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Abstract
Semantic perception can provide autonomous robots operating under uncertainty with more efficient representation of their
environment and better ability for correct loop closures than only geometric features. However, accurate inference of semantics
requires measurement models that correctly capture properties of semantic detections such as viewpoint dependence, spatial
correlations, and intra- and inter-class variations. Such models should also gracefully handle open-set conditions which may
be encountered, keeping track of the resultant model uncertainty. We propose a method for robust visual classification of an
object of interest observed from multiple views in the presence of significant localization uncertainty and classifier noise,
and possible dataset shift. We use a viewpoint dependent measurement model to capture viewpoint dependence and spatial
correlations in classifier scores, showing how to use it in the presence of localization uncertainty. Assuming a Bayesian
classifier providing a measure of uncertainty, we show how its outputs can be fused in the context of the above model,
allowing robust classification under model uncertainty when novel scenes are encountered. We present statistical evaluation
of our method both in synthetic simulation, and in a 3D environment where rendered images are fed into a Deep Neural
Network classifier. We compare to baseline methods in scenarios of varying difficulty showing improved robustness of our
method to localization uncertainty and dataset shift. Finally, we validate our contribution w.r.t. localization uncertainty on a
dataset of real-world images.

Keywords Semantic perception · Object classification and pose estimation · SLAM

1 Introduction

Semantic perception is receiving ever-growing attention in
the field of autonomous robotics. In its broad sense semantic
perception refers to recovery and understanding of the robot’s
environment beyond geometric structure. A major line of
work has focused on “object-centered” perception Cadena
et al. (2016), Salas-Moreno et al. (2013b), which involves
recovering poses and classes of objects (or more generally—
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semantic features) around the robot. While necessary for a
robot’s interaction with its environment and human opera-
tors Sünderhauf et al. (2017), benefits of an object-centered
representation of the environment also include memory and
computational efficiency, communication efficiency when
the said representation needs to be transmitted Choudhary
et al. (2017), Salas-Moreno et al. (2013a), when compared
to geometric primitives commonly used in SLAM.

Perhaps most importantly, semantic features may be more
robustly detected across viewpoints and changes such as in
illumination and scale than geometric counterparts, allowing
for longer tracking Lianos et al. (2018) and more robust loop
closures (e.g. Bowman et al. (2017)), both because of bet-
ter ability to detect them, and because classification provides
good data association priors. Ultimately, focusing on seman-
tic features can provide a manageable number of robust,
salient and distinct data association targets.

Distinctness thanks to classification however comes at the
condition of its correctness. Misclassifications lead to data
association errors, resulting in either duplicate detections
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or gross estimate corruption associated with mismatches,
making correct classification crucial when coupling pose
inference with semantics, thus motivating the fusion of
semantic measurements. However, the majority of work so
far has focused on object detection and segmentation inde-
pendently for each new frame, in particular not sharing
information across time steps, as opposed to Bayesian fusion
of semantic measurements. Rigorous treatment of the lat-
ter requires designing classifier noise models, which proves
to be nontrivial, as classifier output may vary significantly
across viewpoints, particular object instances, imaging con-
ditions such as illumination, partial occlusions and object
classes. An important, yet rarely addressed difference from
geometrical point features is that semantic measurements are
strongly spatially correlated, with nearby views effectively
not contributing information w.r.t. one another.

For Machine Learning based classifiers, output scores
(features) are further affected by what is generally known as
dataset shift (more precisely, covariate shift) Ben-David et al.
(2010), Quionero-Candela et al. (2009), i.e. when raw mea-
surements obtained at deployment significantly differ from
the ones that the classifier had been trained on. Particularly
for Deep Neural Network classifiers, the output in such cases
can result in strong response (traditionally interpreted as high
confidence), for the wrong class. In our context covariate
shift is manifested when encountered scenes are novel w.r.t.
the classifier training set, such as objects of novel classes,
having unusual appearance, or viewed from a viewpoint not
in the classifier training set. While ideally for such a scene
non-informative classification is desired, this cannot be guar-
anteed and in practice is often not the case, since the classifier
input is far from the training set. In Bayesian Deep Learning,
the distance from the training set is captured by predictive
uncertainty, however this information has not been used by
previous methods for fusion of classifier measurements.

To copewith the above challenges,manymethods propose
the use of per-class noise, or rather response, models—rather
than directly relying on classifier output. However, com-
monly, such models are view-independent, capturing both
intra-class and viewpoint-dependent variation in classifier
outputs as class-dependent noise. In a further simplification,
typically most information in classifier output is discarded,
save for the most likely class label, further reducing depen-
dence on particular classifier responses and allowing to use
a categorical model with Dirichlet priors.

While providing robustness to variations in classifier
responses, such models unnecessarily discard information
both by not using the entire classifier output vector, and
because of overestimating noise by not considering
viewpoint-dependence (Fig. 1a). Crucially, not depending on
viewpoint renders them unable to capture correlation among
similar viewpoints, leading toover-confident inferencewhich
does not reflect the actual ambiguity in the measurements.

One challenge to using viewpoint-dependent class models
is that the relative pose they rely on is generally unknown,
andmust be simultaneously estimated. In particular, previous
works modeling viewpoint-dependence have either assumed
localization is known Atanasov et al. (2014), Teacy et al.
(2015), Velez et al. (2012), or resorted to pose space dis-
cretization Becerra et al. (2016).

In this paper we develop a method for fusion of clas-
sifier measurements focusing on classification of a single
object. We propose the following contributions w.r.t. pre-
vious methods: First, we show how viewpoint - dependent
class models capturing both viewpoint—dependent variation
and spatial correlation in classifier scores can be applied
under uncertain localization with continuous pose. Second,
we incorporate semanticmeasurements carrying information
of model uncertainty in inference, allowing classification to
be robust to dataset shift, by reflecting the associated uncer-
tainty in the posterior. Finally, our method is able to use the
entire classification vector/semantic measurement output by
the classifier, making it more general.

