . . . , u⋆k+L}. Figure 6.1.1, illustrates
the aforementioned horizon overlap between two beliefs at look ahead step at time t, given planning
time k, i.e. b[Xt|k], and given planning time k + l, i.e. b[Xt|k+l], while the interesting shared sections,
separated by time instances, are denoted as (i) (ii) and (iii).
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k k+l k+L k+L+lt

Present

Planning time k
past future

Present

Planning time k+l
past future

(iii)(ii)(i)

Figure 6.1.1: Horizon overlap between planning time k and planning time k+l, both with L steps horizon and same candidate actions:
(i)The shared history of both planning sessions (ii) The possibly outdated information of planning time k, since in planning time k+l this
time span is considered as known history (iii) Although in both it represents future prediction, it is conditioned over different history
hence possibly different.

At future time t ∈ [k + l + 1, k + L], the belief created by the action sequence ⋆uk:t−1 is given by

b[Xt|k] ∝ b[Xk|k]︸ ︷︷ ︸
(a)

·

k+l∏
s=k+1

P(xs|xs−1, u⋆s−1)
∏

g∈Ms|k

P(zs,g|k|xs, lg)


︸ ︷︷ ︸

(b)

·
t∏

i=k+l+1

P(xi|xi−1, u⋆i−1)
∏

j∈Mi|k

P(zi,j|k|xi, lj)


︸ ︷︷ ︸

(c)

, (6.1)

where (6.1)(a) is the inference posterior at time k corresponding to the lower-bar area (i) in Fig-
ure 6.1.1, (6.1)(b) are themotion and observation factors of future times k+1 : k+ l corresponding to
the lower-bar area (ii) and (6.1)(c) are themotion and observation factors of future times k+ l+ 1 : t
corresponding to the lower-bar area (iii). For the same future time t and the same candidate action,
the belief for planning time k + l is given by,

b[Xt|k+l] ∝ b[Xk|k+l]︸ ︷︷ ︸
(a)

·

k+l∏
s=k+1

P(xs|xs−1, u⋆s−1)
∏

g∈Ms|k+l

P(zs,g|k+l|xs, lg)


︸ ︷︷ ︸

(b)

·
t∏

i=k+l+1

P(xi|xi−1, u⋆i−1)
∏

j∈Mi|k+l

P(zi,j|k+l|xi, lj)


︸ ︷︷ ︸

(c)

, (6.2)

where (6.2)(a) is the inference posterior at time k corresponding to the upper-bar area (i) in Fig-
ure 6.1.1, (6.2)(b) are themotion and observation factors of past times k+ 1 : k+ l corresponding to
the upper-bar area (ii) and (6.2)(c) are themotion and observation factors of future times k+ l+ 1 : t
corresponding to the upper-bar area (iii).

Although seemingly conditioned on a different history (k vs k+ l), (6.1)(a) and (6.2)(a) are identi-
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cal and denote the same posterior obtained at time k (see Figure 6.1.1 area (i)), leaving the difference
between (6.1) and (6.2) restricted to (.)(b) and (.)(c). While (6.1)(b) represents future actions and fu-
ture measurements predicted at time k, (6.2)(b) represents executed actions and previously acquired
measurements, this can can be seen more clearly using area (ii) in Figure 6.1.1. At planning time k
(i.e. lower bar), area (ii) denotes future prediction for the time interval k : k + l, while at planning
time k + l (i.e. upper bar), the same time interval denotes past measurements, and so (6.1)(b) and
(6.2)(b) are potentially different, depending on how accurate was the prediction at planning time k.
As thoroughly explained in Section 4.3.3, the difference between the predictions made during plan-
ning and the actualmeasurements obtained in present time is twofold, the difference inmeasurement
values (see Section 4.4) and the difference in data association (see Section 4.6).

Even-though both (6.1)(c) and (6.2)(c) refer to future actions and measurements (see area (iii) in
Figure 6.1.1) they do so with possibly different values and data association since they were sampled
from possibly different probability densities. Solving the objective (5.11), requires sampling from
(5.12) (e.g. using Alg. 2), the samples from planning time k were sampled from P(zt|k|H−

t|k), while
the samples from planning time k + l were sampled from P(zt|k+l|H−

t|k+l). These probabilities would
be identical only if conditioned on the same history, i.e. only if the predictionsmade for time interval
k : k + l at planning time k were accurate both in data association and measurement values.

As such, in order to mind the gap between (6.1) and (6.2), and obtain identical expressions one
must update (6.1)(b) to match (6.2)(b), and second, to adjust the samples from (6.1)(c) to properly
represent the updated measurement probability density.

6.2 iX-BSPOverview

This section presents an overview of iX-BSP at planning time k + l, whilst the relevant precur-
sory planning session occurred at planning time k, as summarized in Alg. 3. For the reader’s con-
venience all the notations of this section are summarized in Table 6.1. After executing l steps out of
the (sub)optimal action sequence suggested by planning at time k, and performing inference over
the newly received measurements, we obtain b[Xk+l|k+l]. Performing planning at time k + l under
iX-BSP, requires first deciding on the planning sub-tree from the precursory planning session to be
considered for re-use (Alg. 3 line 1). Considering belief roots of candidate planning sub-trees, the
selected sub-tree is the one with the ”closest” belief root to b[Xk+l|k+l], i.e. the one with the minimal
distance to it while considering some appropriate probability density function distance. We denote

the closest belief root and the appropriate planning sub-tree as
∼
b[Xk+l|k] andBk+l|k respectively.

In case the distance of the closest belief (denoted by Dist) is larger than some critical value εc, i.e.
the closest prediction from the precursory planning session is too far off, iX-BSP would presumably
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have no advantage over the standard X-BSP so the latter is executed (Alg. 3 line 12). On the other
hand, if Dist is smaller than the critical value εwf, we consider the difference between the beliefs
as insignificant and continue with re-using the precursory planning session without any additional
update (Alg. 3 line 4). We denote the aforementioned as wildfire. When the precursory planning
is close-enough (see Figure 6.3.2), we can appropriately re-use it to save valuable computation time.
While we go further and elaborate on specific methods we used in this work, e.g. determining belief
distance (see Section 6.3) or representative sample (see Section 6.4.2), iX-BSP is indifferent to any
specific method, as long as it serves its intended purpose.

Algorithm 3 iX-BSP: Planning time k+l
Input:

data ▷Calculations used for the precursory planning session
b[Xk+l|k+l] ▷The up-to-date inference posterior for time k + l
useWF, εwf, εc ▷User defined flags & thresholds

1: Dist ,Bk+l|k← SelectClosestBranch(b[Xk+l|k+l], data) ▷ see Section 6.3.1
2: if Dist≤ εc then ▷ belief distance threshold εc
3: if useWF∩ (Dist≤ εwf) then ▷wildfire threshold εwf

4: data←Bk+l|k ▷Reusing the entire selected branch without any update, see Section 6.7
5: else
6: data← IncUpdateBeliefTree(Bk+l|k) ▷ see Section 6.4
7: end if
8: data← perform X-BSP over horizon steps k + L + 1 : k + L + l
9: Solve Eq. 5.11, for each candidate action ▷ see Section 6.5

10: u⋆k+i:k+L|k+i← find best action
11: else
12: u⋆k+i:k+L|k+i← perform X-BSP(b[Xk+l|k+l])
13: end if
14: return u⋆k+i:k+L|k+i, data

The planning sub-tree Bk+l|k is comprised of all future beliefs, i.e. k + l + 1 : k + L, calculated

as part of the planning session from time k, which originate in
∼
b[Xk+l|k]. We update these beliefs

with the information received in inference between time instances k + 1 and k + l, and selectively
re-sample predictedmeasurements (line 6) in an effort tomaintain a representative set of samples for
the nominal distribution. In case one of the aforementionedbeliefs alsomeets thewildfire condition
(see Section 6.7) we consider it, and all of its descendants as already updated. Once the update is
complete, we have a planning horizon of just L − l steps, i.e. to the extent of the horizon overlap,
hence we need to calculate the rest from scratch, i.e. perform X-BSP for the final l steps (line 8).
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We are now in position to update the immediate reward function values and calculate their expected
value in search of the (sub)optimal action sequence (line 10), thus completing the planning for time
k + l.

Since we are re-using samples from different planning sessions at planning time k + l we are re-
quired to compensate for the different measurement likelihood, through proper formulation. In the
sequel we show that our problem falls within the Multiple Importance Sampling problem (see Ap-
pendix D), so we estimate the expected reward values using importance sampling based estimator,
thus completing the planning for time k + l.

Differently fromX-BSPwhich returns only the selected action sequence, iX-BSP is also required
to return more data from the planning process in order to facilitate re-use (line 14).

Variable Description
□t|k Of time t while current time is k

Mt|k Data Association at time t while current time is k

b[Xt|k] belief at time t while current time is k

b−[Xt|k] belief at time t− 1 propagated only with action ut−1|k

Bk|k The entire belief tree from planning at time k
∼
b[Xt|k] The root of the selected branch for re-use in planning at time t

Bt|k The set of all beliefs from planning time k rooted in
∼
b[Xt|k]

Dist The distance between
∼
b[Xt|k] and the corresponding posterior b[Xt|t]

data All available calculations from current and precursory planning session

u⋆k:k+L|k The (sub)optimal action sequence of length L chosen in planning at time k

εc belief distance critical threshold, above it re-use has no computational advantage

εwf wildfire threshold, bellow it distance is considered close-enough for re-use without
any update

useWF a binary flag determining whether or not the wildfire condition is considered

D(.) belief divergence / metric

Table 6.1: Notations for Sections 6.2-6.3
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Figure 6.3.1: X-BSP performs lookahead search on a tree with depth L. Each belief tree node represents a belief. For each node, the
tree branches either for a candidate action or a sampled measurement. The corresponding belief tree for ML-BSP is marked with solid
lines, while the dashed lines represent the parts of X-BSP that relate to sampled measurements. Under iX-BSP, the gray-marked parts of
the tree are being re-used for the succeeding planning session.

6.3 Selecting Beliefs for Re-use

This section covers an integral part of iX-BSP, dealing with how to select which beliefs to re-use,
and from where. At each step along the planning horizon, iX-BSP is required to choose beliefs for
re-use. Our goal is tominimize any required updates, i.e. the beliefs wewould like to re-use should be
as ”close” as possible to the beliefs we would have obtained through standard X-BSP. In iX-BSP,
as well as in X-BSP, the number of beliefs per future time step is derived from the number of sam-
ples per action per time step; in order to re-use previous calculations while avoiding a computational
load, we need to choose which beliefs to consider for re-use. The need to obtain the closest belief
for re-use entails three fairly complicated problems: Where to find it (Section 6.3.1), how to find it
(Section 6.3.2), and how to determine what is considered ”close” in belief space (Section 6.3.3). For
the reader’s convenience all the notations of this section are summarized in Table 6.1.

6.3.1 Selecting the Candidate Set for Re-Use

While every set of previously calculated beliefs can serve as potential candidates for re-use, in this
work we consider previous planning sessions as they are readily available. It is worthmentioning that
the problem of searching a set of candidate beliefs can be computationally expensive, thus poten-
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tially sabotaging the efforts of iX-BSP to relieve the computational load of BSP. In order to avert
from directly dealing with the aforementioned ”search problem” within belief space and maximize
the chances of finding an adequate candidate for re-use, we introduce Assumptions 2-3 that are not
an integral part of iX-BSP. FollowingAssumption 2we assure that the previous planning session has
someoverlapping horizonwith the current planning session, hence increasing the chances of locating
a ”close enough” belief for re-use.

Using Assumption 3 we can prune the full belief-tree from previous planning time k, denoted as
Bk|k, and consider only a subset of it while assuring overlapping of some candidate actions. More

specifically, we prune Bk|k to consider the sub-tree Bk+l|k ⊂ Bk|k, which is rooted in
∼
b[Xk+l|k] such

that
∼
b[Xk+l|k] = argmin

b[Xk+l|k]∈Bk|k

D(b[Xk+l|k], b[Xk+l|k+l]), (6.3)

where D(.) is a metric ( or divergence) quantifying the difference between two beliefs (see Sec-

tion 6.3.3), b[Xk+l|k+l] is the posterior from inference at time k + l, and
∼
b[Xk+l|k] is one of the beliefs

for lookahead step l of planning at time k. This search for the closest belief is performed by Alg. 4 and
discussed in Section 6.3.2. By considering the sub-belief tree of the closest prediction from planning
at time k to the current posterior, we ensure minimal required update along the lookahead steps, i.e.
minimizing the difference between the prediction (6.1)(b) and what eventually happened (6.2)(b).

Without loss of generality, we now make use of Figure 6.3.1 to illustrate the branch selection pro-
cess, i.e. how we choose a candidate set of beliefs given an entire previous planning tree. Figure 6.3.1
illustrates a belief tree of X-BSP at planning time t = 1 for a horizon of L steps, with n candidate
actions and j sampled measurements per step, resulting with (n · j)1 different beliefs for future time
t = 2 and (n · j)L−1 for future timeL. Let us assume action un

1 has been determined as optimal at plan-
ning time t = 1 and has been executed. After attaining newmeasurements for current time t = 2 and
calculating the posterior belief b[X2|2], we performplanning oncemore. Now, under iX-BSP, instead
of calculating everything from scratch we would like to re-use previous calculations; specifically, un-
der Assumption 2 we consider the beliefs calculated at planning time t = 1. Instead of considering

the entire treeB1|1 for re-use, we look for some sub-treeB2|1 ⊂ B1|1 rooted in
∼
b[X2|1] such that

∼
b[X2|1] = argmin

b[X2|1]∈B1|1

D(b[X2|1], b[X2|2]). (6.4)

We start by considering all beliefs {bi[X2|1]}n·ji=1 meeting Assumption 3, i.e. all beliefs marked by the
dark gray area in Figure 6.3.1 which considered the same action sequence. Now, from the remaining

j beliefs, using Alg. 4 (see Section 6.3.2) we denote the closest belief to the posterior b[X2|2] as
∼
b[X2|1].
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Once we determined
∼
b[X2|1], we define the closest branch as consisting of all the beliefs rooted in

∼
b[X2|1], and denote it asB2|1, marked in Figure 6.3.1 by the light gray area. In case there are no beliefs
in the set {bi[X2|1]}n·ji=1 meeting Assumption 3, we will need to search through the entire set for the

closest belief
∼
b[X2|1]. In the following section we describe how the closest belief is located.

6.3.2 Finding the Closest Belief

This section covers the problem of how to locate the closest belief given a set of candidate beliefs, as
required when selecting the closest branch for re-use (Section 6.3.1, Alg. 3 line 1) or when incremen-
tally updating the belief tree under iX-BSP (Alg. 5 line 10). As part of our problem, we have a set
of candidate beliefs for re-use, denoted asBk+l|k, and some posterior b[Xi|k+l] we wish to be close to.
Our goal is to findwithinBk+l|k the closest belief to b[Xi|k+l], where i > k+ l denote some lookahead
step. Locating the closest belief requires quantifying the differences between two beliefs into a scalar
distance. Wedenote the distance function, whether ametric or a divergence, byD(.). Let us consider
some candidate belief b[Xi|k] ∈ Bk+l|k, although referring to the same future time i as b[Xi|k+l], it is
conditioned on different history, and therefore is potentially different. While Section 6.1 discussed
the reasons for such difference between b[Xi|k] and b[Xi|k+l], here we quantify this difference using a
belief distance. Projecting b[Xi|k] into our belief distance space yields a point that suggests howdiffer-
ent is b[Xi|k] from b[Xi|k+l]. After projecting all candidate beliefs from Bk+l|k into the belief distance
space in reference to b[Xi|k+l], the problem of locating the closest belief to b[Xi|k+l] is reduced to a
problem of locating the nearest neighbor.

Algorithm 4ClosestBelief
Input:

Bk+l|k ▷ set of candidate beliefs for re-use from planning at time k, see Section 6.3.1
b[Xi+1|k+l] ▷The belief to check distance to, from planning at time k + l

1: δmin = 0
2: for b[Xi+1|k] ∈ Bk+l|k do
3: δ←D(b[Xi+1|k], b[Xi+1|k+l]) ▷ probability metric/ divergence to determine belief distance
4: if δ ≤ δmin then ▷ keeping track over the shortest distance
5: δmin← δ
6: b′

[Xi+1|k]← b[Xi+1|k]
7: end if
8: end for
9: return δmin, b

′
[Xi+1|k]
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While there are more efficient ways to determine the closest belief, we made use of a simple real-
ization of BeliefDist(.) in Alg. 4. Any other, more efficient realization, that provides with the same
end-result is acceptable, and would benefit the computational load reduction of iX-BSP. Alg. 4 de-
termines the closest belief given a set of beliefsBk+l|k and a target belief b[Xi|k+l], by simply calculating
the distance between the target belief to eachbelief in the setBk+l|k usingD(.), andpicking the closest
one. The minimal distance associated with the closest belief is thus given by

δmin = min
b[Xi|k]∈Bk+l|k

D(b[Xi|k], b[Xi|k+l]), (6.5)

while the distinction whether δmin is acceptable or not, happens outside of Alg. 4 (see Alg. 3 lines 2-3
and Alg. 5 lines 11-12) as discussed next.

6.3.3 What is Close Enough

Choosing a candidate beliefwithminimal distance is not enough, as this candidate belief could still be
very different, and thus require a substantial computational effort in order to update. In order to deal
with this issue, we need to set some criteria over the belief distance. Let us consider a belief metric
space, in-which each point is a unique projection of a candidate belief b[Xi|k+l] denoting the distance
between the aforementioned candidate belief and b[Xi|k+l]. Figure 6.3.2 illustrates such space, where

Figure 6.3.2: Illustration of the relative belief distance space. Each point in this space represents some belief b[Xt|k], where the black
dot denotes b[Xt|k+l] as the origin. All beliefs b[Xt|k] close to the origin up to εwf, i.e. in the green zone, are being re-used without any
update. All beliefs b[Xt|k] close to the origin up to εc but farther than εwf, i.e. in the orange zone, are being re-used with some update. All
beliefs b[Xt|k] that are more than εc away from the origin, i.e. in the red zone, are considered as not close enough to make a re-use worth
while.

the black dot represents the homogeneous projectionD(b[Xi|k+l], b[Xi|k+l]), and the rest of the points
denoteD(b[Xi|k], b[Xi|k+l]) e.g. the three white dots in Figure 6.3.2. We divide distances around the
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homogeneous projection into three areas,
D(b[Xi|k], b[Xi|k+l]) ≤ εwf close enough for re-use ”as is”, see Section 6.7

εwf < D(b[Xi|k], b[Xi|k+l]) ≤ εc close enough for re-use

εc < D(b[Xi|k], b[Xi|k+l]) too far off for re-use

(6.6)

denoted respectively in green orange and red. When wildfire is not enabled, i.e. useWF = false,
the belief metric space is divided into two areas (orange and red), separated by a single parameter
εc. The case where wildfire is enabled, i.e. useWF = true, is covered in Section 6.7. At this point
we leave the procedure of choosing εc and εwf for future work, and consider it as a heuristic. In the
following we do however show analytically (see Section 6.7.3) and empirically (see Section 6.8.2)
the connection between εwf and the objective value.

Eachbeliefmetric (divergence)would resultwith a possibly different projectionontometric space,
hence with probably different values for εc and εwf. As part of our work we considered several alter-
natives for belief distance, a DA based divergence and another based on Jeffreys divergence.

TheDDA distance

Under DDA we start by sorting all candidate beliefs according to data association (DA) differences,
looking for the smallest available difference. For example, the DA differences between Eq. (6.1) and
Eq. (6.2) are given by matching their DA data denoted byM. Such matching would yield three
possible differences: the DA that has been correctly predicted and need not be changed

Mk+1:k+l|k ∩Mk+1:k+l|k+l, (6.7)

the DA that has been wrongfully predicted and need to be removed

Mk+1:k+l|k\Mk+1:k+l|k+l, (6.8)

and the DA that has not been predicted and need to be added

Mk+1:k+l|k+l\Mk+1:k+l|k. (6.9)

In case there is more than a single belief withminimal DA difference, we continue to sort the remain-
ing beliefs according to the difference between values of corresponding predictedmeasurements and
similarly look for theminimal difference. In case there is more than a single belief withminimal mea-
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surement value difference, we select arbitrarily out of the remaining beliefs, and consider the chosen
belief as the closest one. A detailed explanation of the DA matching process can be found in Sec-
tion 4.6.2. It is worth stressing thatDDA is just a divergence and not a metric, as it does not meet the
symmetry and sub-additivity requirements.

TheD√
J distance

The D√
J distance is a variant of the Jeffreys divergence presented by [31] (see Appendix E). This is

a symmetric divergence for general probabilities that also has a special form in the case of Gaussian
beliefs (for full derivation see Appendix E). For two Gaussian beliefs b[Xt|k+l] ∼ N (μp, Σp) and
b[Xt|k] ∼ N (μq, Σq), theD√

J distance between them is given by,

D√
J(b[Xt|k+l], b[Xt|k]) =

1
4

√
(μp − μq)

T
[
Σ−1

q + Σ−1
p

]
(μp − μq) + tr

(
Σ−1

q Σp

)
+ tr

(
Σ−1

p Σq

)
− dp − dq, (6.10)

where dp and dq are the joint state dimension of b[Xt|k+l] and b[Xt|k], respectively.

6.4 Incremental Update of Belief-Tree

In Section 6.3.1 we determined the candidate set Bk+l|k, and using Section 6.3.2 have the ability to
locate for each posterior belief b[Xi|k+l] the closest belief in Bk+l|k. Now, we can focus on one of our
main contributions, incrementally creating a belief tree, through the re-use of previously calculated
beliefs, while accounting for all information differences. To this endwe supplyAlg. 5, taskedwith cre-
ating the belief tree of planning time k+ l through selective re-use of beliefs fromBk+l|k. The process
starts with the posterior b[Xk+l|k+l], and continues with every new belief bs[Xi|k+l] that is added to the
new belief tree up to future time k + L, where s accommodates all different sampled beliefs at future
time i. For the reader’s convenience all the notations of this section are summarized in Table 6.1.

