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Abstract— We propose an algorithm for robust visual classi-
fication of an object of interest observed from multiple views
using a black-box Bayesian classifier which provides a measure
of uncertainty, in the presence of significant ambiguity and
classifier noise, and of localization error. The fusion of classifier
outputs takes into account viewpoint dependency and spatial
correlation among observations, as well as pose uncertainty
when these observations are taken and a measure of confidence
provided by the classifier itself. Our experiments confirm an
improvement in robustness over state-of-the-art.

I. INTRODUCTION

Object detection and classification is a component of
situational awareness important to many autonomous systems
and key to many tasks, especially, but not only, involving
direct interfacing to humans. The mobility of robotic systems
is widely exploited to overcome classical limitations of static,
one-point-of-view approach to image classification such as
occlusions, class aliasing (due to classifier imperfections
or objects that appear similar from certain viewpoints),
imaging problems, false detections. It is done by accumu-
lating classification evidence across multiple observations
and viewpoints, including a recent surge in active methods
for autonomous classification, where next viewpoints are
automatically selected. Variations in object appearance are
often directly addressed using offline-built class models for
inference rather than raw classifier measurements. Especially
in the active methods, such models are often themselves
spatial and view-dependent (Fig. 1). As was shown by Teacy
et al. [18] and Velez et al. [19] view-dependent models
can allow for better fusion of classifier measurements by
modelling correlations among similar viewpoints instead of
the common but usually false assumption of independence
of measurements.

Reliance on spatial models however introduces new prob-
lems, as robot localization is usually not precisely resolved,
leading to errors when matching measurements against the
model. This is aggravated in the presence of classifier
measurements actually not complying to the model, as may
happen for example when a classifier is deployed in an
environment different in appearance from the one it was
trained on, for example - in another country where objects
semantically identical to the ones in the training set look
differently. In the latter case, classifier output would often
be arbitrary, rather than reflect the actual uncertainty, known
as model uncertainty [7]. In the domain of Bayesian deep
learning, methods exist to approximate the above as network
posterior [4], [7], [12], for example using test-time dropout
[6], which allows to (approximately) obtain it for virtually
any deep learning-based classifier without change in model.

easting
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

-15

-10

-5

0

5

10

la
b
e
l

la
b
e
l

response

la
b
e
l

respo

la
b
e
l

response

la
b
e
l

northing

Fig. 1: GP model for class created from classifier output samples (entire classification
vectors) at known relative locations around object. In our simulation scenarios, samples
and their locations were specified manually for each of the classes.

Existing classification fusion methods do not address
model uncertainty. Indeed, with few exceptions most current
methods discard also the classification vector commonly
output by the classifier, only using the most likely class (com-
ponent with highest response) for belief update. Likewise,
most methods ignore uncertainty in localization, assuming it
perfectly known.

In this paper, we seek to (a) develop a method for fusing
responses of a classifier which provides a model uncertainty
measure, while (b) accounting for viewpoint-dependent vari-
ations in object appearance and correlations in classifier
responses, and (c) accounting for localization uncertainty. We
confirm in simulation that our method provides robustness
with respect to the above sources of uncertainty compared
to current methods.

II. RELATED WORK

Visual classification fusion methods can be roughly split
into methods directly using classifier scores [11], [14], and
methods matching classifier measurements to a statistical
model [1], [2], [13], [18], [19], or fusing them using a
specially trained classifier [15]. The rationale for using a
class model rather than individual classifier measurements
lies in the variation in object appearance and background
with viewpoint, which cannot always be correctly captured
by the classifier, as well as situations where training data is
not representative of the test data, e.g. where classifier was
not or cannot be retrained specifically for the domain where
it is deployed and therefore its responses cannot be directly
relied upon. Among these, viewpoint-dependent object ap-
pearance (and hence, classifier response) are accounted for
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Fig. 2: Robot acquires observations along track in the vicinity of the object of interest.
At each time step, classifier outputs a cloud of classification vectors reflecting the model
uncertainty, unlike a single vector measurement (red dot) or a component thereof in
other approaches.

by [13] as classifier noise, while other works [1]–[3], [18],
[19] model spatial variation directly.

