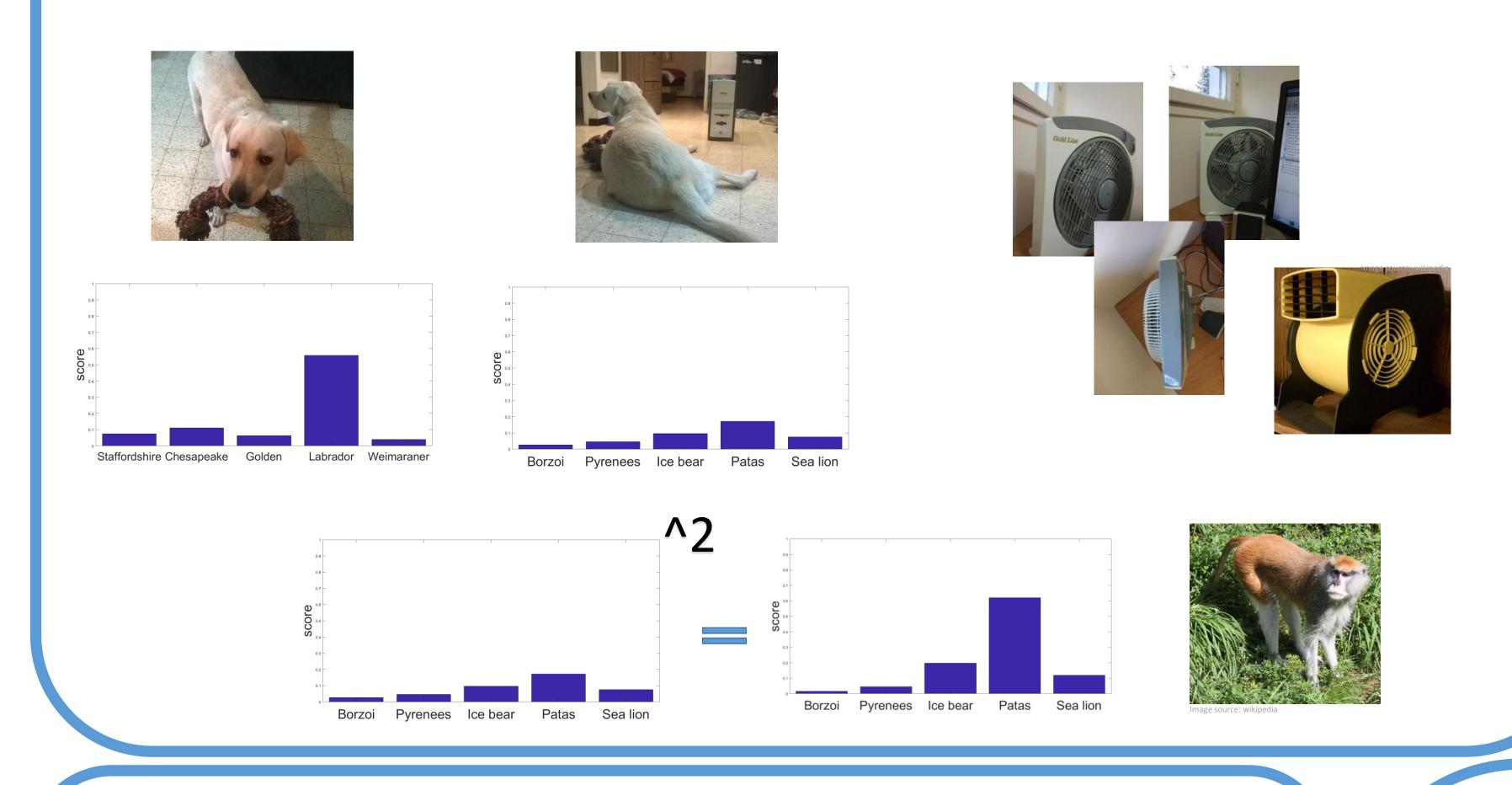
Bayesian Viewpoint-Dependent Robust Classification Under Model and Localization Uncertainty



¹Technion - Israel Institute of Technology, Israel Yuri Feldman¹ and Vadim Indelman¹

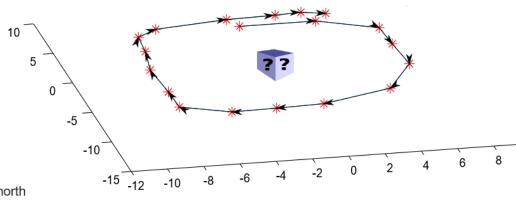
1. Introduction

- Object Classification is basic to semantic sensing, required in many robotics applications
- Class measurements differ from geometric: discrete, viewpoint-dependent, correlated
- Need to handle localization error, classification noise, variations in appearance