We will now describe a single iteration of Alg. 5, in which we have reached the sth belief (line 2)
at the ith lookahead step (line 1), and already handled all previous steps and beliefs. First, we check
whether the belief bs[Xi|k+l] has been created under the wildfire condition (line 3), i.e. directly taken
from Bk+l|k without any update (see Section 6.7). In case it did, we continue to take its descendants
directly from the appropriate beliefs in Bk+l|k without any update (line 5) and mark them as created
under the wildfire condition (line 6). For the case where the belief bs[Xi|k+l] has not been created
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Algorithm 5 IncUpdateBeliefTree
Input:

Bk+l|k ▷The selected branch, see Section 6.3.1
b[Xk+l|k+l] ▷The posterior from precursory inference

1: for each i ∈ [k + l, k + L− 1] do ▷ each overlapping horizon step
2: for each s ∈ [1, nu(nx ·nz)

i−k−l] do ▷ each belief in the ith horizon step
3: if useWF∩ isWildFire(bs[Xi|k+l]) then
4: r0← (s− 1) · nu · (nx · nz)

5: {br[Xi+1|k+l]}r0+nu·(nx·nz)
r=r0+1 ← all first order children of bs′ [Xi|k] ▷ see Section 6.7

6: mark all {br[Xi+1|k+l]}r0+nu·(nx·nz)
r=r0+1 as wildfire

7: else
8: for each candidate action α ∈ [1, nu] do
9: bs−

α [Xi+1|k+l]← propagate bs[Xi|k+l]with candidate action α
10: dist , bs′−

α [Xi+1|k]←ClosestBelief(Bk+l|k, bs−
α [Xi+1|k+l]) ▷ see Section 6.3.2

11: if dist≤ εc then ▷ re-use condition
12: if useWF∩ (dist≤ εwf) then ▷wildfire condition
13: {br

α[Xi+1|k+l]}nx·nz
r=1 ← all first order children of bs′−

α [Xi+1|k] ▷

see Section 6.7
14: mark {br

α[Xi+1|k+l]}nx·nz
r=1 as wildfire

15: Continue with next candidate action (i.e. jump to line 8)
16: else
17: samples← all samples taken from bs′−

α [Xi+1|k]
18: {repSamples}nxnz

1 , data← IsRepSample(samples, bs−
α [Xi+1|k+l]) ▷

see Section 6.4.2
19: end if
20: else ▷ not computationally effective to re-use, resample all
21: {repSamples}nxnz

1 , data← (nx · nz) fresh samples based on bs−
α [Xi+1|k+l]▷

see Alg. 2
22: end if
23: data←UpdateBelief(dist, {repSamples}nxnz

1 , data) ▷ see Section 6.4.3
24: data← update reward(cost) values for action α ▷ see Section 6.4.4
25: end for
26: end if
27: end for
28: end for
29: return data
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(a)

Re-Used
Newlly Calculated

Candidate for Re-Use

(b)

Figure 6.4.1: The belief update process of iX-BSP presented in a belief tree, where each node represents a belief that branches either
for one of n candidate actions or j sampled measurements. The selected branch for re-use from Figure 6.3.1, denoted by B2|1, is presented
in (a) and as a water mark in (b). The succeeding iX-BSP planning session at time t = 2 is illustrated in (b), where the re-used sampled
measurements and succeeding beliefs are marked in light blue.

under thewildfire conditionwe propagate it with the α candidate action, where α ∈ [1, nu] and nu de-
notes the number of candidate actions per time step (line 9); this propagation yeilds bs−

α [Xi+1|k+l]. We
then consider all propagated beliefs b−[Xi+1|k] ⊂ Bk+l|k, and search for the closest one to bs−

α [Xi+1|k+l]

in the sense of belief distance, as discussed in Section 6.3.2. Once found, we denote the closest prop-
agated belief as bs′−

α [Xi+1|k] (line 10).

In case there is no such belief close enough to make the update worthwhile, i.e. dist> εc, for
this candidate action we continue as if using X-BSP (line 21). In case the distance of the closest
belief meets the wildfire condition εwf, we consider all beliefs b[Xi+1|k] ⊂ Bk+l|k that are rooted
in bs′−[Xi+1|k]. Otherwise we continue and check whether the samples generated using bs′−

α [Xi+1|k]

constitute an adequate representation for P(zi+1|k+l|Hi|k+l, uα
i|k+l), and re-sample if needed (line 18,

see Section 6.4.2). Once we obtain the updated set of samples {repSamples}nx·nz
1 , whether all were

freshly sampled, entirely re-used or somewhere in between, we can acquire the set of posterior beliefs
for look ahead step i + 1 {bα[Xi+1|k+l]}nx·nz

1 (line 23) through an update, as discussed subsequently
(see Section 6.4.3). Once we have all updated beliefs for future time i + 1, we can update the reward
values of eachofwhich (see Section 6.4.4). We repeat the entire process for the newly acquired beliefs
{bα[Xi+1|k+l]}nx·nz

1 , and so forth up to k + L.

Without lossof generality in the supplied formulationofAlg. 5, the candidatebeliefs are considered
only to the extent of the planning horizon overlap, i.e. k + l + 1 : k + L, whereas beliefs for the rest
of the horizon k + L + 1 : k + L + l, are obtained by performing X-BSP (Alg. 3, line 8).
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Variable Description
□t|k Of time t while current time is k

b[Xt|k] belief at time t while current time is k

b−[Xt|k] belief at time t− 1 propagated only with action ut−1|k
∼
b[Xt|k] The root of the selected branch for re-use from planning time k

Bt|k The set of all beliefs from planning time k rooted in
∼
b[Xt|k]

bs[Xt|k+l] The sth sampled belief representing b[Xt|k+l]

bs−
α [Xt+1|k+l] The sampled belief bs[Xt|k+l] propagated with the α candidate action

{br
α[Xt|k+l]}nr=1 A set of n sampled beliefs that are first order children of bs−

α [Xt|k+l] and are
representing b[Xt|k+l]

bs′−
α [Xt+i|k] A propagated belief fromBt|k closest to bs−

α [Xt+i|k+l]

dist The distance between bs′−
α [Xt|k] and bs−

α [Xt|k+l]

{br[Xt|k]}nr=1 A set of n sampled beliefs representing b[Xt|k]

nu number of candidate actions per step

(nx · nz) number of samples for each candidate action

data All available calculations from current and precursory planning session

εc belief distance critical threshold, max distance for re-use computational
advantage

εwf wildfire threshold, max distance to be considered as close-enough for re-use
without any update

useWF a binary flag determining whether or not the wildfire condition is considered

βσ σ acceptance range parameter, for considering measurements as representative

D√
J(p, q) The distance between distributions p and q according to theD√

J distance

DDA(p, q) The divergence between distributions p and q according to the data association
difference

Table 6.1: Notations for Section 6.4

Next, we provide a walk-through example for Alg. 5 (Section 6.4.1)elaborate on belief distance
(Section 6.3.2), and continue with covering key aspects required by Alg. 5: determining whether
samples are representative or not (Section 6.4.2), the process of belief update given the representa-
tive set of samples {repSamples}n1 (Section 6.4.3) and the incremental calculation of the immediate
reward values per sampled belief (Section 6.4.4).
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6.4.1 Alg. 5 Walk-through Example

We will now demonstrate Alg. 5 using Figure 6.4.1. Figure 6.4.1a illustrates the selected branch for
re-use from a precursory planning session at time t = 1, i.e. B2|1 (see Figure 6.3.1), we have n candi-
date actions each step, and for each candidate action we have j sampledmeasurements. Figure 6.4.1b
illustrates a part of the belief tree at time t = 2, where the top of the tree is the posterior belief of
current time t = 2, i.e. b[X2|2], from which we start the algorithm. Since b[X2|2] is the posterior of
current time t = 2, it was not created under the wildfire condition, so we jump directly to line 8. We
propagate b[X2|2]with each of the n candidate actions starting with u12, and obtain the left most belief
in the second level of the tree, b−[X3|2] (line 9). UsingBeliefDist(.) we obtain the closest belief from
B2|1 to b−[X3|2] as well as their distance dist. For our example the closest belief turns out to be the
one which has been also propagated by the same candidate action, i.e. the left most b−[X3|1] in the
second level ofB2|1. Since the distance suggests re-use is worthwhile but does not meet the wildfire
condition, i.e. εwf < dist≤ εc, we proceed to line 17 in Alg. 5.

We denote the set (of sets) of all j sampled measurements as samples, i.e.

samples← {{z3|1}1, . . . , {z3|1}j}.

Using IsRepSample(.) weobtain a representative set for themeasurement likelihoodP(z3|2|H2|2, u12)
(see Section 6.4.2). As we can see in Figure 6.4.1b, other than {z3|1}1, which has been re-sampled,
all other samples are re-used (denoted by blue arrows). Once we have a representative set of mea-
surements, which in our case all but one are re-used from planning time t = 1, we can update the
appropriate beliefs using UpdateBelief(.) (see Section 6.4.3). The belief resulting from the newly
sampled measurement {z3|2}1 is calculated from scratch by adding the measurement to b−[X3|2] and
performing inference, while the re-used samples allow us to incrementally update the appropriate
beliefs fromB2|1, rather than calculate them from scratch (see Section 6.4.3).

We now have an updated set of beliefs for future time t = 3, that considers the candidate action
u12. For each of the aforementioned beliefs we incrementally calculate the appropriate reward value
(see Section 6.4.4) thus completing the incremental update for candidate action u12. We repeat the
aforementioned for the rest of the candidate actions, thus completing the third level of the belief tree
presented in Figure 6.4.1b. In a similar manner we continue to incrementally calculate the deeper
levels of the belief tree up to future time t = L, thus concluding Alg. 5.
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6.4.2 Representative Sample

This section covers the problem of obtaining a set of measurement samples that are representative of
the measurement likelihood distribution we should have sampled from. The motivation for re-using
previously sampled measurements lies within the desire to refrain from performing inference by re-
using previously calculated beliefs. As explained in Section 6.1, assuming the differences between
(6.1)(b) and(6.2)(b) havebeen resolved (thepredicted factors and their counterparts that alreadyhave
been obtained respectively), the difference between Eq. (6.1) to Eq. (6.2) is limited to the difference
between (6.1)(c) and (6.2)(c). Assuming both use the same action sequence, the difference between
(6.1)(c) and (6.2)(c) is limited to the predicted measurements being considered by each. While the
field of representative sampling is a rich research area on its own, in order to facilitate iX-BSP, we
chose a straightforward approach that can be easily substituted with a more sophisticated one in due
time. Under the sampling paradigm presented in Alg. 2, it is sufficient to determine the representa-
tiveness of a measurement sample based on the state sample χ which should be sampled from the
propagated belief b−[Xi|k+l].

Algorithm 6 IsRepSample
Input:

samples ▷ set of candidate sampled measurements, see Alg 5 line 17
b−[Xi|k+l] ▷The belief from planning time k + l the samples should be representing

1: Given βσ = 1.5 ▷User determined Heuristic, in direct proportion to acceptance
2: stateSamples← the sampled states that created samples ▷ see Alg. 2
3: for each sample∈ stateSamples do
4: if sample⊂±βσ ·σ of b−[Xi|k+l] then ▷The sample falls within±βσ ·σ range
5: {repSamples}n1 ← all measurement samples∈ samples that were crated by sample
6: else ▷The sample falls outside the±βσ ·σ range, hence rejected
7: {repSamples}n1 ← re-sample nz measurements using b−[Xi|k+l] ▷

freshly sampled, see Alg. 2
8: end if
9: end for

10: return {repSamples}n1 , {q(.)}n1 ▷ {q(.)}n1 denote the distributions {repSamples}n1 were
sampled from

Considering the known (stochastic) measurement model, the space of measurement model dis-
tributions is uniquely defined by the set of state samples. So, in order to simplify the selection of
representative measurement samples, we consider only the set of sampled states and assume that a
set of sampled states that are representative of the propagated belief they should have been sampled
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(a) (b)

Figure 6.4.2: Illustration for adequate and inadequate representation of a belief by samples. (a) Illustrates a belief (denoted by an
ellipse) over the propagated joint state at future time k + 3 calculated as part of planning at time k, and the twenty two samples (denoted
by green ”+” signs) taken from it. (b) Illustrates two instantiations of belief over the propagated joint state at future time k + 3 calculated
as part of planning at time k + 1 (denoted in red and blue), overlapping the belief of precursory planning time and its samples. While the
samples of (a) can be considered as adequate representation for the blue belief, they can also be considered as inadequate representation of
the red belief.

from, yields a set of representative sampledmeasurements. Following the aforementioned, the prob-
lemof determining a set of representativemeasurement samples, turns into a problemof determining
a set of state samples representative of some propagated belief.

Let us consider samples and b−[Xi|k+l] denoting respectively the candidate measurements for re-
use and the propagated belief from planning time k + l. Due to the fact that samples were sampled
from distributions different from P(zi+1|k+l|H−

i+1|k+l), we need to assure they constitute an adequate
representation of it. In Alg. 6 we consider the sampled states that led to the acquired sampled mea-
surements (Alg. 6 line 2), and denote it as stateSamples. We consider each sampled state separately,
and determine sample∈ stateSamples as representative if it falls within a predetermined σ range of
the distribution it should have been sampled from. It is worth stressing that in order to facilitate the
use of importance sampling in solving the expected reward value (as discussed later in Section 6.5)
one should have access to the importance sampling distributions denoted by {q(.)}n1 in Alg. 6.

We conclude this section with a toy example for the aforementioned method for determining a
representative set of samples. Figure 6.4.2a illustrates a set of states χ (denoted by green ”+” signs)
used in future time k + 3 under planning time k, where Figure 6.4.2b illustrates how well the same
samples represents two instantiations of the same future time k + 3 in succeeding planning at time
k + 1. By considering some ±βσ · σ range of each instantiation of b−[Xk+3|k+1] we can determine
which of the available samples can be considered as representative. Following Alg. 6, for a value of
βσ = 1, under the blue belief instantiation in Figure 6.4.2b, all but the left most sample will be con-
sidered as representative of b−[Xk+3|k+1] since they are within the covariance ellipsoid, representing
the±1σ range. While under the red belief instantiation only the three samples within the red covari-
ance ellipsoidwill be considered as representativewhere the restwill be re-sampled from the nominal
distribution.
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6.4.3 Belief Update as Part of Immediate Reward Calculations

Once we determined a set of n samples we wish to use (Alg. 5 line 18), whether newly sampled, re-
used or a mixture of both, we can update the appropriate beliefs in order to obtain {br[Xi+1|k+l]}nr=1,
required for calculating the reward function values at the look ahead step i + 1. In this section we go
through the belief update process, which is case sensitive to whether a sample was newly sampled or
re-used. We start with the standard belief update for newly sampled measurements; continue with
recalling the difference between some belief b[Xi+1|k+l], and its counterpart from planning time k,
i.e. b[Xi+1|k]; and conclude with belief update for a re-used measurement.

Newly Sampled Measurement

For a newly sampledmeasurement zi+1|k+l, we follow the standard belief update of incorporating the
measurement factors to the propagated belief b−[Xi+1|k+l] as in

b[Xi+1|k+l] ∝ b−[Xi+1|k+l] ·
∏

j∈Mi+1|k+l

P(zj
i+1|k+l|xi+1, lj), (6.11)

and then performing inference; hence no re-use of calculations from planning time k.

Re-used Measurement

Asmentionedearlier, themotivation for re-using samples is to evert fromthe costly computation time
of performing inference over a belief. Since we already performed inference over beliefs at planning
time k, if we re-use the same samples, we can evert from performing standard belief update (6.11),
and utilize beliefs from planning time k. As discussed in Section 6.1, the factors of two beliefs over
the same future time but different planning sessions could be divided into three groups as illustrated
in Figure 6.1.1: (i) representing shared history which is by definition identical between the two; (ii)
representing potentially different factors since they are predicted for time k and given for time k + l;
(iii) represents future time for both, but each is conditioned over different history subject to (ii), so
also potentially different.

Let us consider the measurement zi+1|k ⊂ {repSamples}n1 , marked for re-use. The belief we are
required to adjust is the one resulted from zi+1|k at planning time k, i.e.

b[Xi+1|k] ∝ P(X0:i+1|H−
i+1|k, zi+1|k). (6.12)

Although b[Xi+1|k] is given to us from precursory planning, it might require an update to match the
new information received up to time k+ l. In contrary to (6.11), we update b[Xi+1|k] using our novel
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approach for inference update - RUB Inference (see Chapter 4), which enables us to incrementally
update the belief solution without performing inference once more. The process of incrementally
updating a belief, as thoroughly described in Section 4.6, can be divided into two general steps: first
updating theDA (Section 4.6.2) and then themeasurement values (Section 4.4). Let us consider the
belief we wish to re-use from planning time k (6.12).

In order to update themeasurement factors of (6.12) tomatch (6.11) we start withmatching their
data association (DA). As described inAlg. 1, thisDAmatchingwill provide uswith the indices of the
factors that their DA should be updated, as well as factors that should be added or removed. The DA
update process is being done over the graphical representation of the belief, i.e. the factor graph and
bayes-tree. Once the DA update is complete we are left with updating the values of all the consistent
DA factors. For the special case of Gaussian beliefs, Section 4.4 provides few methods to efficiently
update the aforementioned. Once the update is complete we obtain n beliefs representing b[Xi+1|k+l],
each corresponding to one of our n samples {repSamples}n1 .

At this point it is worth reiterating the importance of εc (Section 6.3.3), the computational effort
of updating a candidate belief is with direct correlation to the distance between the beliefs.

6.4.4 Re-using / Calculating Immediate Reward values

As part of solving the planning problem (5.5) we need to get the objective value for various action
sequences. The objective value for some action sequence (5.6) is given by the sum of expected re-
wards along the planning horizon. The expected reward value is a weighted average of immediate
rewards over future belief realizations (5.14). This section deals with the calculation of those imme-
diate rewards. Since in the general case those immediate rewards are functions of belief and action, we
need to perform inference over the beliefs before we can obtain the immediate reward values. Once
we have a set of beliefs representing the possible futures of executing some action ui at future time
i + 1 (Alg. 5 line 23), we can calculate the immediate rewards resulting from each such belief (Alg. 5
line 24).

Given a reward function for the i+ 1 lookahead step ri+1(b, u), a posterior future belief bs[Xi+1|k+l],
and the corresponding action ui|k+l, the immediate reward rsi+1|k+l is given by

rsi+1|k+l = ri+1
(
bs[Xi+1|k+l], ui|k+l

)
. (6.13)

In this work, depending on the origin of bs[Xi+1|k+l], the immediate reward value is either calculated
according to Eq. (6.13), i.e. from scratch, or being taken directly from a precursory planning session.

Under iX-BSP, any future belief is obtained by one of three ways: calculated from scratch us-
ing freshly sampled measurements (6.11); through updating a previously calculated belief with the
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appropriate information; or by one of our main contributions in this work, completely re-using a
previously calculated belief without any update (denoted as wildfire, Section 6.7). In this work, for
the first two cases, the immediate reward value rsi+1|k+l is obtained through simply solving Eq. (6.13),
where for the third case the reward value rsi+1|k+l is not calculated, but approximated by considering a
previously calculated immediate reward value.

Between calculating the immediate reward directly from Eq. (6.13), and approximating it without
any calculation based on wildfire (see Section 6.7) there is the middle ground, not used in this work
and left for future work, incrementally updating a previously calculated reward value.

6.5 Incremental Expectationwith Importance Sampling

This section describes one of our main contributions, incorporating Multiple Importance Sampling
(MIS) into the objective estimator in order to account for selective re-use of previously calculated
future beliefs. For the reader’s convenience all the notations of this section are summarized in Ta-
ble 6.1. Once we obtain immediate reward values for candidate actions along the planning horizon
(Alg. 3, lines 6-8), we use them to estimate (5.17). However, because we are selectively re-using
samples from precursory planning sessions, we estimate (5.17) using samples not necessarily taken
from P(zk+l+1:i|k+l|H−

k+l|k+l, uk+l:i−1|k+l), thus the formulation should be adjusted accordingly. In the
following, we recall the standard general formulation for the objective function, we consider an as-
sumption simplifying the objective weighting scheme, we then relax this simplifying assumption and
characterize our problem under the MIS problem and formulate it accordingly, and finally using a
simple example we demonstrate objective calculation under iX-BSP.

First let us recall the standard formulation for Eq. (5.17), for sampling (nx · nz)measurements per
candidate step following Alg. 2,

J(u′) =
k+l+L∑

i=k+l+1

ηk+l+1

∑
{zk+l+1|k+l}

ωn
k+l+1

. . .

ηi

∑
{zi|k+l}

ωn
i · ri

(
bn[Xi|k+l], ui−1|k+l

) . . .

 , (6.14)

where ωn
i denotes the weight of the nth measurement sample for future time i, ηi denotes the normal-

izer of theweights at time i such that η−1
i =

∑nx·nz
n=1 ωn

i , and bn[Xi|k+l] is the belief considering a specific
set of samples up to future time i, i.e.

bn[Xi|k+l]
.
= P(Xi|Hk+l|k+l, uk+l:i−1|k+l, {zk+l+1|k+l}, . . . , {zi|k+l}). (6.15)

In iX-BSP we are potentially forcing samples from previous planning sessions; this type of prob-
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lems that involve expressing one distribution using samples taken from another is referred to as im-
portance sampling (see Appendix D). It is worth stressing that unlike [50] which uses importance
sampling to sample sets of future states actions and measurements, we make use of importance sam-
pling to incorporate re-used beliefs within the objective estimation.

Let us temporarily consider an assumption that would simplify the weighting scheme required for
iX-BSP under importance sampling. Assume we are at planning time k + l, considering planning
session at time k for re-use under iX-BSP. At each lookahead step i ∈ [k+ l+ 1 : k+L]we conclude
that all candidate measurements from planning at time k form a representative set ofP(zi|k+l|H−

i|k+l),
so we decide to re-use them all. Moreover, all of these samples from lookahead step i at planning time
k were sampled from the same distribution denoted as qi|k(.), whether they were all freshly sampled
at planning time k or have been entirely re-used themselves from some past time in-which they were
freshly sampled. Under this scenario, we have a set of representativemeasurements, all sampled from
the same distribution that is not the nominal one, thus Eq. (6.14) can be written as

J(u′) ∼
k+l+L∑

i=k+l+1

 1
ni

ni∑
g=1

ωi(z
g
k+l+1:i) · ri

(
bg[Xi|k+l], u′i−1|k+l

) , (6.16)

where ni denotes the number of samples used in the i−k− l lookahead step, and theweights are given
by a simple probability ratio, which under importance sampling is usually referred to as the likelihood
ratio (see Appendix D),

ωi(z
g
k+l+1:i) =

P(zg
k+l+1:i|Hk+l|k+l, uk+l:i−1|k+l)

qi(z
g
k+l+1:i)

, (6.17)

where P(.) denotes the measurement likelihood we should have sampled the measurements from,
and qi(.) denotes the probability distribution we actually sampled from. For example, assuming we
re-used measurements from planning at time k, the likelihood ratio will be given by

ωi(z
g
k+l+1:i) =

P(zg
k+l+1:i|Hk+l|k+l, uk+l:i−1|k+l)

P(zg
k+l+1:i|Hk+l|k, uk+l:i−1|k)

. (6.18)

While this formulation under the simplified assumption allows one to easily re-use previous plan-
ning sessions, it is onlyunder an ”all ornothing” approach,which cripples the full potential of iX-BSP
for selective re-use of previous planning sessions. Our problem as part of iX-BSP is more specific:
at each look-ahead step we can potentially force samples from M different measurement likelihood
distributions (e.g. Section 6.5.1), which none of them is necessarily the nominal one. The possible
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number of distributions from which measurements are being sampled in every look-ahead step i is
bounded by

1 ≤ M ≤ ni. (6.19)

The lower bound in (6.19)would occur eitherwhen there are no re-used samples, orwhen all samples
are re-used and were originally sampled from the same distribution e.g. from a specific measurement
likelihood in a previous planning session, as in (6.18). The upper bound in (6.19) would occur when
nm = 1 ∀m i.e. each sample has been obtained using a different distribution, e.g. from m different
measurement likelihoods, potentially, from different planning sessions.

This problem falls within the multiple importance sampling problem (see Appendix D), and as
such we can reformulate the estimator for (5.17) accordingly

J(u′)∼
k+l+L∑

i=k+l+1

 Mi∑
m=1

1
nm

nm∑
g=1

ω̃m(z
m,g
k+l+1:i) ·

P(zm,g
k+l+1:i|Hk+l|k+l, uk+l:i−1|k+l)

qm(z
m,g
k+l+1:i)

· ri
(
bm,g[Xi|k+l], u′i−1|k+l

) ,

(6.20)
where i denotes the look-ahead step,Mi is the number of distributions fromwhichmeasurements are
being sampled, nm is the number ofmeasurements sampled from themth distribution, qm(.) is themth

distribution that samples were taken from, and zm,g
k+l+1:i are the gth set of future measurements at time

instances k + l + 1 : i, sampled from the mth distribution. The mth weight is denoted by ω̃m where∑
ω̃m = 1, and ω̃m > 0 ∀m. The estimator (6.20) is unbiased under the assumption that qm(.) > 0

whenever ω̃m() · P(z|H) · ri(.) ̸= 0. When using previous planning sessions as candidates for re-use
under iX-BSP, qm(.) corresponds to a measurement likelihood of those previous planning sessions
(e.g. Section 6.5.1).