A common assumption to many classification methods is
that of statistical independence of individual class measure-
ments. This assumption is generally false, e.g. observations
from the same or similar poses are likely to be extremely
similar, resulting in similar classifier responses. Consider-
ing these observations as independent leads to an overly-
confident posterior. Velez et al. [19] and Teacy et al. [18]
deal with this by learning Gaussian Process regressors [16]
to describe both per-class spatial variation in classifier re-
sponses and spatial statistical dependence.

Another often violated common assumption is that of
known robot localization [1], [14], [18], [19]. This is specif-
ically the weakness of methods modelling spatial variation
of classifier responses, as localization error may introduce
class aliasing when matching classifier responses against a
spatial model. Becerra et al. [2], [3] address these aspects
directly, however, while resorting to pose space discretization
and considering the corresponding motion planning problem
within a POMDP framework.

Recently, Gal et al. [5], [6] have shown that (Monte-Carlo,
MC) dropout can be interpreted as an approximation to model
uncertainty of a bayesian neural network classifier, expressed
as posterior distribution of the output for Gaussian priors on
weights. Model uncertainty quantifies the reliability of clas-
sifier responses for given input data [9], [10], complementing
the classifier response vector (softmax output). While there
are other ways of approximating network posterior [4], [12]
and other reliability measures [17], MC dropout is both
theoretically grounded and practical since it requires no
change in architecture or special heavy computations which
are not otherwise part of the model.

Building upon the approach of Teacy et al. [18], we
develop a method for object classification from multiple
views which is aware of classifier model uncertainty, robot
localization uncertainty, and accounts for spatial correlation

among views.

III. NOTATIONS AND PROBLEM FORMULATION

Consider a robot traversing an unknown environment, tak-
ing observations of different scenes. Robot motion between
times tk and tk+1 is initiated by a control input uk, that may
originate from a human user, or be determined by a motion
planning algorithm. We denote the robot pose at time instant
k by xk, and by X0:k = {x0, . . . , xk} the sequence of poses
up to that time. Let Hk = {U0:k−1,Z0:k} represent the his-
tory, comprising observations Z0:k = {z0, . . . , zk} and con-
trols U0:k−1 = {u0, . . . , uk−1} up until time k. We focus on
the task of classification of a single object belonging to one
of Nc known classes, denoted by indexes C = {1, . . . , Nc}.

Our goal is to maintain the classification posterior, or
belief, at time instant k:

b[ck]
.
= P(c | Hk). (1)

The classification posterior is the probability of the object in
question to belong to class c ∈ C, given all measurements
and user controls up to time k. In calculating this posterior
we want to take into account spatial correlation among
measurements, model uncertainty, as well as uncertainty
in the positions from which these measurements are taken
(localization uncertainty).

A. Classifier Model

Commonly, the classifier output can be interpreted as
a categorical distribution over classes (e.g. by applying
softmax to its outputs). However, high responses may be
unstable, specifically, when inputs are far from training data.
We use the technique proposed by Gal and Gahrahmani [7]
to obtain an approximation for the model uncertainty of
the neural network classifier we are using. In short, for
every classifier input we perform several forward passes
applying random dropouts at each pass, to obtain a set of
classification vectors, characterizing the uncertainty, yielding
classifier output as shown in Fig. 2. We chose this method for
its simplicity, although Myshkov and Julier [12] show that
it may underestimate the model uncertainty in some cases.
Formally, we assume that the robot has at its disposal an
object classifier unit, which, given observation zk (e.g., an
image), calculates a set of outputs Sk , {sk}, where each
output sk ∈ RNc×1 represents a categorical belief over the
class of the observed object, i.e.