2. Problem Formulation

- Object of (latent) class $c \in \mathcal{C} = \{1, \dots, N_c\}$
- Mobile robot at time t_k acquires sensor observations \mathcal{Z}_k and user controls \mathcal{U}_k
- Given history up to time index k, infer class c



$$b[c_k] \doteq \mathbb{P}(c \mid \mathcal{H}_k) = \mathbb{P}(c \mid \mathcal{Z}_{0:k}, \mathcal{U}_{0:k-1})$$

3. Contributions

Scheme for fusing classification measurements

Model correlation among viewpoints

To prevent over-weighting of individual classifications

Localization uncertainty

For robustness to navigation errors

Model uncertainty

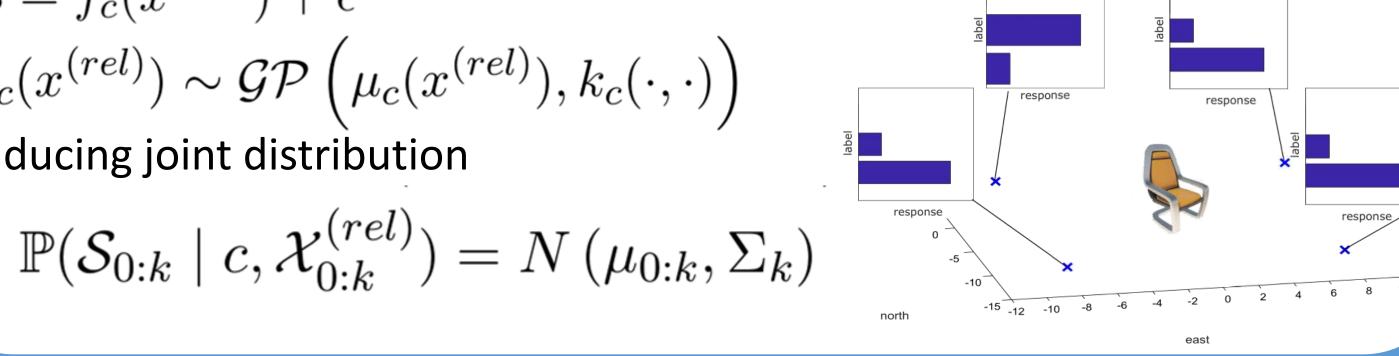
For robustness when faced with challenging data

4. Spatial Class Model

For every known class c, model similar to Teacy et al, 15'

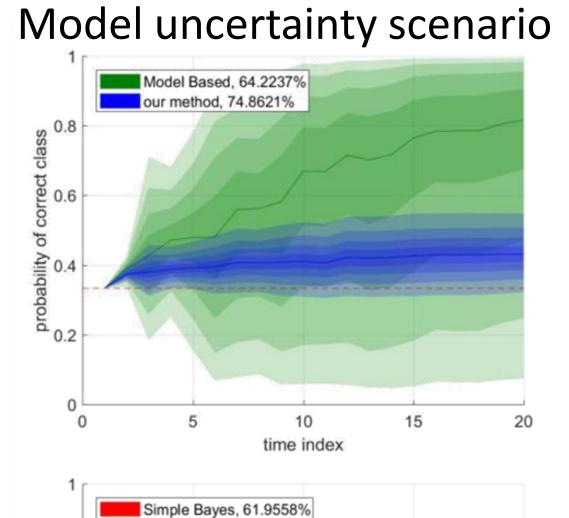
$$s = f_c(x^{(rel)}) + \epsilon$$

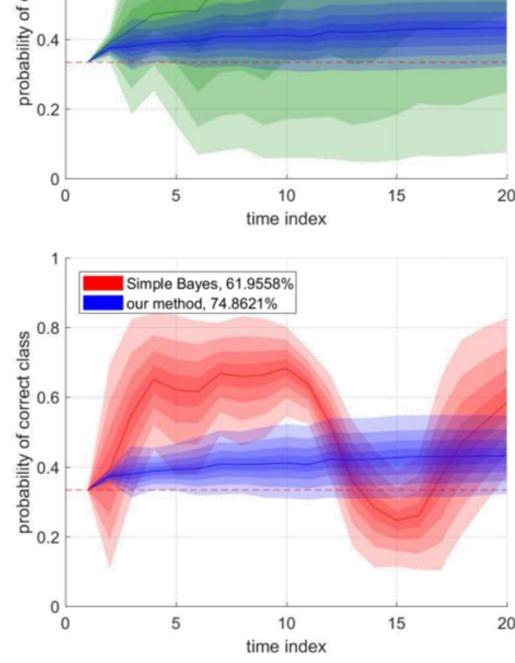
$$f_c(x^{(rel)}) \sim \mathcal{GP}\left(\mu_c(x^{(rel)}), k_c(\cdot, \cdot)\right)$$
 Inducing joint distribution