In thisworkwemadeuseof theunbiasednearly optimal estimator for (5.17), basedon themultiple
importance sampling problem with the balance heuristic (see Appendix D)

J(u′) ∼
k+l+L∑

i=k+l+1

 1
ni

Mi∑
m=1

nm∑
g=1

ωi(z
m,g
k+l+1:i) · ri

(
bm,g[Xi|k+l], u′i−1|k+l

) , (6.21)

where i denotes the look-ahead step, ni are the number of samples considered, Mi is the number of
distributions fromwhich measurements are being sampled, nm is the number of measurements sam-
pled from the mth distribution, and following the balance heuristic ωi(zm,g) is the likelihood ratio of
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Variable Description
□t|k Of time t while current time is k

b[Xt|k] belief at time t while current time is k

bn[Xt|k+l] The nth sampled belief representing b[Xt|k+l]

ωn
i the weight corresponding to the nth measurement sample for lookahead step i

qi(z
g
t:i) importance sampling distribution at lookahead step i, from which zg

t:i were
sampled

P(z□t:i |H, u) the nominal distribution at lookahead steps t : i

ni the number of samples considered at lookahead step i

Mi number of distributions at look ahead step i from which measurements are
being sampled

nm the number of measurements sampled from the mth distribution at look ahead
step i

ωi(z
g
t:i) private case of ωi(z

m,g
t:i )where m = 1

ωi(z
m,g
t:i ) Balance Heuristic likelihood ratio at lookahead step i corresponding to zm,g

t:i

zm,g
t:i the gth set of future measurements at time instances t : i sampled from the mth

distribution

bm,g[Xt|k+l] the sampled belief representing bm,g[Xt|k+l]which consider the measurements
zm,g
k+l+1:t

qm() the mth marginal importance sampling distribution at lookahead step i,
m ∈ [1,Mi]

b−[Xt|k] belief at time t− 1 propagated only with action ut−1|k
∼
b[Xt|k] The root of the selected branch for re-use from planning time k

Bt|k The set of all beliefs from planning time k rooted in
∼
b[Xt|k]

{b[Xt|k]}j1 j sampled beliefs representing b[Xt|k]

{ri(b[Xt|k], u)}j1 j immediate rewards of lookahead step i

pi() the marginal nominal distribution at lookahead step i

p̃i() the nominal distribution at lookahead step i

q̃m() the mth importance sampling distribution at lookahead step i, m ∈ [1,Mi]

D(.) belief divergence / metric

Table 6.1: Notations for Section 6.5
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the gth sample from the mth distribution given by

ωi(z
m,g
k+l+1:i) =

P(zm,g
k+l+1:i|Hk+l|k+l, uk+l:i−1|k+l)

ΣMi
m̃=1

nm̃
ni
qm̃(z

m,g
k+l+1:i)

, (6.22)

where zm,g
k+l+1:i are the gth set of future measurements at time instances [k + l + 1 : i], sampled from

the mth distribution, and qm̃(.) is the m̃th importance sampling distribution.

The balance heuristic is considered as nearly optimal in the following sense:

Lemma 1. Let nm ≥ 1 be positive integers for m = 1, ...,Mi. Let ω̃1, ..., ω̃Mi be a partition of unity and
let ωBH be the balance heuristic. Let J̃ω̃m and J̃ωBH be the estimates of J under ω̃m and ωBH respectively. Then

Var(̃J ˜ωBH) ≤ Var(̃Jω̃m) +

(
1

minm nm
− 1∑

m nm

)
J2 (6.23)

Proof. This is Theorem 1. of [74].

When all samples being considered to estimate (5.17) are sampled from their nominal distribu-
tions, (6.21) is reduced back to Eq. (5.15), with all the weights degenerating to ones; for such a case,
Mi = 1∀i, andq1(.) = P(zk+l+1:i|Hk+l|k+l, uk+l:i−1|k+l), thusωi = 1∀i. When for each lookahead step,
all samples share the same distribution that is not the nominal one, i.e. Mi = 1 ∀i, and p(.) ̸= q(.),
thus Eq. (6.21) is reduced back to Eq. (6.16).

6.5.1 iX-BSP Walk-through Example

To better understand the objective value calculation under iX-BSP, let us perform iX-BSP over a
simple example. Assume we have access to all calculations from planning time k, in-which we per-
formed X-BSP (or iX-BSP) for a horizon of three steps, and with nx = 2 and nz = 1. Figure 6.5.1a
illustrates a specific action sequence, u1 → u2 → u1, considered as part of planning at time k. Let
us assume that the optimal action decided upon as part of planning at time k, and was later executed
was u1. We are currently at time k + 1, after performing inference using the measurements we re-
ceived as a result of executing u1. We perform planning using iX-BSP with the same horizon length
and number of samples per action, for several action sequences, one of which is the action sequence
u2 → u1 → u2, as illustrated in Figure 6.5.1c.

FollowingAlg. 3 line 1, out of the two available beliefs fromplanning time k shown inFigure 6.5.1a,
{b[Xk+1|k]}21 , the left one is determined as closer to b[Xk+1|k+1], so we consider all its descendants as
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Figure 6.5.1: Illustration of two consecutive planning sessions, each with horizon of three steps, and two sampled measurements per
action. Beliefs are denoted by solid ellipses, propagated beliefs by dotted ellipses, and beliefs that have been re-used are denoted in blue.
(a) Planning over the action sequence u1 → u2 → u1 at time k (b)The selected branch for re-use Bk+1|k from planning at time k (c)The
segment of planning at time k + 1 for the action sequence u2 → u1 → u2 that overlaps with (b).

the setBk+1|k, as illustrated in Figure 6.5.1b, and define Dist as

Dist ≜ D
(
b[Xk+1|k+1], b[Xk+1|k]

)
, (6.24)

whereD(.) denotes some belief distance. For the sake of this example let us say Dist is determined
as close enough for re-use; we can therefore continuewith re-using the beliefs in the setBk+1|k (Alg. 3
line 6). First we check which of the two available sampled measurements from planning time k con-
stitutes an adequate representation forP(zk+2|Hk+1|k+1, u2). Oneway to do so, is followingAlg. 6 and
checking whether the two available state samples from planning time k constitute an adequate repre-
sentation for b−[Xk+2|k+1]; since they are, we consider allmeasurements associated to themas a repre-
sentative set of P(zk+2|Hk+1|k+1, u2). Our representative set of measurement samples for look ahead
stepk+2nowholds two re-usedmeasurements, soweupdate their correspondingbeliefs{b[Xk+2|k]}21
into {b[Xk+2|k+1]}21 (Alg. 5 line 23), the updated beliefs are denoted in blue in Figure 6.5.1c. After up-
dating the beliefs we can calculate/ update the immediate rewards(costs) associated with them, see
Section 6.4.4, once obtained we can proceed to the next future time step.

For the next look ahead step, we propagate {b[Xk+2|k+1]}21 with action u1 to obtain {b−[Xk+3|k+1]}21
(Alg. 5 line 9), and checkwhether the four availablemeasurement samples fromplanning time k con-
stitute an adequate representation for P(zk+3|Hk+2|k+1, u1) (Alg. 5 line 18); following Alg. 6 we find
only three of themare, sowemark the associatedbeliefs for re-use, and sample the forthmeasurement
from the original distributionP(zk+3|Hk+2|k+1, u1). We then update the beliefs wemarked for re-use,
{b[Xk+3|k]}31 into {b[Xk+3|k+1]}31 (denoted by the blue colored beliefs at k+ 3|k+ 1 in Figure 6.5.1c),
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and b−[Xk+3|k+1] into b4[Xk+3|k+1] (denoted by the black colored belief at k+ 3|k+ 1 in Figure 6.5.1c)
using the newly sampledmeasurement (Alg. 5 line 23). After obtaining the beliefs for look ahead step
k + 3, whether through updating a re-used belief or calculation from scratch, we calculate/ update
the immediate rewards(costs) of each. Since we do not have candidate beliefs to be re-used for the
next time step, the last step of the horizon k + 4|k + 1 is calculated using X-BSP (Alg. 3 line 8).

At this point we have all the immediate rewards for each of the predicted beliefs along the action
sequence u2 → u1 → u2, so we can calculate the expected reward value for this action sequence
for planning at time k + 1. For the look ahead step k + 2 of planning session at time k + 1, i.e.
k+2|k+1, wehave two rewardvalues,{rk+2|k+1(b[Xk+2|k+1], u2)}21 , each calculated for adifferent belief
b[Xk+2|k+1] considering a different sample zk+2|k. Calculating the expected reward value for future
time step k+ 2|k+ 1would mean in this case, using measurements sampled fromP(zk+2|Hk+1|k, u2)
rather then fromP(zk+2|Hk+1|k+1, u2). The use ofMultiple Importance Sampling (MIS) enables us to
calculate expectation while sampling from a mixture of probabilities, where the balance heuristic is
used to calculate theweight functions. Using the formulation ofMIS alongwith the balance heuristic
presented inEq. (6.21), we canwrite down the estimation for the expected reward value of look ahead
step k + 2|k + 1,

E
[
rk+2|k+1(.)

]
∼ 1

2
p1(z1,1k+2|k)
2
2q1(z

1,1
k+2|k)

· r1k+2|k+1(.) +
1
2

p1(z2,1k+2|k)
2
2q1(z

2,1
k+2|k)

· r2k+2|k+1(.), (6.25)

where p1(.)
.
= P(zk+2|Hk+1|k+1, u2) and q1(.)

.
= P(zk+2|Hk+1|k, u2). In the same manner, following

(6.21), we can also write down the estimation for the expected reward value at look ahead step k+ 3
of planning at time k + 1, i.e. k + 3|k + 1,

E
[
rk+3|k+1(.)

]
∼ 1
4

p̃2(z1,1k+2:k+3|k)
3
4 q̃2(z

1,1
k+2:k+3|k) +

1
4 p̃2(z

1,1
k+2:k+3|k)

r1k+3|k+1(.)

+
1
4

p̃2(z2,1k+2:k+3|k)
3
4 q̃2(z

2,1
k+2:k+3|k) +

1
4 p̃2(z

2,1
k+2:k+3|k)

r2k+3|k+1(.)

+
1
4

p̃2(z3,1k+2:k+3|k)
3
4 q̃2(z

3,1
k+2:k+3|k)+

1
4 p̃2(z

3,1
k+2:k+3|k)

r3k+3|k+1(.)

+
1
4

p̃2(z4,1k+2:k+3|k+1)
3
4 q̃2(z

4,1
k+2:k+3|k+1) +

1
4 p̃2(z

4,1
k+2:+3|k+1)

r4k+3|k+1(.), (6.26)

where p̃2(.)
.
= P(zk+2:k+3|Hk+1|k+1, u2, u1) and q̃2(.)

.
= P(zk+2:k+3|Hk+1|k, u2, u1). When consider-

ing (5.9), we can re-write the measurement likelihood from (6.26) into a product of measurement
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likelihoods per look ahead step, e.g. p̃2(z1k+2:k+3|k) = p1(z1k+2|k)p2(z
1
k+3|k),

E
[
rk+3|k+1(.)

]
∼ 1
4

p1(z1,1k+2|k)p2(z
1,1
k+3|k)

3
4q1(z

1,1
k+2|k)q2(z

1,1
k+3|k) +

1
4p1(z

1,1
k+2|k)p2(z

1,1
k+3|k)

r1k+3|k+1(.)

+
1
4

p1(z1,1k+2|k)p2(z
2,1
k+3|k)

3
4q1(z

1,1
k+2|k)q2(z

2,1
k+3|k) +

1
4p1(z

1,1
k+2|k)p2(z

2,1
k+3|k)

r2k+3|k+1(.)

+
1
4

p1(z2,1k+2|k)p2(z
3,1
k+3|k)

3
4q1(z

2,1
k+2|k)q2(z

3,1
k+3|k) +

1
4p1(z

2,1
k+2|k)p2(z

3,1
k+3|k)

r3k+3|k+1(.)

+
1
4

p1(z2,1k+2|k)p2(z
4,1
k+3|k)

3
4q1(z

2,1
k+2|k)q2(z

4,1
k+3|k) +

1
4p1(z

2,1
k+2|k)p2(z

4,1
k+3|k)

r4k+3|k+1(.), (6.27)

where p1(.) need not be calculated at look ahead step k + 3, since it is already given from (6.25).

6.6 Results - iX-BSP

In order to examine the effect of calculation re-use under the iX-BSP paradigm, we compare the
runtime of iX-BSP and X-BSP using Active full SLAM as a test-bed under Model Predictive Con-
trol (MPC) framework. To better understand the differences between X-BSP and iX-BSP, let us
consider them inside aplan-act-infer system. Figure 6.6.1a illustrates thehigh level algorithm forplan-
act-infer using X-BSP, marking the section of the algorithm which is being timed for comparison.
Figure 6.6.1b illustrates the high level algorithm for plan-act-infer using iX-BSP, marking the section
of the algorithm which is timed for comparison. As can easily be seen in Figure 6.6.1 all differences
between X-BSP and iX-BSP are confined within the planning block, hence the computation time
of the planning process is adequate for fair comparison. It is important to mention that no offline
calculations whatsoever, are involved in any of the comparisons. For simplicity all results consider
knownmotion and observationmodels with zero mean Gaussian noise as well as motion primitives.
Both X-BSP and iX-BSP consider a planning horizon of 3 steps, 3 candidate actions (forward, left
and right), with all the possible permutations between them - hence 27 candidate action sequences,
nx = 5 nz = 1, 6 DOF robot pose, 3 DOF landmarks and a joint state comprised of both robot poses
and landmarks. In the following we provide a statistical comparison between X-BSP and iX-BSP
(Section 6.6.1) under a simplifying assumption that all previously sampled measurements can be
re-used in current planning time, and a statistical comparison between X-BSP and iX-BSP with
selective re-sampling (Section 6.6.2).
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Figure 6.6.1: High level algorithm for iX-BSP presented in a block diagram: (a) presents a standard plan-act-infer framework with
Bayesian inference and X-BSP; (b) presents our novel approach for incremental expectation BSP - iX-BSP. Instead of calculating plan-
ning from scratch we propose to utilize the precursory planning session.

6.6.1 Re-Using the Precursory Planning Session

In this section we examine iX-BSP with the DDA divergence, without wildfire and under the sim-
plifying assumption that previously sampled measurements always constitute an adequate represen-
tation of the measurement likelihood, i.e. once the closest belief is selected usingDDA, all associated
previously sampled measurements are re-used (see parameters in Table 6.1).

Moreover we continue the pointmade in Section 5.5 and runML-BSP alongside for comparison.

To that endwe compare ML-BSP, X-BSP and iX-BSP in the sense of planning-session compu-
tation time and the posterior estimation error upon reaching the goal. For comparison we perform
100 rollouts (entire mission run), each with a different sampled ground-truth for the prior state. For
each rollout, we time the planning sessions of all threemethods. Code implemented inMATALB us-
ing iSAM2 efficient methodologies, and executed on a MacBookPro 2017, with 2.9GHz Intel Core
i7 processor and 16GB of RAM. Figure 6.6.2a presents the scenario on which all rollouts were per-
formed. Considering the same world and same landmarks as in Section 5.5. A robot equipped with
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Prior belief standard deviation
[
1o · I3x3 0

0 5[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
3[px] 0
0 3[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]
useWF false
εc 250
βσ ∞
nu 3
nx 5
nz 1
action primitives left, right and forward with

1[m] translation and±90o rotations
D DDA

Table 6.1: Parameters for Section 6.6.1 following Alg. 3
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Figure 6.6.2: (a) Testing scenario, landmarks denoted by green ”+”, prior state and uncertainty in solid purple, ML-BSP denoted
by red, X-BSP and iX-BSP denoted by black. (b) and (c) are Box plots of 100 rollouts for planning session timing (b) and posterior
estimation error (c) upon reaching the goal.

a stereo camera, is required to reach the goal whilst not crossing a covariance threshold, i.e. cost con-
sisting of distance to goal and a covariance penalty above a certain value. Figure 6.6.2a shows one of
the 100 rollouts that were calculated, in which the estimated trajectory by each method is denoted
by a solid line, the ground truth by a dashed line and the posterior covariance by a dashed ellipse.
In Figure 6.6.2a both X-BSP and iX-BSP, in black, chose the same optimal actions along the mis-
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sion, while ML-BSP, in red, chose differently. We can also see the effect of this difference over each
method’s covariance, X-BSP and iX-BSP action choice led to a smaller covariance along the entire
path.

Figure 6.6.2b presents the statistical data of the planning session running time. Since in this ex-
ample we follow an MPC framework, the last step of each horizon is required to be calculated from
scratch. Since doing so is identical to the course of action in X-BSP, we present the computation
time of the entire horizon, excluding the last horizon step. As expected, for average timing as well as
for each separate rollout, both ML-BSP and iX-BSP timings are lower than that of X-BSP. By re-
using previous planning session, instead of calculating it from scratch we save valuable computation
time, theoretically without effecting the planning solution. We examine the effect on the planning
solution in Figure 6.6.2c, by comparing the posterior estimation error upon reaching the goal. As
expected, the statistical results of 100 rollouts presented in Figure 6.6.2c, shows that X-BSP is sta-
tistically superior to ML-BSP: in 63% of the rollouts it has a smaller estimation error while in 10%
they are equal. Importantly, we can also see that iX-BSP is statistically similar to X-BSP, with 41%
of the rollouts with smaller estimation error and 15% equal. We note that relaxing the simplifying
assumption that all samples are adequately representative, would result with an even better match
between X-BSP and iX-BSP.

6.6.2 iX-BSP

In this section we examine iX-BSP with theD√
J distance, without wildfire and without the simpli-

fying assumptions used in Section 6.6.1 (see parameters in Table 6.2).
We compare iX-BSP and X-BSP in the sense of planning-session computation time, the poste-

rior estimation error upon reaching the goal, and the covariance norm upon reaching the goal. Code
implemented in MATLAB using iSAM2 efficient methodologies and executed on a Linux machine,
with Xeon E3-1241v3 3.5GHz processor with 64GB of memory. For comparison we perform 20
rollouts (entire mission run), each with a different sampled ground-truth for the prior state, on 10
different, randomly generated, maps presented in Figure 6.6.3a. Each map, contains two goals and
between 2 to 150 landmarks. The goals and landmarks location as well as the number of landmarks
are all randomly generated for each map. For each of the 200 rollouts, we clock the planning session
computation timeofbothmethods for comparison. Across all randomizedmaps, the robot, equipped
with a stereo camera, has the same mission - reaching each one of the goals whilst maximizing infor-
mation gain and minimizing distance to goal using the reward function

ri() = α · 1
2
ln [(2πe)n · det(Λi)] + (1− α) · (D2Gi−1 − D2Gi), (6.28)
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Prior belief standard deviation
[
1o · I3x3 0

0 5[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
3[px] 0
0 3[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]
useWF false
εc 250
βσ 1.5
nu 3
nx 5
nz 1
action primitives left, right and forward with

1[m] translation and±90o rotations
D D√

J

Table 6.2: Parameters for Section 6.6.2 following Alg. 3

where α ∈ [0, 1] is a weighting parameter, n represents the dimension of the robot’s pose, Λi repre-
sents the focused information matrix at time i, D2Gi represents distance-to-goal at time i.

Figure 6.6.3b presents a box-plot for the timing data of all 200 rollouts, each with 6 outliers, where
the computation time advantage in favor of iX-BSP is easily noticed. The significant reduction in
computation time is originated in the fact that iX-BSP performs inference update in amore efficient
way, computation wise, compared to X-BSP. By forcing previously sampled measurements as part
of the objective estimation, iX-BSP is able to utilize previously solved beliefs from a precursory
planning session, and efficiently update them, instead of performing inference from scratch as done
in X-BSP.

Since we claim to provide a more efficient paradigm to the general problem of X-BSP, we also
verify how iX-BSP favors in estimation results. Figure 6.6.3c presents a box plot of the estimation
error upon reaching the goal for each of the methods. The estimation error was calculated using the
normalized distance between the last pose estimation and the last pose ground truth value, i.e.

Estimation err =∥ ∧xfinal − xgt
final ∥ . (6.29)

As canbe seen inFigure6.6.3cbothmethods average aroundanestimationerrorof 2[m], whileX-BSP
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Figure 6.6.3: Statistical comparison between X-BSP and iX-BSP:(a) 10 randomly generated maps, used for the statistical compar-
ison. Each with 2 numbered goals denoted by blue dots, and between 2 to 150 landmarks denoted by green crosses. (b) (c) and (d) Box
plots of 20 rollouts for planning session timing (b), posterior estimation error upon reaching the goal (c) and the covariance norm upon
reaching the goal.

is with 5 outliers and iX-BSP is with 9 outliers. In 49.5% of the rollouts, iX-BSP provided with a
better estimation error than X-BSP. The large variance that can be seen in Figure 6.6.3c is probably
the result of using a small number of samples for estimating the objective. Nonetheless the empiric
estimation variance of both methods can be considered as statistically identical for all practical pur-
poses. Of course a more rigorous examination in required, by analytically comparing the estimation
variance, we leave this for futurework. We push further and compare the covariance normof the final
pose. As can be seen in Figure 6.6.3d, they average around 3.4[m] for iX-BSP and 3.8[m] for X-BSP,
with only 2 and 3 outliers respectively, and can be considered as statistically identical for all practical
purposes. As suggested in Section 6.6.1, relaxing the simplifying assumption of adequately represen-
tative samples, in fact resulted with a bettermatch between X-BSP and iX-BSP as can be seen from
comparing Figure 6.6.2c to Figure 6.6.3c.
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6.7 TheWildfire Assumption

One of our main contributions in this chapter is the wildfire condition, which allows one to sacri-
fice statistical accuracy in favor of reduction in computation time by re-using an entire subtree from
a previous planning session without any update. As explained in the opening of Chapter 6, at each
lookahead step instead of calculating the predicted beliefs from scratch, we locate and incrementally
update somepreviously calculatedbeliefswhich are close enough. This belief update ismore efficient,
in terms of computation time (see Chapter 4), than performing inference from scratch over future
measurements, hence the computation time advantage of iX-BSP over X-BSP. The wildfire con-
dition allows to refrain even from updating the belief, thus sacrificing statistical accuracy in favor of
further reduction in computation time of the planning process under iX-BSP.

The wildfire condition is a distance condition between two beliefs, used to check if one is close to
theother up to somepredetermined value εwf. When the condition ismet, the entire subtree rooted in
the considered belief is re-used ”as is” without any additional update. Under our problemof iX-BSP,
we consider previously calculated beliefs from planning at time k for re-use at time k+ l by checking
the information gap between the two planning times for each planning horizon i ∈ [k + l, k + L].

This section covers the wildfire condition, starting with the intuition behind it and its working
principle (Section 6.7.1), how it is integrated within iX-BSP (Section 6.7.2), and concluding with
formulating bounds for the objective value error under the use of wildfire (Section 6.7.3). For the
reader’s convenience all the notations of this section are summarized in Table 6.1.