∑Nc

i=1 s
(i)
k = 1.

The set Sk can be interpreted as an approximation to the
distribution

P(s | zk), (2)

carrying information of the classifier’s model uncertainty [9]
for the given input zk.

B. Viewpoint-Dependent Class Model

For the class likelihood we use a model similar to the
one proposed by Teacy et al. [18]. For a single classifier



measurement s (categorical vector) made from relative pose
x(rel), the class likelihood is a probabilistic model

P(s | c, x(rel)
k ), (3)

where c ∈ C is the object class, and the k subscript denotes
time index. Denoting object pose in global frame as o we
can explicitly write

x
(rel)
k

.
= xk 	 o. (4)

The dependence of the model in Eq. (3) on viewpoint
naturally captures view-dependent variations in object ap-
pearance. Further, to incorporate the notion that similar views
tend to yield similar classifier responses and in particular, are
not independent, we consider the joint distribution

P(S0:k | c,X (rel)
0:k ), (5)

characterizing the classification unit’s outputs
S0:k

.
= {S0, . . . , Sk} when viewing an object of class c from

a sequence of relative poses X (rel)
0:k

.
= {x(rel)

0 , . . . , x
(rel)
k }.

Similar to [18], [19], we represent this joint distribution
with a Gaussian Process, learned using the classifier unit.
Explicitly, we model training set classifier response when
viewing object of class c from relative pose x(rel) as

s(i) = fi|c(x
(rel)) + ε, (6)

where the i index denotes component i of classification
vector s, ε ∼ N(0, σ2

n) i.i.d. noise, and (dropping the (rel)
superscript for clarity)

fi|c(x) ∼ GP
(
µi|c(x), ki|c(x, x)

)
, (7)

where µi|c and ki|c are the mean and covariance functions
defining the GP

µi|c(x) = E{s(i) | c, x} (8)

ki|c(x, x
′) = E{(fi|c(x)− µi|c(x))(fi|c(x

′)− µi|c(x
′))}

(9)

We thus model the classification vector for each class c with
independent, per-component GP’s. Note also the Gaussian
approximation of the distribution of the classification vector,
which resides in the simplex (other representations exist,
which however are not readily interpreted as a spatial model).

For the covariance we use the squared exponential func-
tion:

ki|c(x, x
′) = σ2

i|c exp(−1

2
(x− x′)TL−1

i|c (x− x′)), (10)

where σ2
i|c is the variance, and Li|c is the length scale matrix,

determining the rate of the covariance decay with distance.
These parameters can be learned from training data, however
in our simulations they were set by hand.

Denote the training set for class c as {Sc
T , X

c
T }, with

Sc
T classifier measurements, and Xc

T the corresponding
poses, and denote (test-time) measurements as S = S0:k and
X = X (rel)

0:k . Further, the following equations Eqs. (11-14)
all hold per vector-component (joined in Eq. (15)), i.e. for

simplifying notation we drop the i index in S(i), S(i)
T and

ki|c.
We follow [16] and model the joint distribution of clas-

sifier measurements (per-component) for object of class c
as

P(Sc
T , S | c,Xc

T , X) =

N

(
0,

[
Kc(X

c
T , X

c
T ) + σ2

nI Kc(X
c
T , X)

Kc(X,X
c
T ) Kc(X,X)

])
, (11)

where Kc is the matrix produced by application of kernel kc
on all pairs of input vectors. We thus obtain the conditional
distribution for classifier measurements of object of class c

P(S0:k | c,Xc
T , S

c
T ,X

(rel)
0:k ) = N(µ,Σ), (12)

with

µ = Kc(X,X
c
T ) ·H · S (13)

Σ = Kc(X,X)−Kc(X,X
c
T ) ·H ·Kc(X

c
T , X), (14)

and where H .
=
(
Kc(X

c
T , X

c
T ) + σ2

nI
)−1

.
We finalize by combining the per-component models into

a joint class likelihood as

P(S | c,Xc
T , S

c
T , X) =

∏
i

P(S(i) | c,Xc
T , S

c,(i)
T , X) (15)

Note that this approach somewhat differs from [18], where
inference from training data is done by offline learning of
GP mean and covariance functions rather than using a joint
distribution as in Eq. (11).