Themethodwe describe in this paperwas first presented in
Feldman and Indelman (2018a, b) and tested in a MATLAB
simulation, with classifier measurements generated syntheti-
cally. Here we extend the simulation results to more realistic
scenarios: first presenting a thorough evaluation in a simu-
lated 3D environment, showing for the first time how spatial
viewpoint dependency in the semantic features output by a
Deep Neural Network classifier, fed with rendered images,
can bemodeled and used for object classification under local-
ization and model uncertainty. We then validate our results
w.r.t. localization uncertainty on a dataset of real images.
Additionally, we analyze and discuss computational aspects.

Akin to the work of Kopitkov and Indelman (2018), who
modeled the viewpoint dependency in Deep Learning classi-
fier output to improve pose estimate, our approach uses this
viewpoint dependency in a sense in the reverse direction. We
present extensive evaluation and parameter sensitivity analy-
sis over scenarios to various degrees affected by localization
uncertainty and dataset shift effects.

The rest of the paper is organized as follows. In Sect. 2 we
review related work, define the addressed problem in Sect. 3
and the proposed approach in Sect. 4. Section 5 presents the
experimental evaluation results. Discussion and conclusions
are provided in Sect. 6.

2 Related work

Perception methods performing fusion of classifier measure-
ments can be roughly split into methods directly fusing
classifier scores Omidshafiei et al. (2016), Patten et al.
(2016), Pillai and Leonard (2015), and methods matching
classifier measurements to a statistical model Atanasov et al.
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(a)
(b)

Fig. 1 Left: Viewpoint-dependent variations in classifier outputs are
modeled as noise if viewpoint-dependence is ignored. The GP model
for an object class (Sect. 3.2) is created from classifier output samples
(entire classification vectors) at known relative locations around object.
In our simulation scenarios, samples and their locations were specified

manually for each of the classes. Right: The robot acquires observa-
tions along a track in the vicinity of the object of interest. At each time
step, the classifier outputs a cloud of classification vectors reflecting the
model uncertainty, unlike a single vector measurement (red dot) or a
component thereof in other approaches (Color figure online)

(2014), Becerra et al. (2016), Bowman et al. (2017), Mu
et al. (2016), Omidshafiei et al. (2016), Patten et al. (2018),
Tchuiev and Indelman (2018), Teacy et al. (2015), Velez et al.
(2012). Patten et al. (2016) and Pillai and Leonard (2015)
use a classifier unit producing a distribution over classes,
i.e. a categorical vector describing class likelihood given an
input measurement, fusing measurements by directly apply-
ing Bayes rule. Bowman et al. (2017) use most-likely-class
measurements with the classifier confusion matrix as the
measurement model. In a joint hierarchical Bayesian infer-
ence formulation, Omidshafiei et al. (2016) use a Dirichlet
class model with categorical vector measurements. In a sense
this method belongs to both groups, as only a single noise
parameter is inferred per-class, amounting to an assumption
that noise-free classifier output is a 1-hot-vector denoting
class. Mu et al. (2016) use a Dirichlet class model with a
general vector noise parameter with a categorical measure-
ment model (using only the identity of the most - likely class
output by the classifier), likewise performing a joint hierar-
chical inference of states andmodel parameters. Tchuiev and
Indelman (2018) also use a Dirichlet class model with a gen-
eral noise parameter, incrementally maintaining a Dirichlet
classification posterior to quantify model uncertainty.

All methods described above use classifier measurement
models that are not parametrized by viewpoint. While this
makes class inference trivially agnostic of pose estimation
errors, downsides include overly-pessimistic noise model,
as variations in measurements due to viewpoint changes are
interpreted as noise, and more importantly, over-confident
inference due to not accounting for the reduced information
value of spatially correlatedmeasurements. It is therefore not

surprising that active perception methods utilizing seman-
tic measurements tend to use viewpoint-dependent models,
which allow to better quantify information value of future
views for planning. Atanasov et al. (2014) use a measure-
ment model based onVP-Tree object detector Atanasov et al.
(2014), parameterized by object class and orientation relative
to camera, to perform non-myopic planning for inference of
object class and orientation. Closely related to our method
Velez et al. (2012) and Teacy et al. (2015) use Gaussian Pro-
cesses (GPs) to model detector responses for objects of a
given class, capturing spatial correlations by learning param-
eters of the GP kernels. Patten et al. (2018) also use per-class
GP observationmodels of point-cloud features. However, the
above assume robot localization is known, which in reality
is a simplification. Becerra et al. (2016) relax the assumption
of known localization, however, discretize pose space both
for localizing the robot and in the viewpoint dependent class
model representation.

As classifiers are ubiquitously based on Machine Learn-
ing and robots may be deployed in environments different
from the ones the classifier had been trained on, the issue
of covariate shift needs to be addressed. In recent years, sev-
eral methods have been proposed for efficiently obtaining the
(approximate) predictive uncertainty in the output of Deep
Neural Networks associated with covariate shift, including
MC-Dropout Gal and Ghahramani (2016), Bootstrapping
Osband et al. (2016), ensembles Lakshminarayanan et al.
(2017) and, recently, Prior Networks Malinin and Gales
(2018).While these are used, among else, for efficient explo-
ration and active learning Gal et al. (2017), Osband et al.
(2016), safe decision making Lütjens et al. (2018), Malinin

123



Autonomous Robots

et al. (2017), McAllister et al. (2017), semantic segmenta-
tion Kendall et al. (2015a), camera localization Kendall et al.
(2015b), and the more closely related Miller et al. (2018a, b)
who incorporate model uncertainty into merging strategy of
object bounding box detections in a single frame, we are
not aware of existing approaches for fusion of classification
measurements over multiple frames/viewpoints attempting
to account for covariate shift, except for the authors work
Feldman and Indelman (2018a), Tchuiev and Indelman
(2018), Tchuiev et al. (2019). Tchuiev and Indelman (2018)
fuse class measurements carrying model uncertainty infor-
mation represented with a Dirichlet distribution, however
without considering localization inference or spatial correla-
tion among measurements. Tchuiev et al. (2019) perform
classification as part of hybrid inference under localiza-
tion uncertainty, however not addressing correlations among
viewpoints or model uncertainty.