6.7.1 Intuition and Working Principle

Let us assumewe found a belief from a precursory planning session b[Xi+1|k] ∈ Bk+l|k that is identical
to the belief we would like to calculate bs[Xi+1|k+l]; these beliefs would, of course, yield zero distance,

D(b[Xi+1|k], bs[Xi+1|k+l]) = 0. (6.30)

For this case, instead of solving Eq. (6.13) in order to obtain rsi+1|k+l, we can simply use the previously
calculated immediate reward associated with b[Xi+1|k]

rsi+1|k+l = ri+1
(
bs[Xi+1|k+l], ui|k+l

)
≡ ri+1

(
b[Xi+1|k], ui|k

)
, (6.31)

not only we re-use this immediate reward but we can simply re-use the entire sub-tree rooted in
b[Xi+1|k] as is. Under the wildfire condition we consider an approximation to the immediate reward
value rsi+1|k+l, by using the immediate reward value of a previously calculated belief b[Xi+1|k] which is
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εwf close to bs[Xi+1|k+l] in theD(.) sense, i.e.

rsi+1|k+l = ri+1
(
bs[Xi+1|k+l], ui|k+l

)
≊ ri+1

(
b[Xi+1|k], ui|k

)
, (6.32)

where
D(b[Xi+1|k], bs[Xi+1|k+l]) ≤ εwf. (6.33)

As such the immediate reward approximation error under the use of wildfire is given by

errr =| ri+1
(
bs[Xi+1|k+l], ui|k+l

)
− ri+1

(
b[Xi+1|k], ui|k

)
| (6.34)

and as claimed in Theorem 1, it can be bounded by our choice of εwf.

Theorem1 (Bounded reward difference). Let r(b, u) be α−H..older continuous with λα and α ∈ (0, 1].
Let b and b′ denote two beliefs. Then the difference between r(b, u) and r(b′, u) is bounded by

| r(b, u)− r(b′, u) |≤ (4 · ln2)
α
2 · λα · Dα√

J(b, b
′), (6.35)

where

D√
J(b, b′) =

√
1
2
DKL(b||b′) +

1
2
DKL(b′||b), (6.36)

andDKL(.) is the KL divergence.

Proof. See Appendix F.

Based on Theorem 1, for α−H..older continuous reward function with parameters {λα, α}, and the
D√

J distance, we can bound the immediate reward value error caused due to the use of wildfire

errr ≤ (4 · ln2)
α
2 · λα · εαwf. (6.37)

By selecting to re-use a belief with information gap no larger than εwf, we sacrifice some of the statis-
tical accuracy of our estimate in favor of a substantial save in computation time. As explained in Sec-
tion 6.1 and illustrated by Figure 6.1.1, an information gapmight occur due to inaccurate predictions
for lookahead steps k+1 : k+l, unrepresentativemeasurements for lookahead steps k+l+1 : k+L, or
some combination of them. Beliefs from planning at time k that are being re-used under the wildfire
condition, are not being updated to match the information of planning at time k + l, or to have rep-
resentative future measurements for lookahead steps k + l + 1 : k + L. Instead, they are considered
as close enough, thus taken ”as is” and the entire process of belief update (Section 6.4.3) is everted.
The wildfire condition is passed from one belief to all of its descendants along the horizon, e.g. if
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b[Xi|k] has been flagged as meeting the wildfire condition all beliefs originated in b[Xi|k] would also
be flagged asmeeting the wildfire condition without calculating any distances, i.e. the entire subtree
rooted at b[Xi|k] is taken ”as is”, without any re-calculations, as discussed below.

It is worth stressing that the wildfire condition is a non-integral part of iX-BSP, and as such, it is
up to the user to decide wether to sacrifice statistical accuracy in favor of computation time or not.
Moreover it is up to the user to decide how much sacrifice he or she are willing to make by adjusting
the wildfire condition accordingly εwf ∈ [0, εc]. Choosing a wildfire threshold value of εwf = 0,
does not yield any immediate reward error, but can still save computation time in instances where an
identical belief is available from a previous planning session, e.g. BSP under MPC framework with
no new available observations from the environment.

6.7.2 Using wildfire within iX-BSP

Wewill nowmeticulously demonstrate how the wildfire condition is integrated within the iX-BSP
paradigm. There are two different places within iX-BSP in-which thewildfire condition is used, the
first is just after selecting the closest branch for re-use (Alg. 3 line 3), and the second is part of re-using
existing beliefs (Alg. 5 line 12).

Let us assume we have just located the closest branch for re-use from planning at time k (Alg. 3
line 1), where Dist is the distance between our last posterior b[Xk+l|k+l] and its counterpart from
planning time k b̃[Xk+l|k], which is also the root of the selected branch. The value of Dist represents
the information gap between the current posterior belief b[Xk+l|k+l], and the appropriate closest pre-
diction to it from a precursory planning session, b̃[Xk+l|k]. In this specific case, the information gap
represents howwell were the predictions at planning time k for lookahead steps k+1 : k+l, the closer
they were to what actually happened, the smaller the information gap as well as Dist value. If the in-
formation gap is not too big, i.e. Dist ≤ εc (Alg. 3 line 2), we say that the selected candidate branch
is re-use worthy; if the information gap also meets the wildfire condition, i.e. Dist ≤ εwf (Alg. 3
line 3), we say that the information gap is negligible, thus the entire selected branch can be re-used
”as is”. In case of the latter, we re-use the entire closest branchBk+l|k rooted at b̃[Xk+l|k], and continue
to complete the rest of the lookahead steps with X-BSP. Because the beliefs were re-used without
any update, there is no need to re-calculate the appropriate immediate reward values, available from
planning at time k.

Let us now assume that the information gap was not too big, but also did not meet the wildfire
condition, i.e. εwf < Dist ≤ εc, that scenario takes us to the second use of the wildfire condition in
iX-BSP, as part of re-using existing beliefs Alg. 5. Because thewildfire condition is passed fromone
belief to its descendants, we always start by checking if a candidate belief has inherited a wildfire flag
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Variable Description
□t|k Of time t while current time is k

b[Xt|k] belief at time t while current time is k

bs[Xt|k] The sth sampled belief representing b[Xt|k]
∼
b[Xt|k] The root of the selected branch for re-use from planning time k

Bt|k The set of all beliefs from planning time k rooted in
∼
b[Xt|k]

bs−
α [Xt+1|k+l] The sampled belief bs[Xt|k+l] propagated with the α candidate action

bs′−
α [Xt+i|k] A propagated belief fromBt|k closest to bs−

α [Xt+i|k+l]

εc belief distance critical threshold, max distance for re-use computational advantage

εwf wildfire threshold, max distance to be considered as close-enough for re-use
without any update

D(.) belief divergence / metric

D2(.) squaredD(.)
D√

J(p, q) The distance between distributions p and q according to theD√
J distance

λα the reward function α−H..older constant

α the reward function α−H..older exponent

rst|k the immediate reward at lookahead step t, related to bs[Xt|k]

Dist The distance between
∼
b[Xt|k] and the corresponding posterior b[Xt|t]

dist The distance between bs′−
α [Xt|k] and bs−

α [Xt|k+l]

Δ equalsD2(b+1 , b+2 )− D2(b1, b2), where bip denotes bi propagated with motion
and measurements

Table 6.1: Notations for Section 6.7

from its ancestor (Alg. 5 line 5). In case it did, we automatically consider it as meeting the wildfire
condition, and flag its immediate children as such as well. In case a belief is not already flagged as
meeting the wildfire condition we are required to check it. We consider the sth belief at lookahead
step t = i, i.e. bs[Xi|k+l], and propagate it with action α to obtain bs−

α [Xi+1|k+l] (Alg. 5 line 9). We
locate the closest propagated belief to bs−

α [Xi+1|k+l], denote it as bs′−
α [Xi+1|k] and the distance between

them as dist. In this case, the information gap represented by dist, consists of the gap represented by
Dist as well as the possibly different predicted measurements for lookahead steps (k+ l+ 1 : i), e.g.
area (iii) in Figure 6.1.1. Because the propagated belief is used to generate predicted measurements
(see Alg. 2), a small enough value of dist would improve the chances to obtain a representative set
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of samples (as discussed in Section 6.4.2).

If the information gap is not too big, i.e. dist ≤ εc (Alg. 5 line 11), we consider the previously
sampled measurements associated to bs′−

α [Xi+1|k] as candidates for a representative set of measure-
ments (Alg. 5 lines 17-18). If the information gap also meets the wildfire condition, i.e. dist ≤ εwf

, we consider bs−
α [Xi+1|k+l] and bs′−

α [Xi+1|k] as close enough such that all sampledmeasurements asso-
ciated with the latter are representative of the former (Alg. 5 line 13). Consequently, we consider all
beliefs descendant of bs′−

α [Xi+1|k] as meeting the wildfire condition, and as such they are re-used ”as
is” without any update.

6.7.3 Objective Value Bounds under wildfire

Under the use of wildfire, iX-BSP is not necessarily an exact solution of the BSP problem, but a
possible approximation. As such, we would like to get a bound over the resulting objective value. In
the following we show that under the assumption of α−H..older rewards and the use ofD√

J distance
(Appendix B) the immediate reward value underwildfire is bounded (Theorem1) by a randomvari-
able. We continuewith showing that the corresponding objective value is also bounded (Theorem2)
by a (different) random variable, where if the distribution of this random variable is explicitly given,
a corresponding bound can be formulated (Theorem 3). We conclude with showing (Corollary 3)
that for the case of linear Gaussian models, one can explicitly calculate the moments of the afore-
mentioned random variables. For the reader’s convenience Figure 6.7.1 illustrates the workflow of
the supplied proofs as well as the dependency of each segment over the two involved assumptions,
while bolding the final results - Theorem 2, Theorem 3, and Corollary 3. It is worth reiterating that
the purpose of the supplied bounds is to reflect the direct correlation between εwf and the objective
value. More work is required in order to make the bounds convenient enough for online usage, e.g.
dynamically updating the εwf value - we leave this for future work.

Under the assumption of general α−H..older rewards r(b, u), we can get a bound over the differ-
ence between two immediate reward functions of the same action and different beliefs, as stated in
Theorem 1.

Corollary 1 (of Theorem 1). Let r(b, u) be α−H..older continuous with λα and α ∈ (0, 1]. Let b and b′

denote two future beliefs. Then the bounded difference between r(b, u) and r(b′, u) is a random variable.

Proof. Using Theorem 1, the bound is given by

| r(b, u)− r(b′, u) |≤ (4 · ln2)
α
2 · λα · Dα√

J(b, b
′), (6.38)
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Immediate reward bound

Lemma 4:
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bounded by KL
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immediate reward bound 
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Assuming                               rewards

Figure 6.7.1: Illustration of the layout for finding the objective value bounds under wildfire. The bolded rectangles denote three
variations for bounds over the objective value under wildfire. Theorem 2 provides the objective bound when calculated using samples
rather than expectation, whereasTheorem 3 provides the bound when explicitly solving the expectation (assuming the probability is
known). Corollary 3 demonstrate how to explicitly calculate the bound provided inTheorem 3 assuming linear Gaussian models. The
dotted rectangles denote additional non-integral insights, deduced along the way.

TheD√
J distance is a function of future beliefs b and b′. The future beliefs b and b′ are a function of

future measurements. Future measurements are a random variable distributed according to the ap-
propriatemeasurement likelihoodP(z|H−). As a function of randomvariables,D√

J is also a random
variable.

Corollary 2 (of Theorem 1). Let r(b, u) be α−H..older continuous with λα and α ∈ (0, 1]. Let b and b′

denote two beliefs. Let ωi denote a positive weight, such that 0 ≤ ωi ≤ 1 , i ∈ {1, 2}. Then the weighted
difference between r(b, u) and r(b′, u) is given by

(ω1 − ω2)r(b′)− ω1 λ̄αDα√
J(b, b

′) ≤ ω1r(b)− ω2r(b′) ≤ ω1 λ̄αDα√
J(b, b

′) + (ω1 − ω2)r(b′) (6.39)

where
λ̄α ≜ λα (4 · ln2)

α
2 . (6.40)

Proof. see Appendix G.

As the objective function is definedby the sumof expected rewards along the planning horizon, we
are now in aposition toprovide a boundover thedifferencebetween twoobjective values considering
the same action sequence yet different beliefs.

Theorem2. Let r(b,u) be α−H..older continuous with λα and α ∈ (0, 1]. Let Jk+l|k+l and Jk+l|k be objective
values of the same time step k + l, calculated based on information up to time k + l and k respectively. Let
L be a planning horizon such that L ≥ l+ 1. Let ni be the number of samples used to estimate the expected
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reward at lookahead step i. Let ωj
i be non-negative weights such that 0 ≤ ωj

i ≤ 1 and
∑ni

j=1 ω
j
i = 1. Then

the difference (Jk+l|k+l − Jk+l|k) is bounded by

k+L∑
i=k+l+1

ni∑
j=1

ωj
i|k+l

[
rji|k −D

j
i

]
− Jk+l|k ≤ Jk+l|k+l − Jk+l|k ≤

k+L∑
i=k+l+1

ni∑
j=1

ωj
i|k+l

[
rji|k +D

j
i

]
− Jk+l|k.

(6.41)
where

Dj
i = λα (4 · ln2)

α
2 Dα√

J(b
j[Xi|k+l], bj[Xi|k]). (6.42)

Proof. see Appendix H.

In order to calculate the bound, we need to sample a set of future measurements, and any specific
realization of such a set may result with a different bound value altogether. In case the probability
function of the bound in Corollary 1 can be obtained, there is no call for using samples as in The-
orem 2, and the bound over the objective value can be analytically calculated as suggested by The-
orem 3. In other words, while Theorem 2 offers a sample based estimation for the objective error
bound, Theorem 3 offers the un-approximated formulation. For ni → ∞, both theorems will pro-
vide exactly the same bound.

Theorem3. Let r(b,u) be α−H..older continuous with λα and α ∈ (0, 1]. Let Jk+l|k+l and Jk+l|k be objective
values of the same time step k + l, calculated based on information up to time k + l and k respectively. Let
L be a planning horizon such that L ≥ l + 1. Then the difference (Jk+l|k+l − Jk+l|k) is bounded by

φ− ψ ≤ Jk+l|k+l − Jk+l|k ≤ φ + ψ, (6.43)

where

φ ≜
k+L∑

i=k+l+1

E
z∼pk

(ω− 1)ri|k (6.44)

ψ ≜ λα (4 · ln2)
α
2

(L− l)εαwf +
k+L∑

i=k+l+1

 i∑
j=k+l+1

E
z∼pk+l

Δj

 α
2

 , (6.45)
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and

D√
J(b[Xi|k+l], b[Xi|k]) =

√
D2√

J(b[Xi−1|k+l], b[Xi−1|k]) + Δi, (6.46)

εwf = D√
J(b[Xk+l|k+l], b[Xk+l|k]), (6.47)

ω =
P(zk+l+1:k+L|Hk+l|k+l, uk+l:k+L−1)

P(zk+l+1:k+L|Hk+l|k, uk+l:k+L−1)
≜ pk+l

pk
. (6.48)

Proof. see Appendix I.

We can see that in the bound suggested by Theorem 3 even for εwf = 0 we are still left with a
stochastic expression, depending on the measurement likelihood probabilities, whereas for identical
measurement likelihoods, i.e. ω = 1, as well as identical beliefs, we expect zero difference between
the objective values.

Assuming Linear Gaussian Models

As discussed earlier Δ is a function of the future measurements and as such it is a random variable.
In the following we explicitly calculate the first moment of Δ required for calculating the bound of
Theorem 3, under the simplifying assumption of linear Gaussian models

x′ = Fx + J u + w , w ∼ N (0, Σw), (6.49)

z = Hx + v , v ∼ N (0, Σv), (6.50)

whereF andJ are the motion model jacobian in respect to the state and action appropriately,H is
the measurement jacobian, and w and v are zero mean additive gaussian noises.

Lemma2 (IncrementalD√
J distance). Let b1 and b2 be twoGaussian beliefsN (μ1, Σ1) andN (μ2, Σ2),

respectively with state dimension d, and their two (differently) propagated counterparts b1p and b2p with
N (μ1p, Σ1p) N (μ2p, Σ2p) and with state dimension dp. There exist ζ i and Ai such that the propagated
mean and covariance are given by

μip = μi + ζ i , Σip =
(
Σ−1

i + AT
i Ai
)−1

, i ∈ [1, 2]. (6.51)

Then the squaredD√
J distance between the propagated beliefs can be written as

D2√
J

(
b1p, b2p

)
= D2√

J (b1, b2) + Δ, (6.52)
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where

Δ =
1
4
(μ2 − μ1)

T [AT
2 A2 + AT

1 A1
]
(μ2 − μ1) +

1
2
(μ2 − μ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1)

+
1
4
(ζ2 − ζ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1) +
1
4
tr
(
AT
2 A2Σ1p − Σ−1

2 Σ1AT
1 (I + A1Σ1AT

1 )
−1A1Σ1

)
+

1
4
tr
(
AT
1 A1Σ2p − Σ−1

1 Σ2AT
2 (I + A2Σ2AT

2 )
−1A2Σ2

)
− 1

2
(
dp − d

)
. (6.53)

Proof. see Appendix J.

Nextwemake the observation that Eq. (6.53) is a quadratic formof aMultivariateGaussian vector,

Lemma 3 (Incremental D√
J distance as Gaussian Quadratic). Let b1 and b2 be two Gaussian beliefs

N (μ1, Σ1) andN (μ2, Σ2), respectively with state dimension d, and their two propagated counterparts b1p
and b2p with N (μ1p, Σ1p) N (μ2p, Σ2p) and with state dimension dp. There exist ζ i and Ai such that the
propagated mean and covariance are given by,

μip = μi + ζ i , Σip =
(
Σ−1

i + AT
i Ai
)−1

, i ∈ [1, 2]. (6.54)

Then the incrementalD√
J distance Δ ≜ D2√

J

(
b1p, b2p

)
− D2√

J (b1, b2) is a quadratic form of a gaussian
variable.

Proof. see Appendix K.

We are now in position to explicitly calculate the bounds of Theorem 3 under the assumption of
linear Gaussian models,

Corollary 3 (ofTheorem3). Let r(b,u) be α−H..older continuous with λα and α ∈ (0, 1]. Let Jk+l|k+l and
Jk+l|k be objective values of the same time step k+ l, calculated based on information up to time k+ l and k
respectively. Let L be a planning horizon such that L ≥ l + 1. Let the motion and measurement models be
linear with additive Gaussian noise (6.49)-(6.50). Then the bound of (Jk+l|k+l − Jk+l|k) can be explicitly
calculated.

Proof. see Appendix M.

6.8 Results -Wildfire

In this section we examine the effects of wildfire over the iX-BSP paradigm. We compare iX-BSP
with andwithout wildfire (see Section 6.8.1) in the sense of planning-session computation time, the
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Prior belief standard deviation
[
1o · I3x3 0

0 5[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
3[px] 0
0 3[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]
useWF true
εc 250

εwf 2

βσ 1.5

nu 3

nx 5

nz 1

action primitives left, right and forward with
1[m] translation and±90o rotations

D D√
J

Table 6.1: Parameters for Section 6.8.1 following Alg. 3

posterior estimation error upon reaching the goal and the covariance norm upon reaching the goal.
We do so on the exact scenario used in Section 6.6.2, with the single exception of using wildfire. We
also preform a sensitivity analysis for the wildfire threshold value εwf (see Section 6.8.2), in order to
check its effect over the objective value.

6.8.1 wildfire effect on performance

Wecompare iX-BSPwith andwithout theuseofwildfireunder the same scenario as inSection6.6.2
(see parameters in Table 6.1). We use the same code and the same Linuxmachine to perform 20 roll-
outs, each with a different sampled ground-truth for the prior state, on the same 10 maps presented
in Figure 6.6.3a, and with the same reward function (6.28). Figure 6.8.1a presents a box-plot of the
accumulated planning time of all 200 rollouts (20 rollouts over each of the 10maps), where the com-
putation time advantage in favor ofwildfireusage is easily noticed, on averagewildfire saved 90%off
iX-BSP accumulated planning time. While iX-BSP favors in computation time over X-BSP due
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to amore efficient belief update, the significant reduction in computation timewhenusingwildfire is
originated in the fact that for ”close enough” beliefs we refrain from updating the belief altogether. As
previouslymentioned, the use of wildfire with a non-zero threshold is an approximation of iX-BSP
and essentially of X-BSP. As such, we would expect that using wildfire will affect the estimation ac-
curacy and covariance, but as seen in Figures 6.8.1b-6.8.1c, there is no significant toll on estimation.
The reason for this supposedly ”free lunch” hides behind the choice of the wildfire threshold, as the
objective value error due to the use of wildfire is directly related to the choice of wildfire thresh-
old (as seen in Section 6.7.3). For a small enough wildfire threshold the same action is chosen, and
so the impact over the estimation is practically unnoticeable. It is worth stressing out that this will
not always be the case, as wildfire is in-fact an approximation, and one should treat it as such when
choosing to invoke it. Moreoverwildfire can be seen as breaking theMPC framework, whenever the
newly obtained information of time k is ”close enough” to the most relevant prediction of time k we
use the prediction rather than updating it with the new information. We continue with empirically
testing the impact of the wildfire threshold over the objective value in Section 6.8.2.
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Figure 6.8.1: Statistical comparison between iX-BSP with and without wildfire over the same scenario as in Figure 6.6.3 of 10
randomly generated maps each with 2 goals and between 2 to 150 landmarks. (a) (b) and (c) Box plots of 200 rollouts for planning session
timing (a), posterior estimation error upon reaching the goal (b) and the covariance norm upon reaching the goal (c).

6.8.2 wildfire threshold - Sensitivity Analysis

Complementary to the bounds provided in Section 6.7.3, we provide an empiric analysis for the im-
pact the wildfire threshold holds over the objective value, for the non-Liphschitz reward function
(6.28). Code implemented in MATLAB using iSAM2 efficient methodologies and executed on the
same Linux machine. The relevant parameters are summarized in Table 6.2.
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Prior belief standard deviation
[
1o · I3x3 0

0 5[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
3[px] 0
0 3[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]
nu 3

nx 5

nz 1

action primitives left, right and forward with
1[m] translation and±90o rotations

Table 6.2: Parameters for Section 6.8.2 following X-BSP
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Figure 6.8.2: Statistical evaluation of wildfire threshold effect over Objective value. (a)The belief trees used for the statistical evalu-
ation: the shared history up to time t = 5; the planning tree at time t = 5 on the right; the planning tree at time t = 6 on the left. (b)
Box plot of the objective value difference between corresponding action sequences as a function of the forced distance between b[X6|6] and
b[X5

6|5].

In order to perform such analysis, we would like to compare the objective values resulting from
planning over two posterior beliefs, while the D√

J distance between them equals different wildfire
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threshold values. The scenario used for this analysis is illustrated in Figure 6.8.2a. For six different
values of εwf = {0, 0.5, 1, 2, 5, 10}, and each of the 10maps in Figure 6.6.3awe perform20 repetitions
of the following. Starting from the same prior belief b[X0|0], and the same ground-truth, we advance
the robot 5 steps forward and obtain the belief b[X5|5]. Using b[X5|5] we obtain two different beliefs,
the first by propagating b[X5|5] with the primitive action u2 and the resulting sampled measurements
{z6|5}1 - denoted as b1[X6|5], and the second by calculating the posterior b[X6|6] resulting from advanc-
ing the robot using the same primitive action u2 along with some additive noise εu and obtaining the
correspondingmeasurements{z6|6}. We nowhave two beliefs, b1[X6|5] and b[X6|6], both representing
the belief at time t = 6 but with partially different history, the same we would get from performing
iX-BSP under MPC framework. The additive noise εu is chosen such that it would cause the D√

J

distance between b1[X6|5] and b[X6|6] to equal the desired wildfire threshold value - εwf. We then
perform X-BSP over both b1[X6|5] and b[X6|6], with the same parameters, and obtain corresponding
objective values for each of the candidate action sequences. As both planning trees share the same
action sequences we can compare the corresponding objective values per candidate action sequence.
We denote the difference between the aforementioned as theObjective Value difference, which form
the vertical axes in Figure 6.8.2b.