IV. APPROACH

To account for both localization and model uncertainty we
rewrite Eq. (1) as marginalization over latent robot and object
poses, and over classifier outputs. We start by marginalizing
over robot pose history and object pose

b[ck] = P(c | Hk) =

∫
X0:k,o

P(c,X0:k, o | Hk) dX0:kdo,

(16)
which, using chain rule, can be written as

b[ck]=

∫
X0:k,o

P(c | X0:k, o,Hk)︸ ︷︷ ︸
(a)

P(X0:k, o | Hk)︸ ︷︷ ︸
(b)

dX0:kdo. (17)

Term (a) above is the classification belief given relative poses
X (rel)

0:k which are calculated from X0:k and o via Eq. (4).
Term (b) represents the posterior over X0:k and o given
observations and controls thus far. As such, this term can be
obtained from existing SLAM approaches. One can further
rewrite the above equation as

b[ck] = E
X0:k,o

{P(c | X (rel)
0:k ,Hk)}, (18)

where the expectation is taken with respect to the posterior
p (X0:k, o | Hk) from term (b). In practice, in this work we
assume that object orientation relative to the robot is known
(leaving o with 3 degrees of freedom), and so this posterior
can be computed using SLAM methods (see Section IV-B),



which commonly model this posterior with a Gaussian distri-
bution. We then use the obtained distribution to approximate
the expectation in Eq. (18) using sampling.

In the following we detail the computation of the terms
(a) and (b) of Eq. (17).

A. Classification Under Known Localization

In this section we develop the update of classification
belief given known pose history, term (a) in Eq. (17),
when receiving new measurements at time step k, while
accounting for correlations with previous measurements and
model uncertainty.

To simplify notation, we shall denote history of observa-
tions, controls and (known) relative poses as

Hk
.
= Hk ∪ X (rel)

0:k ≡ {U0:k−1,Z0:k,X (rel)
0:k }. (19)

We start by marginalizing term (a) over model uncertainty
in the classifier output at time k

P(c | Hk) =

∫
sk

P(c | sk, Hk) · P(sk | Hk) dsk. (20)

Assuming sk carries the class information from measurement
zk, and that sk ∼ p(sk | zk) we can rewrite this as

P(c | Hk)=

∫
sk

P(c | sk, Hk \ {zk}) · P(sk | zk) dsk. (21)

In our case, {sk} are samples from p(sk | zk), so we can
approximate the integral as

P(c | Hk) ≈ 1

nk

∑
sk∈Sk

P(c | sk, Hk \ {zk}). (22)

To calculate the summand, we apply Bayes’ law and then
smoothing over class in the denominator

P(c | Hk) =
∑
sk

η(sk)

nk
·P(sk | c,Hk \ {zk})·P(c | Hk \ {zk})

(23)
with

η(sk)
.
=1/

∑
c∈C

P(sk | c,Hk \ {zk})P(c | Hk \ {zk}). (24)

Note that the denominator in η(sk) is a sum of numerator
(summand) terms in Eq. (23) for the different classes and can
be computed efficiently (but cannot be discarded altogether
due to the dependence on sk). Further, note that

P(c | Hk \ {zk}) = P(c | X (rel)
0:k ,Z0:k−1) (25)

= P(c | X (rel)
0:k−1,Z0:k−1) = P(c | Hk−1). (26)

As P(c | Hk−1) has been computed in the previous
step, we are left to compute the class likelihood term
P(sk | c,Hk \ {zk}). This term involves past observations
Z0:k−1 but not classifier outputs S0:k−1, which need to be
introduced to account for spatial correlation with sk using