While using most likely class measurements Bowman
et al. (2017), Mu et al. (2016), Omidshafiei et al. (2016) pro-
vides a simple measurement model (categorical) and update
rule for inference, it discards the response magnitude, which
may be a useful indicator of the measurement quality. Like-
wise, using a single classifier response for the classified class
Becerra et al. (2016), Teacy et al. (2015), i.e. a set of per-
class detectors, discards information of correlation among
responses, related to class aliasing. Eventually, particularly
in the case of Deep Neural Networks, one can talk of a gen-
eral semantic feature vector, of which classifier output is an
example, which is a generalization of the above-mentioned
measurements, as any can be computed out of it by choos-
ing the maximal component or its index. A measurement
model capturing variation of the entire feature vector thus
has access to more information. For this reason, we model
the entire classifier response rather than a single component.
In the case that a new class needs to be added (offline), it
suffices to create a new model describing responses of the
same semantic feature detector for objects of the new class.

In the following section we formalize the problem, then
proceed to describe our approach.

3 Notations and problem formulation

Consider a robot traversing an unknown environment, taking
observations of different scenes. The robot’s motion between
times k and k + 1 is initiated by a control input uk , that may
originate from a human user, or be determined by a motion
planning algorithm.Wedenote the robot’s pose at time instant
k by xk , and by X0:k = {x0, . . . , xk} the sequence of poses up
to that time. Let Hk = {U0:k−1,Z0:k} represent the history,
comprising observations Z0:k = {z0, . . . , zk} and controls
U0:k−1 = {u0, . . . , uk−1} up until time k. We focus on the

task of classification of a single object belonging to one of
Nc known classes, denoted by indexes C = {1, . . . , Nc}.

Our goal is to maintain the classification posterior, or
belief, at time instant k:

b[ck] .= P(c | Hk). (1)

The classification posterior is the probability of the object
in question to belong to class c ∈ C, given all measurements
and user controls up to time k. In calculating this poste-
rior we want to take into account spatial correlation among
measurements, model uncertainty, as well as uncertainty in
pose from which these measurements are taken (localization
uncertainty).

3.1 Classifier measurements with uncertainty

In the Bayesian approach, given an observation zk (in our
context, an image) we are interested in obtaining the class
(categorical) posterior

P(s(i) = c | zk,D), (2)

where s(i) is the i’th component of a categorical vector s (i.e.∑
i s

(i) = 1) andD is training data. For a given classifier unit,
the vector θ of its parameters either determines its output as
function of input, or otherwise can be regarded as a sufficient
statistic. In either case, we can rewrite Eq. (2) as

P(s(i) = c | zk,D)

=
∫

θ

P(s(i) = c | zk, θ) · P(θ | D)
︸ ︷︷ ︸

Model
Uncertainty

dθ. (3)

The second term above is referred to as Model Uncer-
tainty or Epistemic Uncertainty Gal (2017), Kendall and Gal
(2017), capturing uncertainty in classifier parameters given
our training data. Uncertainty in θ induces a distribution over
the values of P(s(i) = c | z, θ), a distribution over distribu-
tionsMalinin and Gales (2018). The latter should intuitively
be relatively concentrated near training data and spread out
away from training data, reflecting the level of uncertainty in
the classifier output.

We approximate the model uncertainty of the neural net-
work classifier using MC-Dropout proposed by Gal and
Ghahramani (2016), although this is not required by our
approach and any other technique providing (approximate)
samples from P(θ | D) may be equally used. We chose
this method for its simplicity, although Myshkov and Julier
(2016) show that it may underestimate the model uncertainty
in some cases. In short, for every classifier input we perform
several forward passes applying random dropouts at each
pass, to obtain a set of classification vectors, characterizing
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the uncertainty. Figure 1b illustrates classifier measurements
obtained over a track in the vicinity of an object of interest,
when using MC-Dropout to approximate model uncertainty.
Each measurement is a set of classification vectors (in the
illustration—a point in the 3-d simplex corresponds to the
case of 3 candidate classes) characterizing the model uncer-
tainty, which generally varies among different viewpoints.
Model uncertainty is complementary to the “classification
confidence” which corresponds to the distance of the mean
classification vector (red dot inside the simplex) from the
corners.

Formally, we assume that the robot has at its disposal an
object classifier unit, which, given observation zk (e.g., an
image), calculates a set of outputs Sk � {sk}, where each
output sk ∈ R

Nc×1 represents a categorical belief over the
class of the observed object, i.e.

∑Nc
i=1 s

(i)
k = 1.

The set Sk can be interpreted as an approximation to the
predictive distribution from Eq. (2),

∀s ∈ Sk s ∼ P(· | zk,D), (4)

carrying information of the classifier’s model uncertainty for
the given input zk .

3.2 Viewpoint-dependent class model

For the class likelihoodwe use amodel similar to the one pro-
posed byTeacy et al. Teacy et al. (2015). For a single classifier
measurement s (categorical vector) captured from relative
pose x (rel), the class likelihood is a probabilistic model

P(s | c, x (rel)
k ), (5)

where c ∈ C is the object class, and the k subscript denotes
time index. Denoting object pose in global frame as owe can
explicitly write

x (rel)
k

.= xk � o. (6)

The dependence of the model in Eq. (5) on viewpoint nat-
urally captures view-dependent variations in object appear-
ance and as a result in classifier responses as illustrated in
Fig. 1a. Further, to incorporate the notion that similar views
tend to yield similar classifier responses and in particular, are
not independent, we consider the joint distribution

P(S0:k | c,X (rel)
0:k ), (7)

characterizing the classification unit’s outputs
S0:k

.= {S0, . . . , Sk}when viewing an object of class c from a
sequence of relative posesX (rel)

0:k
.= {x (rel)