Figure 6.8.2b presents the results of the described analysis, the objective value difference as a func-
tion of theD√

J distance between b1[X6|5] and b[X6|6] denoted as εwf. We can clearly see the variance
of the different objective value differences increasing with the wildfire threshold values, thus reflect-
ing a connection between the objective value difference and the wildfire threshold value over non-
Liphschitz reward. Moreover, for the results in Figure 6.8.2b, the relation between the objective value
difference variance and the wildfire threshold values appears to be somewhat linear, but more work
is needed before anything can be concretely deduced.

6.9 Some Broader Perspective

In this sectionwebriefly discuss themotivation for iX-BSP andprovide somebroader perspective to
possible future usage. Asmentioned earlier, the iX-BSP paradigmdeals with incrementally calculat-
ing the current belief space planning session through the selective re-use of sampled measurements
from previous planning sessions. By re-using sampled measurements, we can re-use the appropri-
ate future beliefs already calculated in said previous planning session and update them with current
information, thus averting from the time consuming standard inference over these future beliefs.

In our work we considered assumptions 1-3, and based on them validated our theoretical work
empirically while comparing the performance of iX-BSP to the extent of the horizon overlap.

As discussed earlier, decision making under uncertainty in high dimensional state space is com-
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putationally intractable, and as such the majority of the plan-act-infer computation time can be as-
cribed to it. While saving computation timewithout effecting the solution accuracy, as well as having
a controlledmechanism to sacrifice accuracy in favor of performance is of great importance, the afore-
mentioned assumptions might paint a picture of a case sensitive formulation in which iX-BSP can
function, is it truly so? Moreover, when considering the entire planning session computation time,
i.e. beyond the extent of the horizon overlap, the advantage of iX-BSP without wildfire, i.e. un-
approximated formulation, over X-BSP might feel somewhat marginal, can it be further improved
without resorting to approximations?

In the followingwe answer those questions startingwith discussing the source of assumptions 1-3.
In its general form, iX-BSP requires a set of candidate beliefs for re-use (Alg. 3 line 1), and a

method of choosing the closest belief from this set (Section 6.3.2). In this work we use a previous
planning session as a candidate set (assumption 1) and use assumptions 2-3 to further prune it into
a smaller candidate set. Removing assumptions 2-3 would entail the use of an efficient method to
store and search the set of candidate beliefs for the closest one. So while access to a candidate set for
re-use (assumption 1), whether it is some previous planning session or a tailor-made set of candidate
beliefs, is an integral part of iX-BSP, the rest of the assumptions can in-fact be omitted.

Secondly, the performance of iX-BSP can be traced back to the validity of the set of belief candi-
dates for re-use. On the one hand, if the set is too far off iX-BSP would perform like X-BSP and on
the other hand if we can always find candidate beliefs that are identical to the current posterior the
computation time of iX-BSP would be reduced to a bare minimum - locating the candidate belief.
Under the ”basic” scenario we chose to address, where the candidate set is of previous planning ses-
sion, the the map is previously unknown, there is no available mechanism for predicting new states
and the use of a simple naivemechanism for predicting existing states, the performance of iX-BSP is
boundedby the number of factors the planning process could properly predict. For example, let us as-
sume that 50%of the factors from last inference are related to new states, itmeans that even in the best
case scenario, where previous planning session correctly predicted all existing states, iX-BSP would
still need to update 50% of posterior factors for each future belief along the planning tree. More-
over, the use of a naive mechanism for predicting existing states can (and in-fact do) cause a ”bad”
prediction with factors related to existing states needed to be updated or even removed, resulting in
increasing the computation time per future belief along the planning tree.

In order to further improve the computational advantage of iX-BSP without introducing any ap-
proximations we would need to address the computational load of locating and updating candidate
beliefs. Using a more efficient way to store and search the candidate set of beliefs could reduce a
considerable amount of computation time as the search is being done for each of the future beliefs
along the planning horizon. Regarding the incremental update of future beliefs, the naive approach
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to reduce computational load would be to use ”closer” beliefs as candidates. Either by improving the
prediction mechanisms of the planning process for both existing and new states, or by considering a
bigger set of candidate beliefs or even tailor-made to allow a discretization of the belief space in a way
that we would always have a belief that is close up to some pre-determined ε to the current posterior.
The latterwould require an extremely efficient paradigm for storing and searching the set of candidate
beliefs.

To sum up, other than requiring some set of candidate beliefs, the aforementioned assumptions
can in-fact be omitted. Furthermore, the computation time advantage of iX-BSP can be improved
without introducing any approximations by improving the handling of the set of candidate beliefs,
and reducing its distance from the current posterior. It is worth reiterating that iX-BSP is not limited
to using previous planning session as candidate for re-use, although it is readily available on a plan-
act-infer system and relieve the user from dealing with concocting a tailor-made set of candidates.

6.10 Concluding iX-BSP

State of the art approaches under X-BSP paradigm (BSP with expectation) calculate each planning
session from scratch. In this chapter we suggested to re-formulate the general problem of BSP using
expectation, X-BSP. We presented iX-BSP, incrementally calculating the expectation by utilizing
previous planning sessions in order to solve the current planning session with a reduced computa-
tional effort and without affecting the solution accuracy.

By selectively re-using sampledmeasurements frompreviousplanning sessions,we are able to avert
from standard Bayesian inference as part of reward(cost) values thus reducing the computational ef-
fort. As the expectation in iX-BSP is potentially consideredover a set of samples taken frommultiple
different measurement likelihood distributions, we reformulate X-BSP as a Multiple Importance
Sampling (MIS) problem, thus statistically maintaining the solution accuracy. Considering their
stochastic nature, we evaluate iX-BSP against X-BSP in simulation considering active-SLAM as
application, comparing both cumulative planning computation time and estimation accuracy upon
reaching the goal. By considering different sampled ground-truth prior states we are able to show that
iX-BSP is statistically equal to X-BSP whilst providing shorter computation time.

In addition to providing with the full formulation of iX-BSP, we introduce a non-integral ap-
proximation denoted as wildfire, enabling one to trade accuracy for computation time by putting a
threshold defining beliefs as ”close enough” to be considered as identical. We also analyze, analyti-
cally and empirically, the effect wildfire holds over the resulting objective value, as well as demon-
strate using wildfire in iX-BSP. Because iX-BSP changes the solution approach of the original,
un-approximated, problem (X-BSP), we believe it can be utilized to also reduce computation time
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of existing approximations of X-BSP. To support this claimwe push further and show how it can be
utilized tobenefit an existing commonapproximationofX-BSP. InChapter 7wepresent iML-BSP
which provides reduced computation time compared to ML-BSP, while obtaining the same esti-
mation accuracy. We demonstrate the performance advantage iML-BSP holds over ML-BSP in
both simulation and real-world experiments considering vision-based active-SLAMinpreviously un-
known uncertain environment and high dimensional state space.

In contrast to common research directions dealing with approximations of the X-BSP problem,
we tackled the un-approximated formulation of X-BSP and suggested to improve it by considering
calculation re-use across planning sessions, thus enabling to reduce X-BSP computation time with-
out affecting accuracy. As iX-BSP is equivalent to X-BSP, we claim that existing approximations
of X-BSP could benefit from the iX-BSP formulation, as demonstrated by considering the ML ap-
proximation ML-BSP and the resulting iML-BSP. While demonstrated here only on data from a
precursory planning session, using the same formulation it can be easily shown that iX-BSP can se-
lectively re-use any supplied data, from a set of offline calculated beliefs to planning sessions of other
agents, all while maintaining the same estimation accuracy as well as the computational advantage.
The performance of iX-BSP can be further improved without introducing any approximations, e.g.
by using amore sophisticated predictionmechanism to reduce the number of removed factors, or by
using a mechanism to predict factors related to new states.
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Expert:
a man who makes three correct guesses consecutively.

Laurence J. Peter

7
iML-BSP

Seeing thatournovel iX-BSP approach changes the solution paradigm for the orig-
inal, un-approximated, problem (X-BSP), we claim it could be utilized to also reduce
computation time of existing approximations of X-BSP. To support our claim, in this
chapter we present the implementation of iX-BSP principles over a commonly used approximation,
ML-BSP, and denote it as iML-BSP. We provide the formulation for the iML-BSP problem (Sec-
tion 7.1), and provide both statistical analysis over synthetic data (Section 7.2) and live experiments
(Section 7.3), comparing iML-BSP to ML-BSP.

7.1 iML-BSP Formulation

Under theML assumptionwe consider just themost likelymeasurements, rather than samplingmul-
tiple measurements; hence, there is a single importance sampling distribution at each planning step
i.e. Mi = 1 ∀i, because a single measurement is considered for each action at each time step. Consid-
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ering the aforementioned, for the case of iML-BSP, Eq. (6.21) is reduced to

JiML(u′) ≈
k+l+L∑

i=k+l+1

[
wi · ri

(
b[Xi|k+l], u′i−1|k+l

)]
, (7.1)

and Eq. (6.22), representing the weight at time i is reduced to

wi =
P(zk+l+1:i|Hk+l|k+l, uk+l:i−1|k+l)

q(zk+l+1:i)
, (7.2)

where q(.) is the importance sampling distribution related to the ML measurement set zk+l+1:i, and
P(z|H, u) is the nominal distribution fromwhich theMLmeasurement set zk+l+1:i should have been
taken from. Whenwe take theMLmeasurements from the nominal distribution, i.e. as in ML-BSP,
ωi = 1 ,∀i, andEq. (7.1) is identical to Eq. (5.16). More specifically without loosing generality, when
considering the planning tree from planning at time k as candidate for re-use, the possible values of
the importance sampling distribution are

q(zk+l+1:i) =

P(zk+l+1:i|Hk+l|k, uk+l:i−1|k) D(b−[Xi|k], b−[Xi|k+l]) ≤ εc

P(zk+l+1:i|Hk+l|k+l, uk+l:i−1|k+l) εc < D(b−[Xi|k], b−[Xi|k+l])
, (7.3)

were b[Xi|k] is the belief from planning at time k considered for re-use, P(zk+l+1:i|Hk+l|k, uk+l:i−1|k) is
the measurement likelihood probability used to sample future measurements considered in b[Xi|k],
P(zk+l+1:i|Hk+l|k+l, uk+l:i−1|k+l) is the nominal measurement likelihood probability used to sample
future measurements considered in b[Xi|k+l], εc is the re-use threshold (see Section 6.3.3), andD(.)
denote some belief distance.

By considering an iML-BSP session as a single rollout, it can be extended to rollout-based plan-
ners with a belief dependent reward in a straightforward manner, we leave this for future work.

The reader can use the same algorithm provided for iX-BSP (see Alg. 3) with parameters appro-
priate to iML-BSP, e.g. nx = nz = 1.

7.2 Simulation Results - iML-BSP

In this section we compare ML-BSP and iML-BSP (see parameters in Table 7.1) in the sense of
planning-session computation time, the posterior estimation error upon reaching the goal, and the
covariance norm upon reaching the goal. For comparison we performed 1000 rollouts (entire mis-
sion run), each with a different sampled ground-truth for the prior state. Figure 7.2.1a presents the
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scenario on which all rollouts were performed, along with the estimation results of an arbitrary roll-
out.

Prior belief standard deviation
[
1o · I3x3 0

0 5[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
3[px] 0
0 3[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]
useWF false
εc 250

βσ 1.5

nu 3

nx 1

nz 1

action primitives left, right and forward with
1[m] translation and±90o rotations

D D√
J

Table 7.1: Parameters for Section 7.2 following Alg. 3 under iML-BSP

A robot equipped with a stereo camera, is tasked with reaching two goals, numbered and de-
noted by blue dots in Figure 7.2.1a, in a world with 45 randomly placed landmarks, denoted by green
crosses in Figure 7.2.1a, while considering the reward function (6.28). Same as in Section 6.6.2, both
ML-BSP and iML-BSP consider 6 DOF robot pose, 3 DOF landmarks, a joint state comprised of
both robot pose and landmarks and three candidate actions for each step (left, right, forward), hence
for the considered horizon of 3 look ahead steps, there are 27 candidate action sequences for each
planning session. Under the ML assumption, both methods, ML-BSP and iML-BSP, consider a
single measurement per action per look ahead step. While for ML-BSP, this action is always the
most likely measurement, hence zero innovation, for iML-BSP this measurement is usually not the
most likely measurement, hence we retain some innovation along the look ahead steps.

Similarly to X-BSP and iX-BSP, when considering a plan-act-infer system, all differences be-
tweenML-BSP and iML-BSP are confinedwithin the planning block, hence the computation time
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of the planning process is adequate for fair comparison.

Figure 7.2.1b presents a box-plot for the timing data of all 1000 rollouts, with 3 and 2 outliers for
ML-BSP and iML-BSP respectively,where the computation timeadvantage is in favorof iML-BSP
by a factor of 5. The significant reduction in computation time is originated in the fact that iML-BSP
performs inference update in a more efficient way, computation wise, compared to ML-BSP. By
considering previously calculated beliefs, and utilizing one of which for efficient inference update
instead of performing inference from scratch as done in ML-BSP.

Sincewe claim to provide amore efficient paradigm thanML-BSP, we also verify how iML-BSP
favors in estimation results. Figure 6.6.3c presents a box plot of the estimation error upon reaching
the goal for each of the methods. The estimation error was calculated using (6.29).

As can be seen in Figure 7.2.1c both methods average around an estimation error of 3.5[m], while
only ML-BSP is with a single outlier. In 51.0% of the rollouts, iML-BSP provided with a better
estimation error than ML-BSP. The large estimation variance that can be seen in Figure 7.2.1c is
similar to the one obtained in Figure 6.6.3c, so it provides some assurance regarding the assumption
it is the result of using a small number of samples for estimating the objective. Nonetheless, also
here, the empiric estimation variance of both methods can be considered as statistically identical for
all practical purposes. Of course a more rigorous examination in required, by analytically comparing
the estimation variance, we leave this for future work as well. We push further and compare the co-
variance norm of the final pose. As can be seen in Figure 7.2.1d, they average around 5.0[m], without
any outliers, and can be clearly considered as statistically identical for all practical purposes.
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Figure 7.2.1: Statistical comparison between ML-BSP and iML-BSP:(a)The scenario used for the statistical comparison, with 2
numbered goals denoted by blue dots, and 45 landmarks denoted by green crosses. Showcasing the estimation results for one of the 1000
performed rollouts. (b) (c) and (d) Box plots of 1000 rollouts for planning session timing (b), posterior estimation error upon reaching the
goal (c) and the covariance norm upon reaching the goal.
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Prior belief standard deviation
[
1o · I3x3 0

0 5[m] · I3x3

]
Motion Model standard deviation

[
0.5o · I3x3 0

0 0.5[m] · I3x3

]
Observation Model standard deviation

[
3[px] 0
0 3[px]

]
Camera Aperture 90o

Camera acceptable Sensing Range between 2[m] and 40[m]
useWF false
εc 250

βσ 1.5

planning horizon 4

nu 3

nx 1

nz 1

action primitives left, right and forward with
1[m] translation and±45o rotations

D D√
J

ORBSLAM2 default parameters

Table 7.1: Parameters for Section 7.3 following Alg. 3 under iML-BSP

7.3 RealWorld Experiments - iML-BSP

In this section we compare ML-BSP and iML-BSP in a real-world setting. In the following we de-
scribe the scenario onwhichwe ran these experiments (Section 7.3.1), aswell as the results of the two
live experiments (Section 7.3.2). All relevant parameters used for these experiments are summarized
in Table 7.1.

7.3.1 The Scenario

For these experiment we used the Pioneer 3AT robot, equipped with a ZED stereo camera, Hokuyo
UTM-30LX Lidar, and a Linux machine with octa-core i7-6820HQ 2.7GHz processor and 32GB of
memory (see Figure 7.3.1).
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Figure 7.3.1: Pioneer 3AT robot used for the live experiments. The robot is equipped with a ZED stereo camera, Hokuyo UTM-30LX
Lidar, and a Linux machine with octa-core i7-6820HQ 2.7GHz processor and 32GB of memory.

The robot received a number of goals, his mission - reaching each one of the goals while maximiz-
ing information gain and minimizing distance to goal using the reward function (6.28). The robot
state was comprised of both its own poses and environment landmarks. The robot did not possess
any prior information over the environment, nor did itmake use of any offline calculations. The robot
did receive a prior over its initial pose (as stated in Table 7.1). The environment used for these exper-
iments was the surrounding garden and path-way of a cottage house, laced with both still obstacles
(e.g. cars, trees, rocks, children toys, garden furniture) and dynamic obstacles (e.g. people, children,
dogs).

The robot uses a plan-act-infer architecture, similar to the one presented in Figure 6.6.1. The plan-
ner is the exact same MATLAB code used for the aforementioned simulations where the rest of the
code is C++ based. The Hokuyo UTM-30LX Lidar was used for collision avoidance and odometry
while the ZED camera was used strictly for its rectified stereo images output. We also made use of
ORBSLAM2as the vision pipeline, feeding the rectified stereo images toORBSLAM2and extracting
the appropriate factors created by ORBSLAM2 as output.

Future landmark observations are generated by considering only landmarks projected within the
camerafieldof viewusingposterior estimates for landmarkpositions andcamerapose. As in thiswork
the planning phase considers only the already-mapped landmarks, without reasoning about expected
new landmarks, each new landmark observation in inference would essentially mean facing a factor
that can not be re-used.

As this is not a simulated environment, where the uncertainties can be replicated, in order to pro-
vide a fair comparison between ML-BSP and iML-BSP each planning session the robot performs
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both ML-BSP and iML-BSP sequentially, using the same posterior information. The planning du-
ration is timed for comparison, theoptimal action givenby iML-BSP is beingused as thenext action,
and the optimal action given by ML-BSP is matched against former for comparison.

7.3.2 Real World Results

In this section we cover the results of live experiments done over two different sets of goals follow-
ing the scenario described above. Differently than the simulation related results presented so far, we
compare the computation time of the entire planning horizon and do not omit the last horizon step.
Figure 7.3.2 presents the estimated route of the first experiment, coursing through 4 goals along 35
meters for under both ML-BSP and iML-BSP. As the twomethods chose the same optimal action
sequences throughout the mission, they have an identical estimation (up to some machine noise).
Figure 7.3.3a presents a bar plot of the cumulative planning time for the entiremission for bothmeth-
ods, where each bar is divided into the contribution of the first three horizon steps (denoted in gray)
and the contribution of the last horizon step (denoted in black). This division is meant to help the
reader compare the live experiment to the simulation results which omitted the shared last horizon
step computation time, while still assessing the overall reduction in computation time. The percent-
age in Figure 7.3.3a represents the relative contribution of the two segments to each of the cumulative
planning times. Although the last horizon remains unchanged, we can clearly see the computation
time reduction in iML-BSP when compared to ML-BSP from forming 59% of the computation
time to only 23%. Figure 7.3.3b presents the planning time per planning session. As expected, in the
first planning session considering a new goal iML-BSP performs a regularML-BSP planning hence
both computation times are identical and no factors are re-used.

Figure 7.3.4 suggests some insight on the timing result of iML-BSP by comparing the number
of factors involved in the computation of each method. Figure 7.3.4a the sum of added factors per
planning session. In blue the number of factors added at time k+ 1|k+ 1 as part of standard Bayesian
inference update. In red the portion of aforementioned factors that are already part of the state prior
to the inference update, and as in this work we do not make use of any mechanism to predict new
states it also represents the upper bound for the number of factors we can hope to re-use. In orange
the number of factors that were originally calculated in a previous planning session andwhere reused.
Thedifferencebetween theorange andblue lines represents thenumberof factors needed tobe added
to the re-used planning tree in order tomatch the posterior at k+ 1 and the black line in Figure 7.3.4b
represents the number of factors needed to be removed from the re-used planning tree. While the
orange line is quite close to the redupper bound, there are still a lot of factors needed to be removed in
order tomatch theposterior at k+1, which contributes toDAupdate computation time in iML-BSP.
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Using a more sophisticated prediction mechanism for future factors might reduce this overhead in
removed factors and save more valuable computation time without introducing an approximation,
we leave this for future work.

12

3
4

Figure 7.3.2: The first live experiment stretching across a 35 meter course, where the Pioneer robot was given 4 goals (numbered and
denoted in purple) to reach. The state estimation of the robot in the form of keyframes (denoted in blue frames), robot trajectory (denoted
in green) landmarks (denoted in black and red), and few snapshots along the rout containing the selected features.
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Figure 7.3.3: Planning time results of the first live experiment using the Pioneer robot (a)The cumulative planning time of both
ML-BSP and iML-BSP, divided into relative contributions of the first three planning horizon steps (denoted in gray) and the last
planning horizon step (denoted in black). (b) Per planning session comparison of the computation time. The goals are marked over the
planning session performed after reaching them.
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Figure 7.3.4: Number of factors involved in each planning session of the first live experiment. (a)The number of factors added in
the last inference update at k + 1|k + 1, denoted in blue. The portion of aforementioned factors which relate to existing states, denoted
in red. The number of factors re-used from previously calculated planning tree, denoted in orange. (b)The number of factors re-used
from previously calculated planning tree, denoted in orange. The number of factors removed from the previously calculated planning tree,
denoted in black.

Figure 7.3.5 presents the estimated route of the second experiment, coursing through 3 goals along
148meters underbothML-BSP and iML-BSP. In this experiment, like in the former, bothML-BSP
and iML-BSP chose the same optimal action sequence at each planning session. Similar to Fig-
ure 7.3.3, Figure 7.3.6 presents the timing results for the second experiment. Same as before we can
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see that while the computation time related to the last horizon step is identical between ML-BSP
and iML-BSP, there is a considerable time reduction in the computation time related to the first
three horizon steps, from constituting 54% of the cumulative planning time in ML-BSP to just 25%
in iML-BSP.

In a similar manner Figure 7.3.7, like Figure 7.3.4, presents the sum of factors related to the second
experiment. As before, we can see that the orange line is quite close to the red line (i.e. upper bound
for factor re-use), but there is a considerablenumberof factor to removeeachplanning step (black line
in Figure 7.3.7b). As the second experiment provides us with the same insights over the comparison
between ML-BSP and iML-BSP it essentially validates the results of the first experiment as well as
the insights derived from it.

1

2 3

Figure 7.3.5: The second live experiment stretching across a 148 meter course, where the Pioneer robot was given 3 goals (numbered
and denoted in purple) to reach. The state estimation of the robot in the form of keyframes (denoted in blue frames), robot trajectory
(denoted in green) landmarks (denoted in black and red), and few snapshots along the rout containing the selected features.
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Figure 7.3.6: Planning time results of the second live experiment using the Pioneer robot (a)The cumulative planning time of both
ML-BSP and iML-BSP, divided into relative contributions of the first three planning horizon steps (denoted in gray) and the last plan-
ning horizon step (denoted in black). (b) Per planning session comparison of the computation time. The goals are marked over the plan-
ning session performed after reaching them.
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Figure 7.3.7: Number of factors involved in each planning session of the second live experiment. (a)The number of factors added in
the last inference update at k + 1|k + 1, denoted in blue. The portion of aforementioned factors which relate to existing states, denoted
in red. The number of factors re-used from previously calculated planning tree, denoted in orange. (b)The number of factors re-used
from previously calculated planning tree, denoted in orange. The number of factors removed from the previously calculated planning tree,
denoted in black.
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The Cure for Boredom Is Curiosity.
There Is No Cure for Curiosity.