Eq. (5). Marginalizing over S0:k−1 (recall that in our notation
S0:k−1 ∪ {sk} = S0:k) yields

P(sk | c,Hk \ {zk}) =

∫
S0:k−1

P(S0:k | c,Hk \ {zk}) dS0:k−1

=

∫
S0:k−1

P(sk | c,S0:k−1, Hk \ {zk})

· P(S0:k−1 | c,Hk \ {zk}) dS0:k−1, (27)

where we applied smoothing to separate between past classi-
fier outputs S0:k−1 for which observations Z0:k−1 are given
and the current output sk. The first term in the product
reduces to P(sk | c,S0:k−1,X (rel)

0:k ), a conditioned form of
the class model Eq. (12) (and thus Gaussian, which we treat
explicitly later in Eq. (30) and on). This term represents
the probability to obtain classification sk when observing
an object of class c from relative pose x(rel)

k given previous
classification results and relative poses. The second term in
Eq. (27) can be approximated using Eq. (2) for the individual
observations zi, i.e.

P(S0:k−1 | c,Hk \ {zk})=P(S0:k−1 | Z0:k−1)≈
k−1∏
i=0

P(si |zi)

Note that class c and poses X (rel)
0:k−1, both members of Hk can

be omitted since conditioning on observations determines
classifier outputs up to uncertainty due to classifier intrin-
sics (model uncertainty). The approximation is in the last
equality, since in general classifier outputs s0, . . . , sk−1 are
interdependent through classifier parameters. We can now
rewrite P(sk | c,Hk \ {zk}) from Eq. (27) as∫
S0:k−1

P(sk | c,S0:k−1,X (rel)
0:k ) ·

k−1∏
i=0

P(si | zi) dS0:k−1. (28)

Assuming classifier output Eq. (2) is Gaussian, we denote

P(si | zi) = N(µzi ,Σzi), (29)

where µzi and Σzi are estimated from Si. Since class model
is Gaussian, see Eq. (12), the first term in the integrand in
Eq. (28) is a Gaussian that we denote as

P(sk | c,S0:k−1,X (rel)
0:k ) = N(µk|0:k−1,Σk|0:k−1) (30)

where, utilizing standard Gaussian Process equations [16],

µk|0:k−1 = µk + Ω · (S0:k−1 − µ0:k−1) (31)
Σk|0:k−1 = K(xk, xk)− Ω ·K(X0:k−1, xk) (32)

with Ω
.
= K(xk,X0:k−1)K (X0:k−1,X0:k−1)

−1.
Using these relations, the integrand from Eq. (28) is a

Gaussian distribution over S0:k, that can be inferred as
follows.

P(sk | c,S0:k−1,X (rel)
0:k ) ·

k−1∏
i=0

P(si | zi) = (33)

η exp

{
−1

2

(
‖sk − µk|0:k−1‖2Σk|0:k−1

+

k−1∑
i=0

‖si − µzi‖2Σzi

)}
,



where η only depends on X (rel)
0:k . Using Eq. (31) we can

write

sk − µk|0:k−1 = sk − µk − Ω · (S0:k−1 − µ0:k−1) (34)
= [−Ω I] (S0:k − µ0:k) (35)

We have that the integrand Eq. (33) from Eq. (28) is
proportional to a joint Gaussian distribution N (µJ ,ΣJ) with

ΣJ =
(
Σ−1

s + Σ−1
z

)−1
(36)

µJ = Σ−1
J ·

(
Σ−1

s µs + Σ−1
z µz

)
, (37)

where

µs =


µ0

...
µk−1

µk

 µz =


µz0

...
µzk−1

0

 , (38)

and

Σ−1
s = [−Ω I]

T
Σ−1

k|0:k−1 [−Ω I] (39)

Σ−1
z =


Σ−1

z0 0 · · · 0

0
. . .