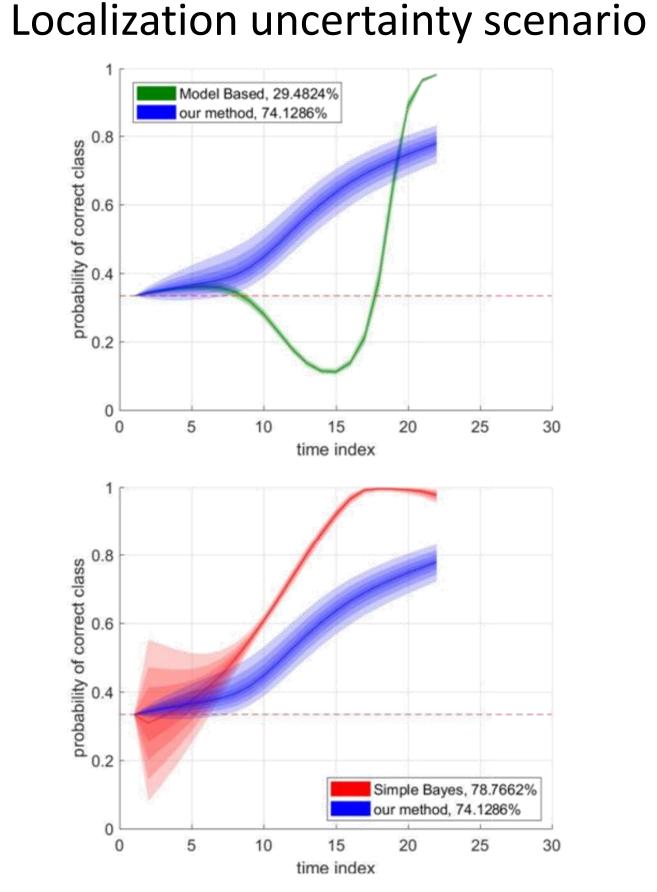


7. Results – MATLAB Simulation

Statistics of probability of correct class, our method against Model Based (as in Teacy et al. 15') and Simple Bayes. One step in color intensity corresponds to 10% percentile step.



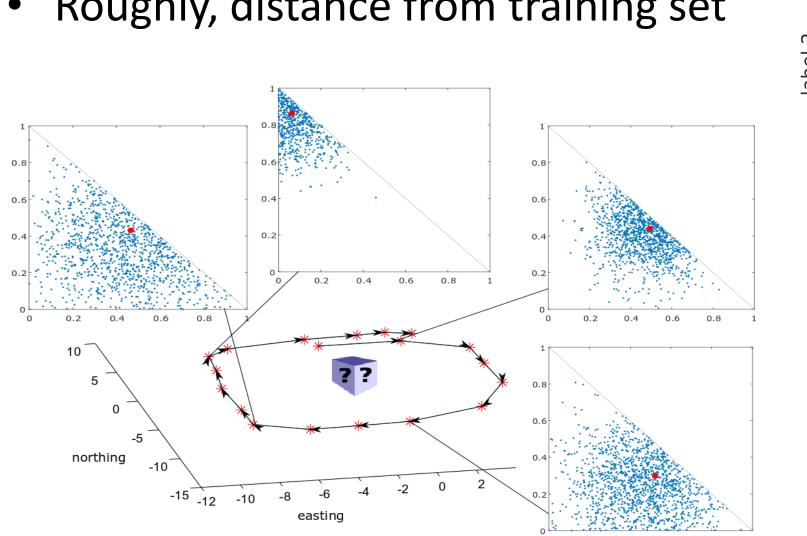


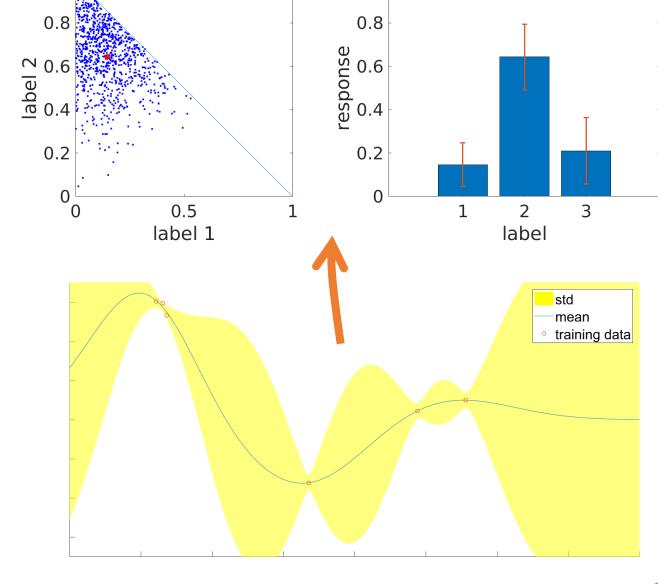


5. Model Uncertainty

Approximate posterior $\mathbb{P}(s \mid z)$ using multiple forward passes with dropout (Gal & Gahrahmani 16',17')