Ellen Parr

8
Closing Remarks

If forced to summarize our entire researchwitha single cryptic sentence, one could
say that we started with tearing down a wall and ended up with building two new
bridges.

Inference and decisionmaking under uncertainty or inference and BSP are core processes in both
AS and AI. In-spite of the obvious similarities between inference and BSP, several research efforts in
the field, and the fact that in the human brain they are tightly entwined, they are still being treated as
two separate processes. Our research tears down the wall between inference and BSP by introducing
the joint inference andBSP framework - JIP. Under JIP both inference and planning are considered
as part of the same plan-act-infer process, thus enabling to share similar calculations between them.
JIP incapsulates the standard un-approximated Bayesian inference and BSP as well as enabling new
symbiotic connections between the two.

The first symbiotic connection our work offered might seem as a paradigm shift from Bayesian
inference, instead of updating the last available posterior belief with new information we update a
future belief from a previous planning session. Given a future belief from precursory planning and
newly acquired data, we appropriately update the former with the latter while taking into considera-
tion data association inconsistencies which might occur. The resulting approach, RUB Inference,

155



saves valuable computation time in inference without affecting the estimation accuracy.
The second symbiotic connection our work offered allows to incrementally calculate the expecta-

tion of X-BSP through the selective re-use of previous planning sessions. The resulting approach,
iX-BSP, saves valuable computation time in the creation of the planning tree without statistically
affecting the solution accuracy. We also introduced a non-integral addition to iX-BSP, denoted as
wildfire, allowing one to controllably trade accuracy for computational performance. As iX-BSP
is equivalent to X-BSP, we believe that the existing approximations of X-BSP can benefit from the
iX-BSP paradigm. To support our claim we introduced the common maximum likelihood approx-
imation of X-BSP- ML-BSP, the iX-BSP paradigm. The resulting approach, iML-BSP, showed
improved computation time when compared to the standard ML-BSP.

In addition to the formulation of our proposedmethods, we compared each of them to the current
top of the line, using both simulative and real-world data, thus demonstrating the claimed computa-
tional advantage as well as the accuracy performance.

Our research enables calculation re-use across inference and decision making under uncertainty,
thus improving computation timewithout affecting accuracy. We strongly believe that both iX-BSP
and RUB Inference can be further improved, by better utilizing the newly acquired connectivity
enabled through JIP. We also believe that JIP has probablymore to offer than just RUB Inference
and iX-BSP, and we hope our work will pave the way to even more new symbiotic connections
within JIP.

Future ResearchDirections

Althoughwe cannever predict all the possible future research that can be done based onourwork, we
can summarize the issues we encountered and would have chosen to address in case we had the time.
All these future research directionswill better improveRUB Inference and iX-BSP. Although non
of them is directly suggesting a new connection in JIP, perhaps some of them will become the re-
quired inspiration for such connection.

• Reducing factor eliminations by anticipating required ordering: By predicting the re-
quired ordering and incrementally adjusting the joint state accordingly one can reduce the
computational load of belief update both in inference and planning.

• Integrating amore sophisticatedmechanism for factor prediction: In this work we used a
straightforwardmechanism for factor prediction that proved to have room formuch improve-
ment in two aspects.
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– better prediction of existing states in sense of both observation and association.

– have the ability to predict new states.

• Finding the Goldilocks conditions for ML-BSP withmultiple actions and X-BSP

• Belief datasetmanagement, with the purpose of quickly locating the closest belief for re-use.

• A procedure to analytically choose εc. Or in other words, find mathematical connection
between belief distance and the corresponding computational load of updating one of the to
match the other.

• Find wildfire bounds that are convenient enough for online usage.

• A procedure for dynamically choosing εwf, in accordance with allowable accuracy sacrifice.

• Introduce smart sampling, instead of representing the distribution of the entire measure-
ment space, focus on ”interesting” segments of the measurement space.

• Incrementally updating a previously calculated reward value in an exact manner or con-
trolled approximation.

• Analytically compare the estimation variance of iX-BSP and X-BSP

• Relieve the assumption of α−H..older reward taken for wildfire bound calculation.

• Extend iML-BSP to a rollout-based planner with belief dependent reward.

• Extend JIP tomulti-robot framework
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Progress is man’s ability
to complicate simplicity.

Thor Heyerdahl

A
Inference as a GraphicalModel

The inference problem can be naturally represented and efficiently solved using graphical models
such as factor graph (FG) [44] and Bayes tree (BT) [34]. Since FG and BT graphical models pose
key components in the suggested paradigm, the theoretical foundation is supplied next. We use Fig-
ure 4.6.1 as illustration to belief representation in graphical models. Figures 4.6.1a and 4.6.1b are FG
representations for the beliefs b(Xk+1|k) and b(Xk+1|k+1), respectively. BT representation of the belief
is obtained through an elimination process, Figure 4.6.1d presents the BT of b[Xk+1|k] for the elimi-
nation order x0· · · li→xk−1→xk→lj→xk+1, while Figure 4.6.1e presents the BT of b[Xk+1|k+1] for the
elimination order x0· · · li→xk−1→xk→lj→lr→xk+1.

A FG is a bipartite graph with two node types, factor nodes {fi} and variable nodes {θj} ∈ Θ. All
nodes are connected through edges {eij}, which are always between factor nodes to variable nodes.
A factor graph defines the factorization of a certain function g(Θ) as

g(Θ) =
∏

i

fi(Θi), (A.1)

whereΘi is the set of variables {θj} connected to the factor fi through the set of edges {eij}. After sub-
stitutingΘwith our joint stateX and the factors {fi}with the conditional probabilities from Eq. (??)
we receive the definition of the belief b(Xt|k) in a FG representation.

Through bipartite elimination game, a FG can be converted into a BN, this elimination is required
for solving the Inference problem (as shown in [36]). After eliminating all variables the BN pdf can
be defined by a product of conditional probabilities,

P(Θ) =
∏

j

P(Θj|Sj), (A.2)

where Sj is addressed as the separator ofΘj, i.e. the set of variables that are directly connected toΘj.
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Linearization

Factorization

Elimination

Equivalent

(d)

(a)

(c)

(b)

Figure A.1: The relations between different problem representations. (a) Factor graph (b) Jacobian matrix A with RHS vector b (c)
Bayes Tree (d) Factorized Jacobian matrix R with equivalent RHS vector d.

In order to ease optimization and marginalization, a BT can be used [36]. By converting the BN to
a directed tree, where the nodes represent cliques {Cr}, we receive a directed graphical model that
encodes a factored pdf. Bayes Tree is defined using a conditional density per each node.

P(Θ) =
∏

r

P(Fr|Sr), (A.3)

where Sr is the separator, defined by the intersection Cr
∩

Πr of the clique Cr and the parent clique
Πr. The complement to the variables in the cliqueCr is denoted asFr, thefrontal variables. Each clique
is therefor written in the form Cr = Fr : Sr.
The correspondence between matrix and graphical representation is conveniently demonstrated in
Figure A.1. The first rows of R are equivalent to the deepest cliques in the BT, when the last rows
of R equivalent to the root of the tree. The elimination order that created the BT is identical to the
ordering of R state vector, and fill-ins in R equivalent to the connectivity of the corresponding BT.
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If I were two-faced,
would I be wearing this one?

Abraham Lincoln

B
Derivation of Eq. (4.14)

In this appendix we complete the derivation of Eq. (4.14) from Eq. (4.13). Let us consider the NLS
presented in Eq. (4.13)

X⋆
k|k = argmin

Xk

∥x0 − x⋆0∥2Σ0
+

k∑
i=1

∥xi−f(xi−1, ui−1|k)∥2Σw
+
∑

j∈Mi|k

∥zj
i|k−h(xi, lj)∥2Σv

.
In general, the motion model f(·) and the measurement model h(·) are non-linear functions. A stan-
dard way to solve this problem is the Gauss-Newton method, where a single iteration involves lin-
earizing about the last known estimate, calculating the delta around this linearization point, and up-
dating the latter with the former. This process should be repeated until convergence.

We start by linearizing the terms in (4.13) using first order Taylor approximation around the best
estimate we have for the joined state X̄k|k−1 which is the state estimate for time k before including
measurements, i.e. X∗

k|k−1.

The prior term yields,
x0 − x⋆0 = x̄0 + Δx0 − x⋆0 = Δx0. (B.1)

The motion model term yields,

xi − f(xi−1, ui−1|k) = x̄i − f(x̄i−1, ui−1|k)− Σ− 1
2

w Fi

[
Δxi−1

Δxi

]
(B.2)

where Σ− 1
2

w Fi represents the Jacobian matrix of the motion model at time i, around the linearization
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point x̄i−1:i. The measurement model term yields,

zj
i|k − h(xi, lj) = zj

i|k − h(x̄i, l̄j)− Σ− 1
2

v Hi,j

[
Δxi

Δlj

]
(B.3)

where Σ− 1
2

v Hi,j represents the jacobian matrix of the measurement model at time i around the lin-
earization point

[
x̄i, l̄j
]T.

In order to re-write (4.13) into the common formofLeast SquaresAx = b, we introduceEqs. (B.1-
B.3) back to (4.13),

ΔX⋆
k|k = argmin

ΔXk

∥Σ− 1
2

0 Δx0∥2 +
k∑

i=1

∥Σ− 1
2

w Δxi −FiΔxi−1 − b̆Fi ∥2+
∑

j∈Mi|k

∥Hi,j

[
Δxi

Δlj

]
− b̆Hi ∥2

,
where the RHS terms b̆Fi and b̆Hi are given by

b̆Fi = Σ− 1
2

w
(
f(x̄i−1, ui−1|k)− x̄i

)
, b̆Hi = Σ− 1

2
v

(
zj
i|k − h(x̄i, l̄j)

)
.

We now make use of the fact that the minimum sum of quadratic expressions is the minimum of
each quadratic expression individually and is equal to zero. Thus enabling us to stack up all equations
to form,

ΔX⋆
k|k = argmin

ΔXk

∥Ak|kΔXk − bk|k∥2,

where the Jacobian matrix and the RHS are given by,

Ak|k =

 Σ− 1
2

0

F1:k|k
H1:k|k

 , bk|k =

 0
b̆F1:k|k
b̆H1:k|k

 .
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All generalizations are false,
including this one.

Mark Twain

C
Non-zeros inQMatrix

In this appendix we discuss the number of non zeros in the rotationmatrixQk+1|k+1, in order to do so
we first cover the creation of Qk+1|k+1, and later get to an expression for the number of non zeros and
analyze it to gain better understanding over the governing parameters. The rotation matrix Qk+1|k+1

is created as part of the factorization of the Jacobian, designed to rotate the Jacobian into a square
upper triangular form (e.g. Eqs. (4.17) and (4.25)). As such, we can deduce an expression for the
number of non zeros in Qk+1|k+1 as a function of the state size and the size of added factors, but first
let us review how Qk+1|k+1 is being created. Figure C.1a illustrates a simple example for the Jacobian
matrixAR

k+1|k+1, where the precursory factorized Jacobian is denoted by Rk|k, the newly added factors
byAk+1|k+1 and the columnsdenote thedifferent states. The involved variables inAk+1|k+1 aremarked
with light blue and orange. As can be deduced fromFigureC.1a, the numberAR

k+1|k+1 columns equals
the joint state size at time k + 1, and the number of AR

k+1|k+1 rows equals the sum of the joint state
size plus the number ofAk+1|k+1 rows. The purpose of factorization is to rotate AR

k+1|k+1 to a square
upper triangular formwithout loosing information, i.e. so thatAR

k+1|k+1
TAR

k+1|k+1 = Rk+1|k+1
TRk+1|k+1.

While there are many different factorization algorithms, we would consider for simplicity without
affecting generality the Given’s Rotation (see [25]). Given’s rotation creates Qk+1|k+1 by a series of
simple one cell rotations. For the simple case presented in Figure C.1, two rotations are required
as presented in Figure C.1b. First the left-most non zero entry inAk+1|k+1, denoted by light blue, is
addressed. The appropriate rotation matrix, consists of two off-diagonal non zeros denoted by dark
blue, is denoted in Figure C.1b as the light blue Qk+1|k+1. Next we are left to address the orange non
zero entry in Ak+1|k+1, while its appropriate rotation matrix, also consists of two off-diagonal non
zeros denoted by dark red, is denoted in Figure C.1b as the orange Qk+1|k+1. From Figure C.1b we
can see that each sequential rotation matrix has the same number of non zeros, diag

(
Qk+1|k+1

)
+ 2,

but due to the multiplication between them we get more non zeros as seen in Figure C.1c. For some
intuition wemarked the entries of the equivalentQk+1|k+1 presented in Figure C.1c, in accordance to
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(a) (b)

(c)

Figure C.1: (a) A Jacobian matrix at time k + 1, consisting of the previously factorized Jacobian from time k and the linearized newly
added factor from time k + 1. The RHS visualize the non zeros of the aforementioned Jacobian. (b) Visualizing the factorization procedure
of the Jacobian in (a) using two Given’s rotation matrices. The light and dark colors represent the cosine and sine values respectively,
attributed to each of the original non zeros in (a). (c) Visualizing the non zeros in the rotation matrix required to factorize the Jacobian (a),
this rotation matrix is the product of the two matrices in (b), as such the non zeros are affected by the cosine and sine values in (b).

the color coding in Figure C.1b.
Now that we understand that the number of non zeros inQk+1|k+1 is affected by the size of the joint

state, the size of the newly added factors and the location of the left-most involved state, we are in
position to formulate the expression for the number of non zeros in Qk+1|k+1. We invite the reader to
refresh his memory regarding the notations used in this analysis using Figure 4.4.1, nevertheless all
notations are also defined here.

Let j be the column index of the left-most involved state in the newly added factors Ak+1|k+1, ns

be the size of the state vector (i.e. number of states multiplied by the state dimension), and nf be the
number of rows ofAk+1|k+1 (i.e. number of factorsmultiplied by the factors’ dimension). Thenumber
of non zeros can be defined as the sum of three values: the number of diagonal entries equal to 1, the
contribution of the Jacobian line with the left-most state to the non zeros, and the contribution of the
rest of the Jacobian lines. We will now calculate each of them.

As can be seen from Figure C.1b, the incremental rotation matrix (i.e. colored Qk+1|k+1) created
to rotate an entry in the ith column, would have i − 1 diagonal entries equal to 1. Since the left-most
state is located in the jth column the number of diagonal entries equal to 1 in Qk+1|k+1 would be

j− 1, (C.1)

where j is bounded by the size of the state such that

j ∈ [1, ns]. (C.2)

The rotation matrix Q for rotating an entire Jacobian row located in the ith, with a left-most non zero
located in the jth column, would have non zeros in the ith row from column j up to the last column and
an fully dense upper triangle of non zeros over the same columns. This means that rotating the row
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with the left-most index in column jwould contribute the following number of non zeros toQk+1|k+1

n2 − n
2

+ n + n− 1 =
n2

2
+

3
2
n− 1, (C.3)

where n is defined by
n = ns + nf − j + 1. (C.4)

Assuming the left-most state in the Jacobian is located in the jth column, rotating the rest of the rows
of the Jacobian will only add non zeros at the appropriate rows in Q, without adding new non zeros
to the appropriate upper triangle. The remaining nf− 1 rows will contribute toQk+1|k+1 the following
number of non zeros

nf−1∑
i=1

(
ns + nf − i + 1

)
=
(
nf − 1

) (
ns + nf + 1

)
−

nf
(
nf − 1

)
2

= (nf − 1)(ns +
nf

2
+ 1). (C.5)

Evidently, the number of non zeros in Qk+1|k+1 is given by

j− 1︸︷︷︸
i

+
n2

2
+

3
2
n− 1︸ ︷︷ ︸

ii

+(nf − 1)(ns +
nf

2
+ 1)︸ ︷︷ ︸

iii

, (C.6)

where term (i) in Eq. (C.6) denotes the number of diagonal entries equal 1, term (ii) in Eq. (C.6)
denotes thenonzeros addedafter factorizing the factorwith the left-most state j, term(iii) inEq. (C.6)
denotes the non zeros added after factorizing the rest of the factors. It is worth stressing that the value
of j is acutely affected by the ordering of the joint state vector. For better ordering, j would receive
larger values.

Now thatwehave an expression to thenumber of non zeros inQk+1|k+1, wewould like to investigate
which part of it is dominant. In the sequel we reformulate Eq. (C.6) into a sum of quadratic terms,
and then find conditions to determine which term is dominant.

We start by introducing (C.4) into Eq. (C.6) and using simple arithmetics in order to get quadratic
forms,

1
2
ns2 + nf2 + 2nsnf +

3
2
ns − nsj + 3nf − nfj +

1
2
j2 − 3

2
j− 1 (C.7)

1
2

(
ns + nf − j +

3
2

)2
+

1
2
nf2 +

3
2
nf + nsnf − 17

8
(C.8)

1
2

(
ns + nf − j +

3
2

)2
︸ ︷︷ ︸

a

+
1
2

(
nf +

3
2

)2
︸ ︷︷ ︸

b

+ nsnf︸︷︷︸
c

−26
8
. (C.9)

We have three candidates to be the dominant part of Eq. (C.9), denoted by terms (a) (b) and (c). Let
us examine them to decide which is the dominant one and under what conditions. First we can see
that term (b) in (C.9) is a special case of term (a) in (C.9) where j = ns. Subsequently we are left
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with comparing terms (a) and (c) in (C.9), i.e. we would like to check when(
ns + nf − j +

3
2

)2
> nsnf, (C.10)

we define a ≜ ns − j + 3
2 and get

a2 + 2anf + nf2 − nsnf > 0. (C.11)

So we can say term (a) in (C.9) is bigger than term (c) in (C.9) when(
ns − j +

3
2
>
√

nsnf − nf
)
∪

(
ns − j +

3
2
< −
√

nsnf − nf
)
. (C.12)

Considering Eq. (C.2), we can dismiss ns − j+ 3
2 < −

√
nsnf − nf because the smallest the LHS can

be is 3
2 , which will always be greater than the non positive number−

√
nsnf − nf, so the condition on

j so that term (a) is the dominant part of (C.9) is

ns −
√

nsnf + nf +
3
2
> j, (C.13)

which after considering Eq. (C.2) is true if and only if

−
√

nsnf + nf +
3
2
> 0. (C.14)

We can now solve the aforementioned to get a condition to assure (C.13) holds,

nf +
3
2
>
√

nsnf (C.15)

nf2 − (ns − 3)f +
9
4
> 0 (C.16)

(
nf >

ns − 3
2

+

√
ns2 − 6ns

2

)
∪

(
0 < nf <

ns − 3
2
−
√

ns2 − 6ns

2

)
, (C.17)

where ns−3
2 −

√
ns2−6ns

2 is non negative ∀ns, and both conditions are defined for ns ≥ 6 which for a
6DOF problem means a single state. For a value of ns = 6, ns−3

2 −
√

ns2−6ns

2 = 1.5 and for ns = 7,
ns−3
2 −

√
ns2−6ns

2 < 1 so affectively this condition is irrelevant ∀ns ̸= 6, so we are left with(
nf >

ns − 3
2

+

√
ns2 − 6ns

2

)
∪ (ns ≥ 6) . (C.18)

Although this is the exact condition to insure term (a) is the dominant part of (C.9), in order to
provide a more convenient condition we suggest an upper bound in the simple form of nf > ns.
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Figure C.2: Illustrating the effectiveness of the bound for ns−3
2 +

√
ns2−6ns

2 in the form of the error between the two as a function of
different state sizes ns.

Figure C.2 illustrates the effectiveness of the suggested bound in the form of the distance

Error = ns − ns − 3
2

+

√
ns2 − 6ns

2
. (C.19)

For ns = 6 the distance is 4.5, and for ns = 8 it is already 3.5, which makes this bound very affective
for simplicity reasons.

To conclude, term (a) is the dominant part of (C.9) if and only if the following holds(
nf >

ns − 3
2

+

√
ns2 − 6ns

2

)
∩ (ns ≥ 6) , (C.20)

or for simpler upper bound
nf > ns ≥ 6. (C.21)

Otherwise, term (c) is the dominant part of (C.9), i.e. given simply the size of the state and the num-
ber of rows of the newly added factors we can determine what will be the governing expression for
determining the number of non zeros in Qk+1|k+1.
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Between two evils,
I always pick the one I never tried before.

Mae West

D
Multiple Importance Sampling

Let us assume we wish to express expectation over some function f(x) with respect to distribution
p(x), by sampling x from a different distribution q(x),

Epf(x) =
∫

f(x) · p(x)dx =

∫
f(x) · p(x)

q(x)
q(x)dx = Eq

(
f(x) · p(x)

q(x)

)
. (D.1)

Eq. (D.1) presents the basic importance sampling problem, where Eq denotes expectation for x ∼
q(x). The probability ratio between the nominal distribution p and the importance sampling distri-
bution q is usually referred to as the likelihood ratio. Our problem ismore complex, since our samples
are potentially taken fromMdifferent distributionswhileM ∈ [1, (nx·nz)

L], i.e. amultiple importance
sampling problem

Epf(x) = μ̃(x) ∼
M∑

m=1

1
nm

nm∑
i=1

wm(xim)
f(xim)p(xim)

qm(xim)
, (D.2)

wherewm(.) are weight functions satisfyingΣM
m=1wm(x) = 1, nm denotes the number of samples from

the Mth distribution. For qm(x) > 0 whenever wm(x)p(x)f(x) ̸= 0, Eq. (D.2) forms an unbiased
estimator

E [μ̃(x)] =
M∑

m=1

Eqm

[
1
nm

nm∑
i=1

wm(xim)
f(xim)p(xim)

qm(xim)

]
= μ̃(x). (D.3)

Although there are numerous options for weight functions satisfying ΣM
m=1wm(x) = 1, we chose to

consider the Balance Heuristic [74], considered to be nearly optimal in the sense of estimation vari-
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ance [74, Theorem 1],

wm(x) = wBH
m (x) =

nmqm(x)
ΣM

s=1nsqs(x)
. (D.4)

Using (D.4) in (D.2) produces the multiple importance sampling with the balance heuristic

Epf(x) ∼
1
n

M∑
m=1

nm∑
i=1

p(xim)

ΣM
s=1

ns
n qs(xim)

f(xim). (D.5)
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I refuse to join any club
that would have me as a member.

Groucho Marx

E
TheD√JDistance

In this work we are required tomake use of a probability density function (pdf) distance. After some
consideration we chose to useD√

J, which is a variant of the Jeffreys divergenceDJ first suggested in
[31],

D√
J(P,Q) =

√
1
2
DJ =

√
1
2
DKL(P||Q) +

1
2
DKL(Q||P), (E.1)

where P and Q are probability density functions and DKL(P||Q) is the Kullback-Leibler(KL) diver-
gence.

TheKullback-Leibler(KL)divergence, sometime referred to as relative entropy,measures howwell
some distribution Q approximates distribution P, or in other words how much information will be
lost if one considers distribution Q instead of P. The KL divergence is not a metric (asymetric) and
is given by

DKL(P||Q) =
∫

P · log P
Q

= EP [logP− logQ] . (E.2)

From a view point of Bayesian Inference, as explained in [15], the DKL(P||Q) metric can be inter-
preted as twice the expected information gain when deciding between P andQ given a uniform prior
over them.