...
... Σ−1

zk−1
0

0 · · · 0 0

 (40)

Finally, the class likelihood from Eq. (27) is the marginal
distribution of the above. Specifically, the integral is directly
calculated by evaluation at sk of a Gaussian pdf with the
components corresponding to sk from µJ and ΣJ as mean
and covariance.

So far, we have described how to update the class belief
given known localization, term (a) of Eq. (17), upon arrival
of new measurements. We now proceed to describe how the
localization belief, term (b), is computed.

B. Localization Inference

In this work we assume that object orientation relative
to the robot is known (perhaps, detected from observations
Z), and so o has three degrees of freedom (location). Hence,
term (b) of Eq. (17) is essentially a SLAM problem with the
robot pose history X0:k and one landmark, the target object
pose o, to be inferred. Specifically, we can express the target
distribution as marginalization over all landmarks L, except
the object of interest

P(X0:k, o | Hk) =

∫
L
P(X0:k, o,L | Hk) dL. (41)

This can be computed using state of the art methods such as
iSAM2 [8].

V. RESULTS

We present experimental results for a MATLAB simula-
tion, in which classifier measurements are generated using
the GP model of the ground truth class, along a pre-
determined track. The class inference algorithm needs to fuse
these measurements into a posterior over classes, essentially
identifying which of the known GP models is the more likely

origin of the measurements. We study robustness of our
algorithm to model and localization uncertainty, and compare
it to the state of the art.

A. Compared Approaches and Performance Metrics

We compare the results of three methods. One is our own,
which we denote Model with Uncertainty, which
takes into account spatial correlations, as well as uncertainty
in pose and classifier model uncertainty. The second is
Model Based, similar to the method described by Teacy
et al. [18] but with GP defined as in Eq. (11) (and
[16]), which takes into account spatial correlation, but not
uncertainties. The third is Simple Bayes, which directly
uses the classifier scores and assumes spatial independence
between observations, as in e.g. Patten et al. [14].

We compare the methods above with relation to the
following metrics: (i) probability of ground-truth class; (ii)
mean squared detection error; and (iii) most likely-to-ground
truth ratio.

The mean squared detection error (MSDE) is defined as

MSDE
.
=

1

Nc

∑
c′∈C

(δc(c
′)− P(c′ | H))

2 (42)

Here c is the ground truth class and δc(c′) is 1 if c = c′ and
0 otherwise. This measure was also used in [18].

The most likely-to-ground truth ratio (MGR) is defined as

MGR
.
=

arg maxc′ P(c′ | H)

P(c | H)
(43)

for ground truth class c. Roughly, this measure penalizes
high confidence in the wrong class. In a way it ”demands”
ground truth class to be most (possibly, equally) likely.

We now proceed to detail the experiments and the results.

B. Simulation Experiments

Statistics (over realizations) for the three algorithms have
been collected for several scenarios. In each scenario, GP
models were created for three classes, by manually specify-
ing classifier response for chosen relative locations around
the origin (i.e. locations assumed to be in object-centered
coordinates) in the 2D plane, see Fig. 1. Note that GP model
for a class describes classifier responses for all classes, (see
Eq. (15) and Section III-B). Another simplifying assumption
is that object orientation is known, see also Section IV.

During simulation, the robot moves along a pre-specified
trajectory and observes a single object from different view-
points, see Fig. 2 for an example trajectory. At each time
step the algorithm receives new classifier measurements and
updated pose belief (simulating a SLAM solution). Clas-
sifier measurements are generated using the GP model of
a ”ground truth” class (the simulation of measurements is
detailed in the next subsections), which needs to be inferred
by the algorithm using the measurements.

We next present results on two scenarios highlighting our
main contributions.