0 , . . . , x (rel)
k }. Sim-

ilar to Teacy et al. (2015), Velez et al. (2012), we represent
this joint distribution with a Gaussian Process, learned using

the classifier unit. Explicitly, we model training set classifier
response when viewing object of class c from relative pose
x (rel) as

s(i) = fi |c(x (rel)) + ε, (8)

where the i index denotes component i of classification vec-
tor s, ε ∼ N (0, σ 2

n ) i.i.d. noise, and (dropping the (rel)
superscript for clarity)

fi |c(x) ∼ GP (
μi |c(x), ki |c(x, x)

)
, (9)

where μi |c and ki |c are the mean and covariance functions
defining the GP

μi |c(x) = E{s(i) | c, x} (10)

ki |c(x, x ′)
= E{( fi |c(x) − μi |c(x))( fi |c(x ′) − μi |c(x ′))} (11)

We thus model the classification vector for each class c with
independent, per-component GP’s. Note also the Gaussian
approximation of the distribution of the classification vec-
tor, which resides in the simplex (other representations exist,
which however are not readily interpreted as a spatial model).

For the covariance we use the squared exponential func-
tion:

ki |c(x, x ′) = σ 2
i |c exp

(

−1

2
(x − x ′)T L−1

i |c (x − x ′)
)

, (12)

where σ 2
i |c is the variance, and Li |c is the length scale matrix

(of the dimension of x), determining the rate of the covariance
decay with distance. These parameters can be learned from
training data Rasmussen and Williams (2006).

Denote the training set for class c as {ScT , Xc
T }, with

ScT classifier measurements, and Xc
T the corresponding

poses, and denote (test-time) measurements as S = S0:k and
X = X (rel)

0:k . Note that training set classifier measurements
are obtained without dropout i.e. they do not carry model
uncertainty information. Further, the following equations
Eqs. (13–16) all hold per vector-component (joined in Eq.
(17)), i.e. for simplifying notation we drop the i index in
S(i), S(i)

T and ki |c.
We followRasmussen andWilliams (2006) andmodel the

joint distributionof classifiermeasurements (per-component)
for object of class c as

P(ScT , S | c, Xc
T , X)

= N

(

0,

[
Kc(Xc

T , Xc
T ) + σ 2

n I Kc(Xc
T , X)

Kc(X , Xc
T ) Kc(X , X)

])

, (13)

where ScT are the classifier measurements used for training,
not carying model uncertainty information, S = S0:k are the
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test-time measurements, such that S j ∼ P(· | z j ) as in Eq.
(4), and Kc is the matrix produced by application of kernel kc
on all pairs of input vectors. We thus obtain the conditional
distribution for classifier measurements of object of class c

P(S0:k | c, Xc
T , ScT ,X (rel)

0:k ) = N (μ,�), (14)

with

μ = Kc(X , Xc
T ) · H · S (15)

� = Kc(X , X) − Kc(X , Xc
T ) · H · Kc(X

c
T , X), (16)

and where H
.= (

Kc(Xc
T , Xc

T ) + σ 2
n I

)−1
.

Going back to the time notation, we finalize by combining
the per-component models into a joint class likelihood as

P(S0:k | c, Xc
T , ScT ,X (rel)

0:k )

=
∏

i

P(S(i)
0:k | c, Xc

T , Sc,(i)T ,X (rel)
0:k ), (17)

where the superscript (i) refers to vector component, as
above. Note that this formulation somewhat differs from
Teacy et al. (2015), where inference from training data is
done by offline learning of GP mean and covariance func-
tions rather than using a joint distribution as in Eq. (13). Also
note that while for simplicity we defined the model in Eq.
(13) per-component (considering components as indepen-
dent), subsequent development also holds for a joint model,
i.e. jointly referring to all components of classifier measure-
ments in Eqs. (13–16), with full covariance in Eq. (14) rather
than block-diagonal as induced by Eq. (17).

3.3 Assumptions

We briefly review basic assumptions in the context of
the formulation above. We assume that we have access
to a Bayesian classifier, which given raw measurement
z provides samples from a probability distribution over
classification vectors characterizing the predictive uncer-
tainty P(s | z,D), see Eq. (4). We assume that viewpoint-
dependent class models are available, modeling the spatial
responses S0:k of that classifier given poses relative to object
X (rel)
0:k , in a joint Gaussian distribution P(S0:k | c,X (rel)

0:k ) for
objects of class c, where the Gaussian form is required for
closed-form calculations in the following.As described in the
previous section, Gaussian Process regressors can be learned
to implement such models. Existence of pre-trained models
for known classes implies closed set conditions, i.e. the pos-
sible object classes are known in advance. Objects of novel
classes are assumed to trigger high predictive uncertainty in
the classifier output (in itself an assumption, since predictive
uncertainty depends on the classifier training set), reflected in

uncertainty in the posterior. Further, the formulation focuses
on classification of a single, static object. In general scenes
comprising multiple objects this formulation can be applied
for each object separately, under the assumption of known
data association, and the additional underlying assumption
of negligibility of the effect of occlusions. Finally, in this
work we assume that the orientation of the object relative
to the robot is known (perhaps, detected from observations).
The need for this assumption becomes apparent and is briefly
discussed in Sect. 4.2. Under these assumptions, in the fol-
lowing section we detail our approach to the classification
problem formulated above.

4 Approach

To account for both localization and model uncertainty we
rewrite Eq. (1) asmarginalization over latent robot and object
poses, and over classifier outputs. We start by marginalizing
over robot pose history and object pose

b[ck] = P(c | Hk) =
∫

X0:k ,o
P(c,X0:k, o | Hk) dX0:kdo,

(18)

which, using chain rule, can be written as

b[ck] =
∫

X0:k ,o
P(c | X0:k, o,Hk)︸ ︷︷ ︸

(a)

P(X0:k, o | Hk)︸ ︷︷ ︸
(b)

dX0:kdo.