For the special case of Gaussian distributions, we can express DKL(P||Q) and consequently also
D√

J(P,Q) in terms of means and covariances. Let us consider two multivariate Gaussian distribu-
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tions P ∼ N (μp, Σp) and Q ∼ N (μq, Σq) inRd.

DKL(P||Q) = EP [logP− logQ]

=
1
2
EP

[
−log|Σp| − (x− μp)

TΣ−1
p (x− μp) + log|Σq|+ (x− μq)

TΣ−1
q (x− μq)

]
=

1
2
log
|Σq|
|Σp|

+
1
2
EP

[
−(x− μp)

TΣ−1
p (x− μp) + (x− μq)

TΣ−1
q (x− μq)

]
=

1
2
log
|Σq|
|Σp|

+
1
2
EP

[
−tr(Σ−1

p (x− μp)
T(x− μp)) + tr(Σ−1

q (x− μq)
T(x− μq))

]
=

1
2
log
|Σq|
|Σp|
− 1

2
tr(Σ−1

p Σp) +
1
2
EP

[
tr
(
Σ−1

q (xxT − 2xμT
q + μqμ

T
q )
)]

=
1
2
log
|Σq|
|Σp|
− 1

2
dp +

1
2
tr
(
Σ−1

q (Σp + μpμ
T
p − 2μpμ

T
q + μqμ

T
q )
)

=
1
2

[
log
|Σq|
|Σp|
− dp + tr

(
Σ−1

q Σp

)
+ tr

(
Σ−1

q (μp − μq)
T(μp − μq)

)]
=

1
2

[
log
|Σq|
|Σp|
− dp + tr

(
Σ−1

q Σp

)
+ (μp − μq)

TΣ−1
q (μp − μq)

]
. (E.3)

Substituting Eq. (E.3) in Eq. (E.1) we get theD√
J representation for the multivariate Gaussian case,

D√
J(P,Q) =√

1
4

[
log
|Σq|
|Σp|
−dp−dq+tr

(
Σ−1

q Σp

)
+(μp−μq)

T
[
Σ−1

q +Σ−1
p

]
(μp − μq)+log

|Σp|
|Σq|

+tr
(
Σ−1

p Σq

)]

=
1
2

√
(μp − μq)

T
[
Σ−1

q + Σ−1
p

]
(μp − μq) + tr

(
Σ−1

q Σp

)
+ tr

(
Σ−1

p Σq

)
− dp − dq. (E.4)
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if you want a guarantee
buy a toaster.

Clint Eastwood

F
Proof ofTheorem 1.

Lemma 4. For any two distributions P and Q, and α ∈ (0, 1] the Lα
1 distance is bounded by the KL

divergence in the following manner

∥P− Q∥α1 ≤ [2 · ln2 · DKL(P∥Q)]
α
2 (F.1)

Proof. Following Lemma 11.6.1 in [10],

1
2 · lan2

∥P− Q∥21 ≤ DKL(P∥Q), (F.2)

multiplying both sides by the positive constant 2 · ln2 and raising to the α
2 power we get

∥P− Q∥α1 ≤ [2 · ln2 · DKL(P∥Q)]
α
2 . (F.3)

Theorem1 (Bounded reward difference). Let r(b, u) be α−H..older continuous with λα and α ∈ (0, 1].
Let b and b′ denote two beliefs. Then the difference between r(b, u) and r(b′, u) is bounded by

| r(b, u)− r(b′, u) |≤ (4 · ln2)
α
2 · λα · Dα√

J(b, b
′). (F.4)

where

D√
J(b, b′) =

√
1
2
DKL(b||b′) +

1
2
DKL(b′||b), (F.5)

andDKL(.) is the KL divergence.

Proof. The reward function r(b, u) is α−H..older continuous with λα and α so following Eq. (4.4) in
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[23],
| r(b, u)− r(b′, u) |≤ λα · ∥b− b′∥α1 , (F.6)

using Lemma 4 we can rewrite the bound as

| r(b, u)− r(b′, u) |≤ (4 · ln2)
α
2 · λα ·

( 1
2
DKL(b∥b′)

) α
2
, (F.7)

adding a non-negative scalar to the right-most expression yields

| r(b, u)− r(b′, u) |≤ (4 · ln2)
α
2 · λα ·

( 1
2
DKL(b∥b′) +

1
2
DKL(b′∥b)

) α
2
, (F.8)

and finally using Eq. (E.1) we get

| r(b, u)− r(b′, u) |≤ (4 · ln2)
α
2 · λα · Dα√

J(b, b
′). (F.9)
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Never put a sock
in a toaster.

Eddie Izzard

G
Proof of Corollary 2.

Corollary 2 (of Theorem 1). Let r(b, u) be α−H..older continuous with λα and α ∈ (0, 1]. Let b and b′
denote two beliefs. Let ωi denote a positive weight, such that 0 ≤ ωi ≤ 1 , i ∈ {1, 2}. Then the weighted
difference between r(b, u) and r(b′, u) is given by

(ω1 − ω2)r(b′)− ω1 λ̄αDα√
J(b, b

′) ≤ ω1r(b)− ω2r(b′) ≤ ω1 λ̄αDα√
J(b, b

′) + (ω1 − ω2)r(b′) (G.1)

where
λ̄α ≜ λα (4 · ln2)

α
2 . (G.2)

Proof. Following Theorem 1, using the definition of (G.2)

| r(b, u)− r(b′, u) |≤ λ̄αDα√
J(b, b

′) (G.3)

−λ̄αDα√
J(b, b

′) ≤ r(b)− r(b′) ≤ λ̄αDα√
J(b, b

′) (G.4)

−ω1 λ̄αDα√
J(b, b

′) ≤ ω1r(b)− ω1r(b′) ≤ ω1 λ̄αDα√
J(b, b

′) (G.5)

−ω1 λ̄αDα√
J(b, b

′) ≤ ω1r(b)− ω2r(b′) + (ω2 − ω1)r(b′) ≤ ω1 λ̄αDα√
J(b, b

′) (G.6)

(ω1 − ω2)r(b′)− ω1 λ̄αDα√
J(b, b

′) ≤ ω1r(b)− ω2r(b′) ≤ ω1 λ̄αDα√
J(b, b

′) + (ω1 − ω2)r(b′) (G.7)
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People who think they know everything
are a great annoyance to those of us who do.

Issac Asimov

H
Proof ofTheorem 2.

Theorem2. Let r(b,u) be α−H..older continuous with λα and α ∈ (0, 1]. Let Jk+l|k+l and Jk+l|k be objective
values of the same time step k+ l, calculated based on information up to time k+ l and k respectively. Let L
be a planning horizon such that L ≥ k+ l+1. Let ni be the number of samples used to estimate the expected
reward at lookahead step i. Let ωj

i be non-negative weights such that 0 ≤ ωj
i ≤ 1 and

∑ni
j=1 ω

j
i = 1. Then

the difference (Jk+l|k+l − Jk+l|k) is bounded by

L∑
i=k+l+1

ni∑
j=1

ωj
i|k+l

[
rji|k −D

j
i

]
− Jk+l|k ≤ Jk+l|k+l − Jk+l|k ≤

L∑
i=k+l+1

ni∑
j=1

ωj
i|k+l

[
rji|k +D

j
i

]
− Jk+l|k

(H.1)
where

Dj
i = λα (4 · ln2)

α
2 Dα√

J(b
j[Xi|k+l], bj[Xi|k]). (H.2)

Proof. By definition,

Jk+l|k+l − Jk+l|k =
L∑

i=k+l+1

[
E ri(b[Xi|k+l], u)− E ri(b[Xi|k], u)

]
, (H.3)

assuming the measurement likelihood is not explicitly available, we approximate the expectation us-
ing samples,

Jk+l|k+l − Jk+l|k ≈
L∑

i=k+l+1

 ni∑
j=1

ωj
i|k+lr

j
i(bj[Xi|k+l], u)−

ni∑
j=1

ωj
i|kr

j
i(bj[Xi|k], u)

 (H.4)
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=
L∑

i=k+l+1

ni∑
j=1

[
ωj

i|k+lr
j
i|k+l − ωj

i|kr
j
i|k

]
. (H.5)

Using Corollary 2, for specific i, j we can write

(ωj
i|k+l − ωj

i|k)r
j
i|k − ωj

i|k+lD
j
i ≤ ωj

i|k+lr
j
i|k+l − ωj

i|kr
j
i|k ≤ ωj

i|k+lD
j
i + (ωj

i|k+l − ωj
i|k)r

j
i|k (H.6)

where
Dj

i = λα (4 · ln2)
α
2 Dα√

J(b
j[Xi|k+l], bj[Xi|k]). (H.7)

So following Eq. (H.6)

L∑
i=k+l+1

ni∑
j=1

[
(ωj

i|k+l − ωj
i|k)r

j
i|k − ωj

i|k+lD
j
i

]
≤ Jk+l|k+l − Jk+l|k

≤
L∑

i=k+l+1

ni∑
j=1

[
(ωj

i|k+l − ωj
i|k)r

j
i|k + ωj

i|k+lD
j
i

]
(H.8)

L∑
i=k+l+1

ni∑
j=1

ωj
i|k+l

[
rji|k −D

j
i

]
− Jk+l|k ≤ Jk+l|k+l − Jk+l|k

≤
L∑

i=k+l+1

ni∑
j=1

ωj
i|k+l

[
rji|k +D

j
i

]
− Jk+l|k. (H.9)

We can simplify this further by assuming that Jk+l|k+l is estimated using samples from the nominal
measurement likelihood, so the ωj

i|k+l weights are simply given by 1
ni
∀j,

L∑
i=k+l+1

1
ni

ni∑
j=1

[
rji|k −D

j
i

]
− Jk+l|k ≤ Jk+l|k+l− Jk+l|k ≤

L∑
i=k+l+1

1
ni

ni∑
j=1

[
rji|k +D

j
i

]
− Jk+l|k. (H.10)

184



You want proof ?!?
I’ll give you proof !

Sidney Harris

I
Proof ofTheorem 3.

Theorem3. Let r(b,u) be α−H..older continuous with λα and α ∈ (0, 1]. Let Jk+l|k+l and Jk+l|k be objective
values of the same time step k + l, calculated based on information up to time k + l and k respectively. Let
L be a planning horizon such that L ≥ l + 1. Then the difference (Jk+l|k+l − Jk+l|k) is bounded by

φ− ψ ≤ Jk+l|k+l − Jk+l|k ≤ φ + ψ, (I.1)

where

φ ≜
k+L∑

i=k+l+1

E
z∼pk

(ω− 1)ri|k (I.2)

ψ ≜ λα (4 · ln2)
α
2

(L− l)εαwf +
k+L∑

i=k+l+1

 i∑
j=k+l+1

E
z∼pk+l

Δj

 α
2

 , (I.3)

and

D√
J(b[Xi|k+l], b[Xi|k]) =

√
D2√

J(b[Xi−1|k+l], b[Xi−1|k]) + Δi, (I.4)

εwf = D√
J(b[Xk+l|k+l], b[Xk+l|k]), (I.5)

ω =
P(zk+l+1:k+L|Hk+l|k+l, uk+l:k+L−1)

P(zk+l+1:k+L|Hk+l|k, uk+l:k+L−1)
≜ pk+l

pk
. (I.6)
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Proof. By definition

Jk+l|k+l − Jk+l|k =
k+L∑

i=k+l+1

[
E

zk+l+1:k+L|k+l
ri(b[Xi|k+l], u)− E

zk+l+1:k+L|k
ri(b[Xi|k], u)

]
, (I.7)

where each expectation is over a different measurement likelihood. In order to use a single expecta-
tion over both rewards we use importance sampling (see Eq. (D.1)). For simplicity we define ω as
the likelihood ratio

ω =
P(zk+l+1:k+L|Hk+l|k+l, uk+l:k+L−1)

P(zk+l+1:k+L|Hk+l|k, uk+l:k+L−1)
=

pk+l

pk
, (I.8)

and can now re-write the objective difference under a single expectation

Jk+l|k+l − Jk+l|k =
k+L∑

i=k+l+1

E
z∼pk

[
ωri|k+l − ri|k

]
. (I.9)

Following Corollary 2 we can bound the reward difference in (I.9) with

(ω− 1)ri|k − ωDi ≤ ωri|k+l − ri|k ≤ ωDi + (ω− 1)ri|k, (I.10)

where
Di = λα (4 · ln2)

α
2 Dα√

J(b[Xi|k+l], b[Xi|k]). (I.11)

So the objective value difference is bounded by

k+L∑
i=k+l+1

E
z∼pk

[
(ω− 1)ri|k − ωDi

]
≤ Jk+l|k+l − Jk+l|k ≤

k+L∑
i=k+l+1

E
z∼pk

[
ωDi + (ω− 1)ri|k

]
(I.12)

k+L∑
i=k+l+1

E
z∼pk

(ω− 1)ri|k − E
z∼pk

ωDi ≤ Jk+l|k+l − Jk+l|k ≤
k+L∑

i=k+l+1

E
z∼pk

ωDi + E
z∼pk

(ω− 1)ri|k, (I.13)

or in a more compact manner

| Jk+l|k+l − Jk+l|k −
k+L∑

i=k+l+1

E
z∼pk

(ω− 1)ri|k |≤
k+L∑

i=k+l+1

E
z∼pk

ωDi. (I.14)

Let us define the delta distance between two consecutive lookahead steps as,

D√
J(b[Xi|k+l], b[Xi|k]) =

√
D2√

J(b[Xi−1|k+l], b[Xi−1|k]) + Δi, (I.15)
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so two sequential yet non consecutive lookahead steps can be written as

D√
J(b[Xi+1|k+l], b[Xi+1|k]) =

√
D2√

J(b[Xi−1|k+l], b[Xi−1|k]) + Δi + Δi+1. (I.16)

We will now continue with simplifying the RHS of (I.14),

k+L∑
i=k+l+1

E
z∼pk

ωDi =
k+L∑

i=k+l+1

E
z∼pk

ωλα (4 · ln2)
α
2 Dα√

J(b[Xi|k+l], b[Xi|k]) (I.17)

= λα (4 · ln2)
α
2

k+L∑
i=k+l+1

E
z∼pk

ωDα√
J(b[Xi|k+l], b[Xi|k]), (I.18)

using the connection given by (I.16) as well as moving back to expectation over pk+l we get

= λα (4 · ln2)
α
2

k+L∑
i=k+l+1

E
z∼pk+l

D2√
J(b[Xk+l|k+l], b[Xk+l|k]) +

i∑
j=k+l+1

Δj

 α
2

, (I.19)

≤ λα (4 · ln2)
α
2

k+L∑
i=k+l+1

E
z∼pk+l

ε2wf +
i∑

j=k+l+1

Δj

 α
2

, (I.20)

where α
2 ∈ (0, 1

2 ] so (.)
α
2 is a concave function, and−(.) α

2 is convex and following Jensen inequality
we get

k+L∑
i=k+l+1

E
z∼pk

ωDi ≤ λα (4 · ln2)
α
2

(L− l)εαwf +
k+L∑

i=k+l+1

 i∑
j=k+l+1

E
z∼pk+l

Δj

 α
2

 . (I.21)

Going back to (I.14),

| Jk+l|k+l − Jk+l|k −
k+L∑

i=k+l+1

E
z∼pk

(ω− 1)ri|k |≤
k+L∑

i=k+l+1

E
z∼pk

ωDi

≤ λα (4 · ln2)
α
2

(L− l)εαwf +
k+L∑

i=k+l+1

 i∑
j=k+l+1

E
z∼pk+l

Δj

 α
2

 . (I.22)

Using the definitions ofφ and ψ given respectively byEq.(I.2) andEq.(I.3), we can reformulate (I.22)
into

φ− ψ ≤ Jk+l|k+l − Jk+l|k ≤ φ + ψ. (I.23)
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For the special case where ω = 1we get

| Jk+l|k+l − Jk+l|k |≤ (4 · ln2)
α
2 · λα ·

(L− l) · εαwf +
k+L∑

i=k+l+1

 i∑
j=k+l+1

EΔj

 α
2

 . (I.24)
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Prejudice is a great time saver.
You can form opinions without having to get the facts.

E. B. White

J
Proof of Lemma 2

Lemma 2 (IncrementalDPQ distance). Let b1 and b2 be two gaussian beliefs with (μ1, Σ1) and (μ2, Σ2)
respectively, and their two (differently) propagated counterparts b1p and b2p with (μ1p, Σ1p) and (μ+2 , Σ2p).
When the propagated mean and covariance are defined as

μip = μi + ζ i , Σip =
(
Σ−1

i + AT
i Ai
)−1

, i ∈ [1, 2] ( J.1)

Then the squaredDPQ distance between the propagated beliefs can be written as

D2√
J

(
b1p, b2p

)
= D2√

J (b1, b2) + Δ, ( J.2)

where

Δ =
1
4
(μ2 − μ1)

T [AT
2 A2 + AT

1 A1
]
(μ2 − μ1) +

1
2
(μ2 − μ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1)

+
1
4
(ζ2 − ζ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1) +
1
4
tr
(
AT
2 A2Σ1p − Σ−1

2 Σ1AT
1 (I + A1Σ1AT

1 )
−1A1Σ1

)
+

1
4
tr
(
AT
1 A1Σ2p − Σ−1

1 Σ2AT
2 (I + A2Σ2AT

2 )
−1A2Σ2

)
− 1

2
(
dp − d

)
. ( J.3)

Proof. TheDPQ distance between b1 and b2 is thus given by

D2√
J (b1, b2) =

1
4
[
(μ2 − μ1)

T [Σ−1
1 + Σ−1

2

]
(μ2 − μ1) + tr(Σ−1

2 Σ1) + tr(Σ−1
1 Σ2)− d1 − d2

]
, ( J.4)

when di represents the dimension of the un-zero-padded Σi. Equivalently the distance between b1p
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and b2p is given by

D2√
J

(
b1p, b2p

)
=

1
4

[
(μ2p − μ1p)

T [Σ1p
−1 + Σ2p

−1] (μ2p − μ1p) + tr(Σ2p
−1Σ1p) + tr(Σ1p

−1Σ2p)− d1p − d2p
]

( J.5)

where d+i represents the dimension of the un-zero-padded Σ+
i .

We would like to show that

D2√
J

(
b1p, b2p

)
= D2√

J (b1, b2) + Δ. ( J.6)

We start from substituting Eq. (J.1) in the trace expression from Eq. (J.5)

tr(Σ2p
−1Σ1p) = tr(

(
Σ−1
2 + AT

2 A2
) (

Σ−1
1 + AT

1 A1
)−1

)

using Woodbury matrix identity [75] we can rewrite it as

tr(Σ2p
−1Σ1p) = tr(

(
Σ−1
2 + AT

2 A2
) (

Σ1 − Σ1AT
1 (I + A1Σ1AT

1 )
−1A1Σ1

)
).

After some simple manipulations we get

tr(Σ2p
−1Σ1p) = tr(Σ−1

2 Σ1) + tr
(
AT
2 A2Σ1p − Σ−1

2 Σ1AT
1 (I + A1Σ1AT

1 )
−1A1Σ1

)
. ( J.7)

In a similar manner we can get an expression for the symmetric trace expression in Eq. (J.5)

tr(Σ1p
−1Σ2p) = tr(Σ−1

1 Σ2) + tr
(
AT
1 A1Σ2p − Σ−1

1 Σ2AT
2 (I + A2Σ2AT

2 )
−1A2Σ2

)
. ( J.8)

Weare leftwith the square rootMahalanobis distance expression inEq. (J.5). By substitutingEq. (J.1)
in the aforementioned we get

(μ2p − μ1p)
T [Σ1p

−1 + Σ2p
−1] (μ2p − μ1p)

=(μ2 + ζ2 − μ1 − ζ1)
T [Σ−1

1 + AT
1 A1 + Σ−1

2 + AT
2 A2
]
(μ2 + ζ2 − μ1 − ζ1)

=(μ2 − μ1)
T [Σ−1

1 + Σ−1
2

]
(μ2 − μ1) + (μ2 − μ1)

T [AT
2 A2 + AT

1 A1
]
(μ2 − μ1)+

2(μ2 − μ1)
T [Σ1p

−1 + Σ2p
−1] (ζ2 − ζ1) + (ζ2 − ζ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1). ( J.9)

By substituting Eqs. (J.7)-(J.9) in Eq. (J.5) we receive

D2√
J

(
b1p, b2p

)
= D2√

J (b1, b2) + Δ, ( J.10)
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where

Δ =
1
4
(μ2 − μ1)

T [AT
2 A2 + AT

1 A1
]
(μ2 − μ1) +

1
2
(μ2 − μ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1)

+
1
4
(ζ2 − ζ1)

T [Σ1p
−1 + Σ2p

−1] (ζ2 − ζ1) +
1
4
tr
(
AT
2 A2Σ1p − Σ−1

2 Σ1AT
1 (I + A1Σ1AT

1 )
−1A1Σ1

)
+

1
4
tr
(
AT
1 A1Σ2p − Σ−1

1 Σ2AT
2 (I + A2Σ2AT

2 )
−1A2Σ2

)
− 1

2
(
dp − d

)
. ( J.11)

When considering future beliefs, which are a function of future measurements, the belief solu-
tion is a random variable depending on the future measurement. As such Δ in Eq. (J.11), which is a
function of belief solution, is in-fact a random variable.
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I’m sorry, if you were right,
I’d agree with you.

Robin Williams

K
Proof of Lemma 3.

Lemma 5 (state estimation increment as a random variable). Let μ denote the state estimate of some
gaussian belief b = N (μ0, Σ0). Let bp denote the gaussian belief resulting from propagating b with some
action u and some measurements z using the linear Gaussian models (6.49)-(6.50). Let μp denote the state
estimate bp and define a new random variable ζ = μp − μ. Then

ζ ∼ N (μζ , Σζ), (K.1)

where

μζ = σ21
(
Σ−1
0 μ0 −F

TΣ−1
w J u

)
+ σ22

(
Σ−1

w J u +HTΣ−1
v (HFμ0 +HJ u)

)
− μ0 (K.2)

Σζ = σ22HTΣ−1
v HFΣ0FTHTΣ−1

v Hσ22 + σ22HTΣ−1
v HΣwHTΣ−1

v Hσ22 + σ22HTΣ−1
v Hσ22 (K.3)

[
σ11 σ12
σ21 σ22

]
=

[
Σ−1
0 + FTΣ−1

w F −FTΣ−1
w

−Σ−1
w F Σ−1

w +HTΣ−1
v H

]−1

. (K.4)

Proof. see Appendix L.

Lemma 3 (Incremental D√
J distance as Gaussian Quadratic). Let b1 and b2 be two Gaussian beliefs

N (μ1, Σ1) andN (μ2, Σ2), respectively with state dimension d, and their two propagated counterparts b1p
and b2p with N (μ1p, Σ1p) N (μ2p, Σ2p) and with state dimension dp. There exist ζ i and Ai such that the
propagated mean and covariance are given by,

μip = μi + ζ i , Σip =
(
Σ−1

i + AT
i Ai
)−1

, i ∈ [1, 2]. (K.5)
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Then the incrementalD√
J distance Δ ≜ D2√

J

(
b1p, b2p

)
− D2√

J (b1, b2) is a quadratic form of a gaussian
variable.