Algorithm 1 Procedure for simulating Classifier Outputs at
step k

Input: S0:k−1,X (rel)
0:k , σ2

max, Nsamples

1: snominal ∼ P(s | c,S0:k−1,X (rel)
0:k ) . See Eq. (30)

2: σ2
u ∼ Uni(0, σ2

max) . Choose uncertainty level
3: snoised ∼ N(snominal, σ2

uI) . Uncertain classification
4: samples← ∅
5: for Nsamples times do . Simulating dropout
6: s ∼ N(snoised, σ2

uI)
7: samples← samples ∪ {s}
8: end for
9: return snominal, snoised, samples

1) Model Uncertainty Scenario: Model uncertainty ex-
presses the reliability of the classifier output. High model
uncertainty corresponds to situations where classifier input
far from training data, often due to an unfamiliar scene,
object or viewpoint pictured, causes output that may be
arbitrary. We simulate this with two steps, performed at each
time instant: first, nominal ”true” measurement snominal is
generated from GP model of ground truth class. The level of
model uncertainty σ2

u is selected at each time step uniformly
between 0 and σ2

max (a parameter). It is then used as standard
deviation of a Gaussian centered at the true measurement
to generate a simulated noised measurement snoised. The
Model Based and Simple Bayes algorithms receive
snoised as classification measurement and are not aware of
the uncertainty. Our method receives samples (simulating
outputs of several forward passes applying dropouts) drawn
from a Gaussian distribution centered at snoised with stan-
dard deviation σ2

u. Alg. 1 summarizes this process.
First scenario shows the effects of considerable model

uncertainty, with no localization errors (perfect localization).
Fig. 3 shows plots of GP model of ground truth class and
simulated classifier measurements (snoised) over robot track
(left) and per-component as a function of time (right). Fig. 4
shows the statistics described above (probability assigned to
ground truth class and Eqs. (42-43)) along with percentiles
(over scenario realizations) as patches of varying saturation,
with a 10% step: median is plotted darkest, the patch around
it contains the runs between 40th and 60th percentile, the
next one between 30th and 70th, etc. The area above and
below the plots contains the top and bottom 10% of the
runs respectively. Top row shows comparison of our method
(blue) to Model Based (green), bottom - to Simple
Bayes (in red).

An immediate observation in comparison to Model
Based (first row) is that our percentiles are more concen-
trated, which means that method results are more stable. For
example, in more than 20% of the runs (bottom lightest patch
and below), probability of correct class (left column) for
Model Based in time step 15 is less than 0.2 (compared
to more than 0.33 for ours). Indeed, in more than 20% of
the runs the MGR (middle column) for Model Based at
iteration 15 is higher than 1, which means that a wrong

(most likely) class was assigned probability more than twice
higher than the correct one, i.e. wrong class was chosen with
high confidence. The MSDE plot displays similar behavior.
In the bottom row, drop of accuracy of Simple Bayes
around time step 15 is the result of an ”inverse” measurement
in the model, meaning that from a certain angle, classifier
response suggests a different class (see for example in
Fig. 1). This illustrates well the difference from our method,
which matches the entire sequence of measurements against
a model, and thus can use also ”inverse” measurements to
classify correctly (on the downside, requiring a class model).

2) Localization Uncertainty Scenario: In methods making
use of spatial class models, localization errors may cause
classification aliasing when acquired measurements corre-
spond to the model of a wrong class, because of the spatial
shift in the query. To exemplify this, in this scenario, we
introduced (a constant) bias in easting coordinate (the robot
moves eastward in a straight line), causing aliasing between
models (with no model uncertainty). Consider Fig. 5. The
left plot as before shows GP mean of the correct class
model (blue) and classifier output over robot track (red).
It also shows the GP mean of the model of a wrong class
(yellow). In the center plot, classifier outputs for label 2 (red)
compared without localization bias against the corresponding
GP component of the ground truth class model (blue) show
a clear match. After introducing a bias of -8 units in easting
(right plot) classifier responses (red) are matched against
shifted spatial models, making the wrong class (yellow) a
more likely match until around time step 16, after which the
the blue line can be matched correctly in spite of the shift.
The effects of this on performance are shown in Fig. 6. While
our method, aware of the localization uncertainty (standard
deviation) accumulates classification evidence gracefully, the
Model Based method infers the wrong class with high
confidence (as can be seen in the MGR plot, center) peaking
at around time step 15, after which disambiguating measure-
ments start to arrive. In the bottom row of the same figure,
Simple Bayes method performs well (closely following
the line from Fig. 5), since classifier measurements are stable
and not ambiguous (the aliasing happens when trying to
match against the different models).