(19)

Term (a) above is the classification belief given relative
poses X (rel)

0:k which are calculated from X0:k and o via Eq.
(6). Term (b) represents the posterior over X0:k and o given
observations and controls thus far. As such, this term can be
obtained from existing SLAM approaches. One can further
rewrite the above equation as

b[ck] = E
X0:k ,o

{P(c | X (rel)
0:k ,Hk)}, (20)

where the expectation is taken with respect to the posterior
p (X0:k, o | Hk) from term (b). In practice, this posterior can
be computed using SLAMmethods (see Section 4.2), which
commonly model it with a Gaussian distribution. We then
use the obtained distribution to approximate the expectation
in Eq. (20) using sampling.

In the following we detail the computation of the terms
(a) and (b) of Eq. (19).
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4.1 Classification under known localization

In this section we develop the update of classification belief
given known pose history, term (a) in Eq. (19), when receiv-
ing new measurements at time step k, while accounting for
correlations with previous measurements and model uncer-
tainty.

To simplify notation, we shall denote history of observa-
tions, controls and (known) relative poses as

Hk
.= Hk ∪ X (rel)

0:k ≡ {U0:k−1,Z0:k,X (rel)
0:k }. (21)

We start by marginalizing term (a) over model uncertainty in
the classifier output at time k

P(c | Hk) =
∫

sk
P(c | sk, Hk) · P(sk | Hk) dsk . (22)

Assuming sk carries the class information frommeasurement
zk , and that sk ∼ P(sk | zk) we can rewrite this as

P(c | Hk) =
∫

sk
P(c | sk, Hk \ {zk}) · P(sk | zk) dsk . (23)

In our case, {sk} are samples from P(sk | zk), so we can
approximate the integral as

P(c | Hk) ≈ 1

nk

∑

sk∈Sk

P(c | sk, Hk \ {zk}). (24)

To calculate the summand, we apply Bayes’ law and then
smoothing over class in the denominator

P(c | Hk)

=
∑

sk

η(sk)

nk
· P(sk | c, Hk \ {zk}) · P(c | Hk \ {zk}) (25)

with

η(sk)
.= 1/

∑

c∈C
P(sk | c, Hk \ {zk})P(c | Hk \ {zk}). (26)

Note that the denominator in η(sk) is a sum of numerator
(summand) terms in Eq. (25) for the different classes and can
be computed efficiently (but cannot be discarded altogether
due to the dependence on sk). Further, note that

P(c | Hk \ {zk}) = P(c | X (rel)
0:k ,Z0:k−1)

= P(c | X (rel)
0:k−1,Z0:k−1) = P(c | Hk−1). (27)

As P(c | Hk−1) has been computed in the previous step, we
are left to compute the class likelihood term
P(sk | c, Hk \ {zk}). This term involves past observations

Z0:k−1 but not classifier outputs S0:k−1, which need to be
introduced to account for spatial correlation with sk using
Eq. (7). Marginalizing over S0:k−1 (recall that in our nota-
tion S0:k−1 ∪ {sk} = S0:k) yields

P(sk | c, Hk \ {zk}) =
∫

S0:k−1

P(S0:k | c, Hk \ {zk}) dS0:k−1

=
∫

S0:k−1

P(sk | c,S0:k−1, Hk \ {zk})
· P(S0:k−1 | c, Hk \ {zk}) dS0:k−1, (28)

where we applied smoothing to separate between past clas-
sifier outputs S0:k−1 for which observationsZ0:k−1 are given
and the current output sk . The first term in the product reduces
to P(sk | c,S0:k−1,X (rel)

0:k ), a conditioned form of the class
model Eq. (14) (and thus Gaussian, which we treat explicitly
later in Eq. (31) and on). This term represents the probabil-
ity to obtain classification sk when observing an object of
class c from relative pose x (rel)

k given previous classification
results and relative poses. The second term in Eq. (28) can be
approximated using Eq. (4) for the individual observations
zi , i.e.

P(S0:k−1 | c, Hk \ {zk}) = P(S0:k−1 | Z0:k−1) ≈
k−1∏

i=0

P(si | zi )

Note that class c and poses X (rel)
0:k−1, both members of Hk can

be omitted since conditioning on observations determines
classifier outputs up to uncertainty due to classifier intrin-
sics (model uncertainty). The approximation is in the last
equality, since in general classifier outputs s0, . . . , sk−1 are
interdependent through classifier parameters. We can now
rewrite P(sk | c, Hk \ {zk}) from Eq. (28) as

∫

S0:k−1

P(sk | c,S0:k−1,X (rel)
0:k ) ·

k−1∏

i=0

P(si | zi ) dS0:k−1. (29)

Assuming classifier output Eq. (4) is Gaussian, we denote

P(si | zi ) = N (μzi , �zi ), (30)

where μzi and �zi are estimated from Si . Since class model
is Gaussian, see Eq. (14), the first term in the integrand in
Eq. (29) is a Gaussian that we denote as

P(sk | c,S0:k−1,X (rel)
0:k ) = N (μk|0:k−1, �k|0:k−1) (31)

where, utilizing standard Gaussian Process equations Ras-
mussen and Williams (2006),

μk|0:k−1 = μk + � · (S0:k−1 − μ0:k−1) (32)
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�k|0:k−1 = K (xk, xk) − � · K (X0:k−1, xk) (33)

with �
.= K (xk,X0:k−1)K (X0:k−1,X0:k−1)

−1.
Using these relations, the integrand from Eq. (29) is a

Gaussian distribution over S0:k , that can be inferred as fol-
lows.

P(sk | c,S0:k−1,X (rel)
0:k ) ·

k−1∏

i=0

P(si | zi )

= η exp

{

−1

2

(

‖sk − μk|0:k−1‖2�k|0:k−1
+

k−1∑

i=0

‖si − μzi ‖2�zi

)}

,

(34)

where η only depends onX (rel)
0:k . Using Eq. (32) we can write

sk − μk|0:k−1 = sk − μk − � · (S0:k−1 − μ0:k−1)

= [−� I ] (S0:k − μ0:k) (35)

We have that the integrand Eq. (34) from Eq. (29) is propor-
tional to a joint Gaussian distribution N (μJ , �J ) with

�J =
(
�−1

s + �−1
z

)−1
(36)

μJ = �J ·
(
�−1

s μs + �−1
z μz

)
, (37)

where

μs =

⎛

⎜
⎜
⎜
⎝

μ0
...