Proof. The incremental D√
J distance under the assumption of linear Gaussian models is given by

Lemma 2. Let us define a new variable S such that

S = ζ2 − ζ1. (K.6)

We can now re-write the result for Δ given by Lemma 2 in terms of S ,

Δ(S) = STCS + cTS + y, (K.7)

where

C =
1
4
[
Σ1p

−1 + Σ2p
−1] (K.8)

c =
1
2
(μ2 − μ1)

T [Σ1p
−1 + Σ2p

−1] (K.9)

y =
1
4
(μ2 − μ1)

T [AT
2 A2 + AT

1 A1
]
(μ2 − μ1)

+
1
4
tr
(
AT
2 A2Σ1p − Σ−1

2 Σ1AT
1 (I + A1Σ1AT

1 )
−1A1Σ1

)
+

1
4
tr
(
AT
1 A1Σ2p − Σ−1

1 Σ2AT
2 (I + A2Σ2AT

2 )
−1A2Σ2

)
− 1

2
(
dp − d

)
. (K.10)

Eq (K.7) presents Δ as a quadratic form of S leaving us to find how S is distributed.
Following Lemma 5, we know the distribution of ζ i, thus frombeing a linear combination ofGaus-

sian variables we know the distribution of S to be also Gaussian

S ∼ N (μS , ΣS) (K.11)

where

μS = μζ2
− μζ1

, (K.12)

ΣS = Σζ2 + Σζ1 + 2Σζ1ζ2 . (K.13)

So Δ is a quadratic form of the Gaussian variable S .
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When I eventually met Mr. Right
I had no idea that his first name was Always.

Rita Rudner

L
Proof of Lemma 5.

Lemma 5 (state estimation increment as a random variable). Let μ denote the state estimate of some
gaussian belief b = N (μ0, Σ0). Let bp denote the gaussian belief resulting from propagating b with some
action u and some measurements z using the linear Gaussian models (6.49)-(6.50). Let μp denote the state
estimate bp and define a new random variable ζ = μp − μ. Then

ζ ∼ N (μζ , Σζ), (L.1)

where

μζ = σ21
(
Σ−1
0 μ0 −F

TΣ−1
w J u

)
+ σ22

(
Σ−1

w J u +HTΣ−1
v (HFμ0 +HJ u)

)
− μ0 (L.2)

Σζ = σ22HTΣ−1
v HFΣ0FTHTΣ−1

v Hσ22 + σ22HTΣ−1
v HΣwHTΣ−1

v Hσ22 + σ22HTΣ−1
v Hσ22 (L.3)

[
σ11 σ12
σ21 σ22

]
=

[
Σ−1
0 + FTΣ−1

w F −FTΣ−1
w

−Σ−1
w F Σ−1

w +HTΣ−1
v H

]−1

. (L.4)

Proof. Because the belief bp resulted from propagating the belief b with motion and measurements,
using Bayes rule we can write it as proportional to

bp ∝ b · P(x′|x, u)P(z|x′), (L.5)

without affecting generality let us assume a single measurement is considered. Denoting X =

[
x
x′

]
,
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the inference solution of bp can be obtained through MAP estimation

X̂ = argmax
X

b · P(x′|x, u)P(z|x′), (L.6)

taking the negative log yields the following LS problem

X̂ = argmin
X
∥x− μ0∥

2
Σ0
+ ∥x′ −Fx− J u)∥2Σw

+ ∥z−Hx∥2Σv
, (L.7)

where (6.49)-(6.50) were used for linearmotion andmeasurementmodels with zeromeanGaussian
noises

x′ = Fx + J u + w , w ∼ N (0, Σw),

z = Hx + v , v ∼ N (0, Σv).

We can further reformulate the problem into a LS form

X̂ = argmin
X
∥A · X− b∥2, (L.8)

where

A =

 Σ− 1
2

0 0
−Σ− 1

2
w F Σ− 1

2
w

0 Σ− 1
2

v H

 , b =

 Σ− 1
2

0 μ0
Σ− 1

2
w J u
Σ− 1

2
v z

 . (L.9)

The solution to the inference problem is given by

X ∼ N
(
ΣATb, Σ

)
(L.10)

where the joint covariance matrix is given by

Σj = (ATA)−1 =

[Σ− 1
2

0 −FTΣ− 1
2

w 0
0 Σ− 1

2
w HTΣ− 1

2
v

]
·

 Σ− 1
2

0 0
−Σ− 1

2
w F Σ− 1

2
w

0 Σ− 1
2

v H




−1

(L.11)

Σj =

[
Σ−1
0 + FTΣ−1

w F −FTΣ−1
w

−Σ−1
w F Σ−1

w +HTΣ−1
v H

]−1

=

[
σ11 σ12
σ21 σ22

]
, (L.12)

for the readers convenience we denote the block matrices of Σj by σ i,j, where they can be calculated
explicitly through the Schur complement. So the joint state estimation is given by

X̂ =

[
σ11 σ12
σ21 σ22

][
Σ− 1

2
0 −FTΣ− 1

2
w 0

0 Σ− 1
2

w HTΣ− 1
2

v

] Σ− 1
2

0 μ0
Σ− 1

2
w J u
Σ− 1

2
v z

 , (L.13)
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and we can write the state estimation of x′ explicitly as

μp = x̂′ = σ21
(
Σ−1
0 μ0 −F

TΣ−1
w J u

)
+ σ22

(
Σ−1

w J u +HTΣ−1
v z
)
. (L.14)

Now that we have developed the state estimation, we are in position to express ζ in terms of the
state estimations

ζ = μp − μ0 = σ21
(
Σ−1
0 μ0 −F

TΣ−1
w J u

)
+ σ22

(
Σ−1

w J u +HTΣ−1
v z
)
− μ0 (L.15)

through the measurement and motion models we know

z = HFx +HJ u +Hw + v. (L.16)

Following z is a linear transformation of a gaussian variable, it is also a gaussian variable with

z ∼ N (HFμ0 +HJ u,HFΣ0FTHT +HΣwHT + Σv), (L.17)

the same result can be obtained by explicitly calculating the pdf of themeasurement likelihood func-
tion as presented in Appendix N. Using (L.17) and the connection provided in (L.15) we can say
that as a linear transformation of a gaussian variable, ζ too is a gaussian variable with

ζ ∼ N (μζ , Σζ) (L.18)

where

μζ = σ21
(
Σ−1
0 μ0 −F

TΣ−1
w J u

)
+ σ22

(
Σ−1

w J u +HTΣ−1
v (HFμ0 +HJ u)

)
− μ0 (L.19)

Σζ = σ22HTΣ−1
v HFΣ0FTHTΣ−1

v Hσ22 + σ22HTΣ−1
v HΣwHTΣ−1

v Hσ22 + σ22HTΣ−1
v Hσ22 (L.20)
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What’s right is what’s left
if you do everything else wrong.

Robin Williams

M
Proof of Corollary 3.

Lemma 6 (Moments of Gaussian Quadratic). Let Δ be quadratic expression Δ = STCS + cTS + y,
where CT = C, S ∼ N (μ, Σ), and Σ > 0. Then the first two moments of Δ are given by

E[Δ] = tr(Σ
1
2CΣ

1
2 ) + μTCμ + cTμ + y (M.1)

E[Δ]2 = 2tr(Σ
1
2CΣCΣ

1
2 ) + ∥c + 2Cμ∥2Σ (M.2)

where ∥.∥2Σ is the Mahalanobis distance.

Proof. This is Theorem 3.2b.3 in [52].

Interestingly enough, there are specified conditions under-which aGaussian quadratic form is dis-
tributed as a non-central χ2 distribution, although not required for our proof we supply these condi-
tions in Appendix O for completion.

Corollary 3 (ofTheorem3). Let r(b,u) be α−H..older continuous with λα and α ∈ (0, 1]. Let Jk+l|k+l and
Jk+l|k be objective values of the same time step k+ l, calculated based on information up to time k+ l and k
respectively. Let L be a planning horizon such that L ≥ l + 1. Let the motion and measurement models be
linear with additive Gaussian noise (6.49)-(6.50). Then the bound of (Jk+l|k+l − Jk+l|k) can be explicitly
calculated.

Proof. Following Theorem 3, the difference (Jk+l|k+l − Jk+l|k) is bounded where the bound is given
by Eq. (I.1). In order to explicitly calculate (I.1) we are left with calculating the expected value of
Δj ∀j, where the rewards rik are given from previously calculated planning session, and just need to
be re-weighted using (ω − 1). Following Lemma 3 we know Δj to be a quadratic expression of the
Gaussian multinomial variable Sj ∼ N

(
μSj

, ΣSj

)
Δj = ST

j CjSj + cTj Sj + yj,
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where Cj, cj and yj are respectively given by Eqs. (K.8)-(K.10). As such following Lemma 6, the first
moment of Δj is readily given by

EΔj = tr(Σ
1
2
Sj
CΣ

1
2
Sj
) + μT

Sj
CjμSj

+ cTj μSj
+ yj. (M.3)
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A child of five would understand this.
Send someone to fetch me a child of five.

Groucho Marx

N
Measurement LikelihoodUnder Linear Gaussian

Models.

In this section we calculate the measurement likelihood probability under the assumption of linear
gaussian models. We will show that under these assumptions the measurement likelihood is gaus-
sian. Our proof starts with introducing the state into the measurement likelihood, followed by some
manipulations tomarginalize the state out and be leftwith a gaussian function over themeasurement.

We start by introducing the state into themeasurement likelihood, which allows us to get an equiv-
alent expression with the measurement and motion models,

P(z|H−) =

∫
P(z|x)P(x|H−)dx (N.1)

where
P(z|x) = N (Hx, Σv) , P(x|H−) = N (μp, Σp) (N.2)

μp = Fμ0 + Ju , Σp = Σw + FΣ0FT. (N.3)

P(z|H−) =

∫
1√

(2π)dz | Σv |
e−

1
2∥z−Hx∥2Σv

1√
(2π)dx | Σp |

e−
1
2∥x−μp∥2Σpdx. (N.4)

Let us look only at the argument of the exponent (divided by− 1
2)

∥z− Hx∥2Σv
+ ∥x− μp∥

2
Σp

= (z− Hx)TΣ−1
v (z− Hx) + (x− μp)

TΣ−1
p (x− μp) (N.5)

= zTΣ−1
v z− 2xTHTΣ−1

v z + xTHTΣ−1
v Hx + xTΣ−1

p x− 2xTΣ−1
p μp + μT

pΣ
−1
p μp (N.6)
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= xT(HTΣ−1
v H + Σ−1

p )x− 2xT(HTΣ−1
v z + Σ−1

p μp) + zTΣ−1
v z + μT

pΣ
−1
p μp. (N.7)

Let us define

Σx
.
= (HTΣ−1

v H + Σ−1
p )−1 = Σp − ΣpHT(Σv + HΣpHT)−1HΣp (N.8)

μx
.
= (HTΣ−1

v H + Σ−1
p )−1(HTΣ−1

v z + Σ−1
p μp) = Σx(HTΣ−1

v z + Σ−1
p μp) (N.9)

now we can reformulate (N.7) as

∥z− Hx∥2Σv
+ ∥x− μp∥

2
Σp

= xTΣ−1
x x− 2xTΣ−1

x μx + μT
xΣ

−1
x μx − μT

xΣ
−1
x μx + zTΣ−1

v z + μT
pΣ

−1
p μp (N.10)

= ∥x− μx∥
2
Σx
− μT

xΣ
−1
x μx + zTΣ−1

v z + μT
pΣ

−1
p μp. (N.11)

Going back to (N.4) we get

P(z|H−)

=

√
| Σx |

(2π)dz | Σp || Σv |
e−

1
2(zTΣ−1

v z+μT
p Σ

−1
p μp−μT

x Σ
−1
x μx)

∫
1√

(2π)dx | Σx |
e−

1
2∥x−μx∥2Σxdx (N.12)

=

√
| Σx |

(2π)dz | Σp || Σv |
e−

1
2(zTΣ−1

v z+μT
p Σ

−1
p μp−μT

x Σ
−1
x μx). (N.13)

We now try to reformulate the exponent argument in (N.13) into a quadratic form

zTΣ−1
v z + μT

pΣ
−1
p μp − μT

xΣ
−1
x μx (N.14)

= zTΣ−1
v z + μT

pΣ
−1
p μp − (HTΣ−1

v z + Σ−1
p μp)

TΣx(HTΣ−1
v z + Σ−1

p μp) (N.15)

= zT [Σ−1
v − Σ−1

v HΣxHTΣ−1
v

]
z− 2zTΣ−1

v HΣxΣ−1
p μp − μT

pΣ
−1
p ΣxΣ−1

p μp + μT
pΣ

−1
p μp (N.16)

Let us define

Σz
.
=
[
Σ−1

v − Σ−1
v HΣxHTΣ−1

v

]−1
=
[
Σ−1

v − Σ−1
v H(HTΣ−1

v H + Σ−1
p )−1HTΣ−1

v

]−1
(N.17)

Σz
.
= Σv + HΣpHT (N.18)

μz
.
=
(
Σv + HΣpHT) Σ−1

v HΣxΣ−1
p μp (N.19)

now we can reformulate (N.16) as

= zTΣ−1
z z− 2zTΣ−1

z μz + μT
z Σ

−1
z μz − μT

z Σ
−1
z μz − μT

pΣ
−1
p ΣxΣ−1

p μp + μT
pΣ

−1
p μp (N.20)
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= ∥z− μz∥
2
Σz
− μT

z Σ
−1
z μz − μT

pΣ
−1
p ΣxΣ−1

p μp + μT
pΣ

−1
p μp. (N.21)

Using (N.21) in (N.13) we get

P(z|H−) =

√
| Σx || Σz |
| Σp || Σv |

e−
1
2(−μT

z Σ
−1
z μz−μT

p Σ
−1
p ΣxΣ−1

p μp+μT
p Σ

−1
p μp) 1√

(2π)dz | Σz |
e−

1
2∥z−μz∥2Σz . (N.22)

Now let us use the fact that P(z|H−) is a valid pdf over z

∫
P(z|H−)dz

=

∫ √
| Σx || Σz |
| Σp || Σv |

e−
1
2(−μT

z Σ
−1
z μz−μT

p Σ
−1
p ΣxΣ−1

p μp+μT
p Σ

−1
p μp) 1√

(2π)dz | Σz |
e−

1
2∥z−μz∥2Σzdz (N.23)

=

√
| Σx || Σz |
| Σp || Σv |

e−
1
2(−μT

z Σ
−1
z μz−μT

p Σ
−1
p ΣxΣ−1

p μp+μT
p Σ

−1
p μp)

∫
1√

(2π)dz | Σz |
e−

1
2∥z−μz∥2Σzdz (N.24)

=

√
| Σx || Σz |
| Σp || Σv |

e−
1
2(μT

p (Σ
−1
p −Σ−1

p ΣxΣ−1
p )μp−μT

z Σ
−1
z μz) = 1 (N.25)

using the matrix determinant lemma over | Σx |we get√
| Σx || Σz |
| Σp || Σv |

=

√
| Σv + HΣpHT || Σ−1

p + HTΣ−1
v H |−1

| Σp || Σv |

=

√
| Σ−1

p + HTΣ−1
v H || Σp || Σv |

| Σ−1
p + HTΣ−1

v H || Σp || Σv |
= 1, (N.26)

meaning the following has to hold

μT
p (Σ

−1
p − Σ−1

p ΣxΣ−1
p )μp = μT

z Σ
−1
z μz. (N.27)

And so
P(z|H−) = N (μz, Σz) (N.28)

where

Σz
.
= Σv + HΣpHT = Σv +HΣwHT +HFΣ0FTHT (N.29)

μz
.
=
(
Σv + HΣpHT) Σ−1

v HΣxΣ−1
p μp = HFμ0 +HJ u. (N.30)
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Procrastination is the art
of keeping up with yesterday.

Don Marquis

O
GaussianQuadratic as χ2

Lemma 7. Let Δ be quadratic expression Δ = STCS + cTS + y, where CT = C, S ∼ N (μ, Σ), and
Σ > 0. Then the set of necessary and sufficient conditions for Δ to be distributed as non-central χ2 with
non-centrality parameter δ2 and degrees of freedom r is that

CΣC = C (O.1)

r = tr(CΣ) (O.2)

c = CΣc , y =
1
4
cTΣc , δ2 = μTCμ + μTc + y (O.3)

Proof. This is Theorem 5.1.4 in [52].
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 יחרפ דעלא  ןמלדניא םידאו :החנמ

II 

 ךילהת תא תעצבמ )iX-BSP( רבע ינונכת לע תוססבתה ךות תואדוו יא תחת תוטלחה תלבק ,המוד ןפואב

 תוטלחה תלבק יכילהתמ םינימזה ןונכת יצע לש לכשומ ןוכדע י״ע ילטנמרקניא ןפואב תוטלחהה תלבק

  .ומלשוה רבכש

 ךמתסהב תיתורבתסהה הקסהה ןוכדע ,םויכ תומייקה תושיגל ינורקע יוניש הווהמש השיג םיעיצמ ונחנא

 ןונכת ןיב םויכ תומייקה תוציחמה לע רגית תארוק ונלש השיגה .יתורבתסהה הנומאה בחרממ םירצות לע

 תלבק ךילהתב ועצובש םיכילהתב שומיש ,ישונאה חומה ומכ קוידבש המיגדמו תיתורבתסה הקסהל

 תברקהב ךרוצ אלל םירקי בושיח ינמז תיתועמשמ רצקל םירשפאמ הקסהה ךילהת תבוטל תוטלחהה

 .ןורתפה קויד

 רתויב תומדקתמה תושיגל ןתאוושה ךות ,םישיחרת ןווגמב ונלש תושיגה תא ונקדב רקחמהמ קלחכ

 םישיחרת ןווגמב ,יתימא עדימ סיסב לע ןהו יביטלומיס עדימ סיסב לע ןה התשענ האוושהה .םויכ תומייקה

 ונלש תושיגה ,יופצכ .הובג דמממ בצמ רוטקוו תיאדוו אלו העודי אל הביבס וניה םלוכל ףתושמה רשא

 .ןורתפה קוידב העיגפ לכ אלל ,םויכ הגוהנה השיגל סחיב יתועמשמ יבושיח ןורתי תומיגדמ

 רשפאת תיתורבתסה הקסהו תואדוו יא תחת תוטלחה תלבק יכילהתב ונלש תוינשדחה תושיגה תעמטה

 השוע איה םא ןיב ,תימונוטוא תכרעמ וא תיתוכאלמ הניב לכ לש בושיחה ינמז תא תילאיצנטופ לעייל

 תלבק ךילהתו הקסהה יכילהת לע היפל ,הסיפתה יוניש .ואל םא ןיבו םיברוקמ תונורתפב שומיש

 רגית וארקיש תיתוכאלמה הניבה םלועב םיפסונ לועיי יכילהתל חתפ חתופ ,םידרפומ תויהל תוטלחהה

 .ךדיאמ המידק ףסונ דעצ תיתוכאלמה הניבה תא ומדקיו דחמ םויכ תולבוקמה תומגידרפה לע

 

   

 

 

 



 יחרפ דעלא  ןמלדניא םידאו :החנמ

I 

 ןווקמ ימונוטוא טווינ רובע דוחא יתגרדה ןונכתו ךורעיש

 ריצקת

 ינוידבה עדמה םלועל םיידעלבה םיאשונ תויהל ולדח ןמזמ רבכ תיתוכאלמ הניבו תוימונוטוא תוכרעמ

 רואל תיתוכאלמ הניב לש "בהזה רות"-כ תיחכונה הפוקתה תא םירידגמ םיבר .אמייק רב תואיצמל וכפהו

  .ןורחאה רושעב םוחתב הברה תומדקתההו םיחותיפה

 ההובג תונימא תמרבו תוליעיב עצבל שרדנש )םי(ןכוס םיברעמ תיתוכאלמ הניבו תוימונוטוא תוכרעמ

 עדימ םע וא םידקמ עדימ אלל בורל ,תואדוו יא תורוקמ לש עפש םע הביבסב תואצמיה ךות תומישמ ןווגמ

 לע תיתורבתסה הקסה עצבל תימונוטואה תכרעמה תא םיכירצמ ולא םיאנת .הביבס התוא לע לבגומ

  .תכרעמה דוקפתלו המישמל םירושקה םינתשמ לש בחר ןווגמ

 ךורעש ,םיירוזחמו םיבקוע םייסיסב םיכילהת ינש ליכהל תבייח תיתוכאלמ הניב וא תימונוטוא תכרעמ לכ

 םיוסמ דעיל עיגהל שרדנש טובור ,טווינה םלועמ אמגוד חקינ םא .תואדוו-יא תחת תוטלחה תלבקו

 לש ךילהת עצבל ,)תיתורבתסה הקסה( ותוא דבעלו הביבסה לע עדימ ףוסאל ךירצ העודי אל הביבסב

 התוא תא םשייל ,הביבסב ובצמו הביבסה יבגל תואדוו יא תחת הטלחה לבקל ,וכרד ךשמה יבגל ןונכת

 תרכומ אל הביבסב דחוימב ,הזכש ךילהת ,םויהל ןוכנ .הלילח רזוחו הביבסהמ עדימ ףוסאל בוש ,הטלחה

 .תמא ןמזב דוקפת רשפאמ וניאו תיבושיח דואמ רקי וניה ,םינתשמ לש בר רפסמ םעו תואדוו יא תחת

 ןורתפה קויד תא תובירקמש תוברוקמ תוטישב םויכ םישמתשמ ,תמא ןמזב הדובע רשפאל תנמ לע

  .בושיחה ינמז רופיש תבוטל

 לחה ,בר ירקחמ ןיינע ורצי תואדוו יא תחת תוטלחה תלבקו ךורעשה יכילהת ןיב ןוימדה תונורחאה םינשב

 םיצמאמה תורמל .םיכילהתה ינש ןיב תוילאודה תניחבב הלכו הדוחא תיבושיח תרגסמ חתפל תונויסינב

 ינשכ םיספתנ םדוע תואדוו-יא תחת תוטלחה תלבקו ךורעש וא ,הרקבהו ךורעשה יכילהת ,םוחתב

 .םידרפנ םיכילהת

 .וללה םיכילהתה עוציבל םויכ תמייקה השיגב תינבומ תוליעי יאב ונלקתנ ,ונלש רקחמהמ קלחכ

 הקסהל ןונכת ןיב םויכ תומייקה תוציחמה לע רגית תארוקש ונלש רקחמה תשיגל הארשההו היצביטומה

 םיעיצמ ונא וז חורב .ישונאה חומה – ונלוכל תרכומה תימונוטואה הניבה תכרעממ החוקל תיתורבתסה

  .)JIP הנוכמה( תכרעמה התואב םיפתושמ םיקלחכ יתגרדה ןונכתו ךורעשל תסחייתמה השדח השיג

 הקסהה ןוכדעל תושדח תושיג יתש ונחתיפ ,JIP -ב שומישה תחת תרשפאתמה תויפותישה ךרד

 תומייקה תושיגל ינורקע יוניש תווהמ וללה תושיגה .תואדוו-יא תחת תוטלחה תלבקלו תיתורבתסהה

 )RUBI הנוכמה( יתורבתסהה הנומאה בחרממ םירצות לע ךמתסהב תיתורבתסהה הקסהה ןוכדע ,םויכ

 .)iX-BSP הנוכמה( רבע ינונכת לע תוססבתה ךות תואדוו יא תחת תוטלחה תלבקו

 רצקל תרשפאמ )RUBI( יתורבתסהה הנומאה בחרממ םירצות לע ךמתסהב תיתורבתסהה הקסהה ןוכדע

 םיבושיחו םיכילהתב שומיש תועצמאב ,ןורתפה קויד תברקהב ךרוצ אלל םירקי בושיח ינמז תיתועמשמ

  .םידקמה תוטלחה תלבק ךילהתב ועצוב רבכש
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