VI. CONCLUSIONS

We described a method for classification from multiple
views of an object of interest, by fusing classifier measure-
ments which include a model uncertainty measure, and ex-
plicitly treating viewpoint-variability and spatial correlations
of classifier outputs, as well as uncertainty in the localization.
Our simulation experiments confirm increased robustness to
the above sources of uncertainty as compared to current
methods. In particular, our statistical analysis results suggest
that in simulation cases where other compared methods
inferred a wrong class with high confidence in a significant
percentage of the runs due to noisy measurements of class
or location, our method was aware of, and reported, high
uncertainty, and was generally able to gracefully accumulate
classification evidence.



0.2 0.3 0.4 0.5 0.6 0.7 0.8

label 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
la

be
l 2

GP mean
Classifier output

0 5 10 15 20

time index

0

0.2

0.4

0.6

0.8

1

la
be

l 1

GP mean for label 1
Classifier output for label 1

0 5 10 15 20

time index

0

0.2

0.4

0.6

0.8

1

la
be

l 2

GP mean for label 2
Classifier output for label 2

Fig. 3: Scenario with model uncertainty (no localization errors). Standard deviation for the noised observation chosen in [0, 0.3]. Left: mean of GP model for ground truth class
and simulated (noised) classifier measurement over robot trajectory, plots of response for 1st label against response for 2nd label. More intense color corresponds to later time
index. Center and right: first and second components over time indices, respectively.

Fig. 4: Left column: probability of correct class, middle: MGR, right: MSDE. Legend in the leftmost column shows percentage of time steps where most likely class was the
correct one. Color patches denote percentiles of the respective methods, one step in lightness denotes 10% percentile step and median is plotted darkest, so that the patch around
the median comprises values between the 40th and the 60th percentile, the next darkest between the 30th and 70th and so on. Dashed line denotes the uninformative prior
(probability of 1/3 for label) Top row: comparison of our method to Model Based, bottom row: to Simple Bayes. While probability of correct class in our method rises slowly,
it fluctuates significantly less over realizations, and the correct class is chosen more often. In both plots, Simple Bayes method performs poorly where an ”inverse” measurement
(see Section V-B.1) exists in the model, around time index 15.
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Fig. 5: Scenario with localization bias in the x axis. Time index corresponds to x coordinate (robot motion is a straight line, in the direction of the x axis). Left: as before,
simulated classifier output generated from GP of ground truth class. Center: we concentrate on responses for class 2 (2nd component of classification vectors). Classifier output
(red) matches GP of ground truth class (in blue) at true position. Right: bias in the x axis means that classifier output is effectively compared to a shifted model, better matching
GP of a wrong class (yellow). This leads to classification errors unless accounting for localization uncertainty.



Fig. 6: Left column: probability of correct class, middle: MGR, right: MSDE. Localization bias of -8 units in the x axis causes severe aliasing in Model Based method resulting
in a wrong class being inferred with high confidence. Our method is aware of localization uncertainty of standard deviation 16, and is able to recover. Simple Bayes method
does not experience aliasing, as it uses the raw measurements directly, rather than matching them to a model.

One limitation of the proposed approach is the requirement
that object orientation be known. While this may be the
case for example in ground target search [18], where objects
are geographic cells, in general this does not hold. Another
limitation is that since it is an inference method, it depends
on externally collected measurements, possibly insufficient
or in a sub-optimal way. Possible future work may target
these issues.
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