Roughly, distance from training set

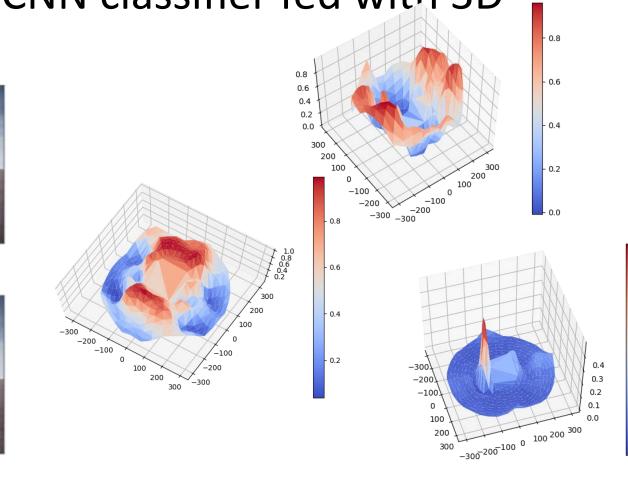




8. UE Evaluation (Under way)

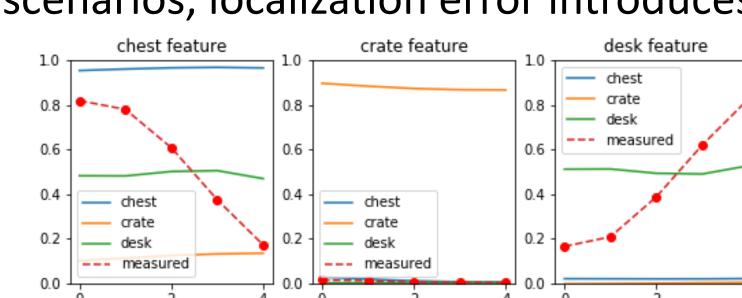
Class models learned from output of CNN classifier fed with 3D

renderings



$$\mathbb{P}(s_k \mid c, H_k \setminus \{z_k\}) = \int_{\mathcal{S}_{0:k-1}} \mathbb{P}(s_k \mid c, \mathcal{S}_{0:k-1}, \mathcal{X}_{0:k}^{(rel)}) \cdot \prod_{i=0}^{k-1} \mathbb{P}(s_i \mid z_i) \, d\mathcal{S}_{0:k-1}$$
 Class model Model uncertainty

As in synthetic scenarios, localization error introduces class aliasing



Evaluation in scenarios with varying localization error and with model uncertainty is under way

6. Approach

$$\mathbb{P}(c \mid \mathcal{H}_k) = \int_{\mathcal{X}_{0:k},o} \mathbb{P}(c \mid \mathcal{X}_{0:k},o,\mathcal{H}_k) \mathbb{P}(\mathcal{X}_{0:k},o \mid \mathcal{H}_k) \ d\mathcal{X}_{0:k} do$$

$$\text{Marginalize over last classification} \qquad \qquad \text{(a)} \qquad \qquad \text{(b)} \qquad \text{Marginalize over Landmarks}$$

$$\frac{1}{n_k} \sum_{s_k \in \mathcal{S}_k} \mathbb{P}(c \mid s_k, H_k \setminus \{z_k\}) \qquad \qquad \int_{\mathcal{L}} \mathbb{P}(\mathcal{X}_{0:k},o,\mathcal{L} \mid \mathcal{H}_k) \ d\mathcal{L}_{0:k} do$$

After applying Bayes, marginalization over past classifications:

$$\mathbb{P}(s_k \mid c, H_k \setminus \{z_k\}) = \int_{\mathcal{S}_{0:k-1}} \mathbb{P}(s_k \mid c, \mathcal{S}_{0:k-1}, \mathcal{X}_{0:k}^{(rel)}) \cdot \prod_{i=0}^{k-1} \mathbb{P}(s_i \mid z_i) \, d\mathcal{S}_{0:k-1}$$
 Class model Model uncertainty

9. Conclusions

- Developed method for accounting for model and localization uncertainty benefits robust classification in synthetic simulation.
- Similar properties are currently investigated in a more realistic setting.