μk−1

μk

⎞

⎟
⎟
⎟
⎠

μz =

⎛

⎜
⎜
⎜
⎝

μz0
...

μzk−1

0

⎞

⎟
⎟
⎟
⎠

, (38)

and

�−1
s = [−� I ]T �−1

k|0:k−1 [−� I ] (39)

�−1
z =

⎛

⎜
⎜
⎜
⎜
⎝

�−1
z0 0 · · · 0

0
. . .

...
... �−1

zk−1
0

0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎠

(40)

Finally, the class likelihood from Eq. (28) is the marginal
distribution of the above. Specifically, the integral is directly
calculated by evaluation at sk of a Gaussian PDF with the
components corresponding to sk from μJ and �J as mean
and covariance.

So far, we have described how to update the class belief
given known localization, term (a) of Eq. (19), upon arrival
of new measurements. We now proceed to describe how the
localization belief, term (b), is computed.

4.2 Localization inference

In this work we assume that the object orientation relative to
the robot is known (leaving owith 3 degrees of freedom), and
so term (b) of Eq. (19) is essentially a SLAM problem with
robot pose history X0:k and one landmark, the target object
localization o, to be inferred. Specifically, we can express the
target distribution as marginalization over all landmarks L,
except for the object of interest

P(X0:k, o | Hk) =
∫

L
P(X0:k, o,L | Hk) dL. (41)

This can be computed using state of the art methods, e.g. if a
Gaussian posterior is assumed, using an efficient solver such
as iSAM2Kaess et al. (2012).Note that the above assumption
of Gaussian posterior is not a requirement of the formulation
in Eq. (19)—indeed, using sampling allows the localization
posterior to be of any distribution provided it can be sampled
from.

Also note that the historyHk contains both geometric and
semantic measurements, allowing related work to leverage
the viewpoint-dependent model in inference as a semantic-
geometric factor Kopitkov and Indelman (2018), Tchuiev
et al. (2019). Our case is slightly different however, as the
formulation accounts for model uncertainty and correlation
among viewpoints. In this work we limit ourselves to usage
of semantic factors for semantic (term (a) of Eq. (19)) but not
geometric inference (geometry helps semantics Cadena et al.
(2016)), requiring relative object orientation to be externally
known.

4.3 Overall algorithm

Algorithm 1 summarizes computations for time step k in
the localization and model uncertainty aware classifica-
tion approach described above. Observations Zk are passed
through the classifier unit to obtain semantic measurements
andmodel uncertainty, at which point summary statistics can
be computed, for use in Eq. (29). To account for localiza-
tion uncertainty, robot and object poses are sampled from
the current (updated) posterior. For each sample, class model
predictions (mean and covariancematrices) are computed for
all classes. To account for model uncertainty, measurement
likelihood is computed for each s(i)

k ∈ Sk , then averaged.
Note that formulation using the conditional distribution of
sk given past measurements in Eq. (29) allows efficient
marginalization in Eq. (25) and computation of normal-
izing constant η(sk) in Eq. (26), which would otherwise
require intractable summation over combinations of indi-
vidual semantic measurements. Similarly, using summary
statistics (fitting aGaussian per time-step) over past semantic
measurements allows the marginalization in Eq. (29) to be
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Algorithm 1Localization andmodel uncertainty aware clas-
sification.
This describes computations for time step k.
Input: Localization posterior P(X0:k , o | Hk), new observations Zk

1: Sk = {s(i)
k }nki=1 ← ClassifyWithDropout(Zk), pre-calculate

�−1
z , μz (Eq. (40), Eq. (38))

2: Sample
{
X (i)
0:k , o(i)

}nx

i=1
∼ P(X0:k , o | Hk)

3: for X0:k , o ∈ {X0:k , o} do
4: ∀c ∈ C calculate �J , μJ (Eq. (36), Eq. (37)) � These are

per-class through GP model
5: for sk ∈ Sk do
6: for c ∈ C do
7: P(sk | c, Hk \ {Zk}) ← N (sk; μ

(k)
J , �

(k,k)
J )

� Likelihood given past observations Eq. (29)
8: h̃c ← P(sk | c, Hk \ {Zk}) · P(c | Hk−1) � Unnormalized

class likelihood, Eq. (25)
9: end for
10: P(c | sk , Hk) ← h̃c/η(sk), η(sk) = ∑

c h̃
c � Normalize

class likelihood, Eq. (25)
11: end for
12: P(c | Hk)

(i) ← ∑
sk P(c | sk , Hk)/nk � Classification given

localization Eq. (24)
13: end for
14: P(c | Hk) ← ∑

i P(c | Hk)
(i)/nx

Note: Lines 10, 12, 14 apply per-class, ∀c ∈ C. In step 7, superscripts
select elements corresponding to time k in the joint mean vector and
covariance matrix.

computed in closed form. Classifications thus computed per
localization sample are averaged to yield the final output. In
the next section we analyze the computational complexity of
Algorithm 1, then present the experimental evaluation and
results.

4.4 Computational aspects

While using samples allows in principle to approximate arbi-
trary non-tractable or unknown probability distributions, on
the downside it involves computations repeated per-sample,
inducing a sharp precision vs. runtime tradeoff on the num-
ber of samples, especially so as state dimension grows over
time. Additionally, in classification, most computations are
repeated per class. Finally, complexity depends on the num-
ber of time steps k, which affects both the overall number of
observations to be processed, and the number of state vari-
ables in the smoothing formulation.Note that k value relevant
to the classification of an object is the number of time steps
it has been observed, as other poses can be dropped from the
marginalization in Eq. (19), since measurement model and
thus classification is conditionally independent of them.

In this section we analyze the theoretical complexity of
the proposed method, then present an approach for incre-
mental sampling of robot and object poses allowing to reduce
repeated calculations, and discussion.

