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1. Introduction

* Object Classification is basic to semantic sensing, required in many robotics applications
* Class measurements differ from geometric: discrete, viewpoint-dependent, correlated
* Need to handle localization error, classification noise, variations in appearance
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4. Spatial Class Model

For every known class ¢, model similar to Teacy et al, 15’
g — fc(m(’rel)) 1€
fe(@")) ~ GP (uc(ﬂs(m”) kel '))

Inducing joint distribution

P(Sox | ¢ X)) = N (piok, k)

5. Model Uncertainty

* Approximate posterior P(s | z) using multiple forward passes with
dropout (Gal & Gahrahmani 16°,17’)
* Roughly, distance from training set

6. Approach
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After applying Bayes, marginalization over past classifications:
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9. Conclusions

 Developed method for accounting for model and localization uncertainty
benefits robust classification in synthetic simulation.
 Similar properties are currently investigated in a more realistic setting.
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2. Problem Formulation

* Object of (latent) class c€ C ={1,..., N.}

» Mobile robot at time ¢ acquires sensor observations Zk
and user controls Uy

* Given history up to time
index k, infer class C

blex] = P(c | Hi) = P(

3. Contributions

Scheme for fusing classification measurements
Model correlation among viewpoints
To prevent over-weighting of individual classifications
Localization uncertainty
For robustness to navigation errors
Model uncertainty
For robustness when faced with challenging data

7. Results — MATLAB Simulation

Statistics of probability of correct class, our method against Model
Based (as in Teacy et al. 15’) and Simple Bayes. One step in color
intensity corresponds to 10% percentile step.

Localization uncertainty scenario

1
B Viodel Based, 29.4824%
I our method, 74.1286% |

Model uncertainty scenario
1

I Model Based, 64.2237%| iR
I our method, 74.8621% |

o

o
o
(o

o

o
o
o

probability of correct class
o
H

probability of correct class

o
(N

0 5 10 15 20 0

5 10 15 20 25 30

time index

B Simple Bayes, 61.9558%
- I our method, 74.8621%

o
o

probability of correct class
o
s

time index

probability of correct class
o o o
e (o] [0}

o
N

o

0

time index

/N Simple Bayes, 78.7662%
I our method, 74.1286% |
10 15 20 25 30
time index

8. UE Evaluation (Under way)
* Class models learned from output of CNN classifier fed with 3D I

renderings
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* Asin synthetic scenarios, localization error introduces class aliasing
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* Evaluation in scenarios with varying localization error and with model

uncertainty is under way