4.4.1 Theoretical complexity

We denote the number of model uncertainty samples (per
time step) in step 1 of Algorithm 1 as Ns , number of localiza-
tion samples in step 2 as Nx and number of classes as Nc, and
use them to express complexity.Weassume these are constant
throughout the run. We further denote as N f the dimension

of the semantic feature vector, i.e. ∀k, i s(i)
k ∈ R

N f . In our
implementation, N f ≡ Nc as we use the raw classification
vectors as features.

Step 1 depends on the classification andmodel uncertainty
computation method. In the case of a Neural Network classi-
fier with a fixed architecture using MC-dropout, we assume
each forward pass to take constant time, making complex-
ity linear in the number of forward passes O(Ns). In the
same step, computation of μz takes O(N f Ns) and of �−1

z
takes O(NsN 2

f + N 3
f ), which is also the overall complexity

for this step. Step 2 involves sampling an entire trajectory
(MCMC) at each time step i.e. O(k · Nx ). Step 4 involves
(1) prediction of μs (2) computation of �k|0:k−1 and of �−1

s
(see Eq. (33) and Eq. (39)), and (3) Computations of �J

and μJ (see Eq. (36) and Eq. (37)). These values depend on
the robot trajectory sampled in step 2 and on the class mod-
els. Complexity is dominated by the inversion in Eq. (36) at
O(N f k3) when done separately for each semantic feature.
Calculations in this step can be reduced if trajectory sam-
ples from previous time steps are re-used, as discussed in
Sect. 4.4.2. In all, complexity for step 4 is O(Nc N f k3) as
computation is done for each class. Since �J , μJ are pre-
computed in step 4, calculation of likelihood in step 7 takes
O(N f ) (covariance-form marginalization, followed by eval-
uation of 1-dimensional Gaussian PDFs for N f features).
Step 8 incurs no additional cost (i.e.,O(1))whenP(c | Hk−1)

can be assumed pre-computed, which corresponds to re-use
of localization samples from previous time indexes (see Sect.
4.4.2). In this case complexity of inner loop steps 5–12 is
O(k3 Nc Ns N f ). Otherwise, if past localization samples are
not re-used, computation from scratch is required, which can
be done by repeating steps 4–12 to incrementally compute
P(c | H1),P(c | H2), . . . ,P(c | Hk−1), which also requires
that semantic measurements from all previous time steps
be kept. Incremental computation for time indexes 0, . . . , k
results in complexity O(k4 Nc Ns N f ). Overall, total time
complexity for time step k stands at O(k4 Nc Ns N f Nx +
Ns N 2

f + N 3
f ) if class posterior in step 8 needs to be recom-

puted, or O(k3 Nc Ns N f Nx + Ns N 2
f + N 3

f ) if it does not,
where k is the number of viewpoints from which the object
was observed.
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4.4.2 Incremental sampling

Step 2 in Algorithm 1 involves sampling of robot trajectory,
a state vector which grows over time, in order to compute
the marginalization in Eq. (19), accounting for localization
uncertainty. This marginalization must involve a history of
robot poses because of themeasurementmodel (GP), Eq. (7),
which captures correlations among present and past views.

While, as noted in Sect. 4.4, this sampling can be limited
to poses at time indices corresponding to views of the object,
a further runtime improvement can be achieved if trajectory
samples from past time indices can be re-used in samples
from the updated posterior.

Specifically, sample reuse would benefit step 4, where
some values can be updated instead of being re-calculated,
and especially step 8 where values from past time steps can
be re-used eliminating the required calculations to O(1), in
addition to directly reducing sampling in step 2.

Formally, assuming at time step k we can use samples
{X (i)

0:k , o(i)}Ns
i=1 ∼ P(X0:k, o | Hk) to approximate integral

Eq. (19) with sum

P(c | Hk) =
∫

X0:k ,o
P(c | X0:k, o,Hk)

·P(X0:k, o | Hk) dX0:kdo
≈

∑

i

P(c | X (i)
0:k , o

(i),Hk)

·P(X (i)
0:k , o

(i) | Hk) dX0:kdo, (42)

at time step k + 1 we would like to approximate

P(X0:k+1, o | Hk+1) = P(xk+1 | X0:k, o | Hk+1)

·P(X0:k, o | Hk+1) (43)

without sampling the variables from scratch, ideally keeping
samples ofX0:k, o from time step k, and only sampling incre-
mentally x (i)

k+1 ∼ P(· | X (i)
0:k , o(i),Hk+1). Since generally

P(X0:k, o | Hk+1) = P(X0:k, o | Hk) a possible approach to
sample reuse is to weight incremental samples of trajectory
X0:k+1 by the ratio P(X0:k, o | Hk)/P(X0:k, o | Hk+1) when
approximating the integral fromEq. (42) at step k+1, an idea
known as importance sampling. Under this approach, full
posterior samples only need to be generated to replace incre-
mental samples with low weights, allowing reuse of samples
and calculations, see, e.g., Farhi and Indelman (2019).

4.4.3 Discussion (computational aspects)

The method as presented in the previous section allows
efficient computationwith respect tomodel uncertainty offer-
ing a recursive formulation for model uncertainty samples,
with marginalization at the current time step approximated

with samples Eq. (24), and past time steps marginalized out
analytically Eq. (40). However, formulation for localization
uncertainty is not recursive due to the batch samplingof entire
robot trajectory and object pose in Eq. (20) required there to
account for correlations with past time steps. In the previous
clause Sect. 4.4.2 wementioned a possible approach to allow
recursive computationwith respect to localization samples as
well, rendering themethod fully incremental, which could be
addressed in future research. In practice (and even for fully
incremental computations) there is a tradeoff between run-
time and accurate treatment of uncertainty. One approach is
to not address uncertainty at all, equivalent to using a sin-
gle sample (e.g. max-likelihood). Another possibility is to
neglect correlations to some past time steps. Both can be
considered heuristics in the general scheme described above.

5 Results

We evaluate our method in a MATLAB simulation using
synthetically generated classifier measurements and in a
simulated 3D environment using Unreal Engine (UE) with
UnrealCV Qiu et al. (2017), with semantic measurements
obtained from a CaffeNet classifier Jia et al. (2014). In both
settings, we split our evaluation into scenarios of model
uncertainty and of localization uncertainty, comparing per-
formance to baseline methods, as detailed in the next section.
To validate our contributions in a realistic setting, we addi-
tionally present an evaluation using a real-world dataset,
Active VisionDataset Ammirato et al. (2017), usingAlexNet
Krizhevsky et al. (2012) for semantic measurements.

In all settings, GP models (using Scikit-Learn Pedregosa
et al. (2011)) are fit offline for each of the candidate classes.
Following Eq. (17), components of the classification vector
output by the classifier are considered independent, amount-
ing to a separate GP per component. Another simplifying
assumption is that object orientation relative to robot is
known, following Sect. 3.3.

5.1 Compared approaches and performancemetrics

We compare the results of three methods. Ours we denote
Model with Uncertainty, which takes into account
spatial correlations, as well as uncertainty in pose and clas-
sifier model uncertainty. The second is Model Based,
similar to the method described by Teacy et al. Teacy et al.
(2015) but with GP defined as in Eq. (13) (and Rasmussen
and Williams (2006)), which takes into account spatial cor-
relation, but not localization nor model uncertainty The third
is Simple Bayes, which directly uses the classifier scores
and assumes spatial independence between observations, as
in e.g. Patten et al. Patten et al. (2016).

123



Autonomous Robots

Wecompare themethods abovewith relation to the follow-
ing metrics: (i) probability of ground-truth class; (ii) mean
squared detection error; and (iii) most-likely-to-ground-truth
ratio. The mean squared detection error (MSDE) is defined
as

MSDE
.= 1

Nc

∑

c′∈C

(
1c(c

′) − P(c′ | H)
)2 (44)

here c is the ground truth class and 1c(c′) is 1 if c = c′ and 0
otherwise. This measure was also used in Teacy et al. (2015).

The most-likely-to-ground-truth ratio (MGR) is defined
as

MGR
.= argmaxc′ P(c′ | H)

P(c | H)
(45)

for ground truth class c. Roughly, thismeasure penalizes high
confidence in the wrong class. In a way it “demands” ground
truth class to be most (possibly, equally) likely. Finally, as
a sanity check, we also present values of the “correct ratio”
(CR), defined as

CR
.= EH

{
1c

(
argmaxc′ P(c′ | H)

)}

≈ 1

N

∑

H
1c

(
argmaxc′ P(c′ | H)

)
, (46)

with 1 the indicator function as above, N the number of aver-
aged terms and with the proposal distribution of H defined
according to reported context. This defines the CR as the
ratio of correct classifications, considering a classification
result vector “correct” if it assigns the highest probability
to the ground truth class, i.e. if the ground truth class is the
most likely. Below we report final CR, i.e. whereH includes
all measurements from the entire trajectory, and overall CR,
where we also average over measurement history at interme-
diate time steps along trajectories, to capture the method’s
behavior over time.

We now proceed to detail the experiments and the results.

5.2 MATLAB simulation results

We present experimental results for a MATLAB simulation,
in which synthetic classifier measurements are generated
using the GP model of the ground truth class, along a
pre-determined track. Synthetic measurements are generated
according to the procedure detailed in Algorithm 2. The class
inference algorithm needs to fuse these measurements into
a posterior over classes, essentially identifying which of the
known GP models is the more likely origin of the measure-
ments. We study robustness of our algorithm to model and
localization uncertainty, and compare it to the state of the art.

5.3 Simulation experiments

Statistics for the three algorithms have been collected for sev-
eral scenarios over realizations of simulated classification. In
each scenario, GP models were created for three classes, by
manually specifying the classifier response for chosen rela-
tive locations around the origin (i.e. locations assumed to be
in object-centered coordinates) in the 2D plane, see Fig. 1a.
Note that GP model for a class describes classifier responses
for all classes, (see Eq. (17) and Sect. 3.2).

During simulation, the robot moves along a pre-specified
trajectory and observes a single object from different view-
points, see Fig. 1b for an example trajectory. At each time
step the algorithm receives new classifier measurements and
updated pose belief (simulating localization obtained from
a SLAM solution). Classifier measurements are generated
using the GP model of a “ground truth” class (the simulation
of measurements is detailed in the next subsections), which
needs to be inferredby the algorithmusing themeasurements.

We next present results on two scenarios highlighting our
main contributions.

5.3.1 Model uncertainty scenario

Model uncertainty expresses the reliability of the classifier
output. High model uncertainty corresponds to situations
where classifier input that is far from the training data, often
due to an unfamiliar scene, object or viewpoint pictured,
causes output that may be arbitrary. We simulate this with
two steps, performed at each time instant: first, a nominal
“true” measurement snominal is generated from a GP model
of the ground truth class. The level of model uncertainty
σ 2
u is selected at each time step uniformly between 0 and

σ 2
max (a parameter). It is then used as standard deviation of

a Gaussian centered at the true measurement to generate a
simulated noised measurement snoised . The Model Based
and Simple Bayes algorithms receive snoised as classifi-
cation measurement and are not aware of the uncertainty.
Our method receives samples (simulating outputs of several
forward passes applying dropouts) drawn from a Gaussian
distribution centered at snoised with standard deviation σ 2

u .
Algorithm 2 summarizes this process.

First scenario shows the effects of considerable model
uncertainty, with no localization errors (perfect localization).
Figure 2 shows plots of GP model of ground truth class and
simulated classifier measurements (snoised ) over robot track
(left) and per-component as a function of time (right). Figure
3 shows the statistics described above (probability assigned
to ground truth class andEqs. (44–45)) alongwith percentiles
(over scenario realizations) as patches of varying saturation,
with a 10% step: median is plotted darkest, the patch around
it contains the runs between 40th and 60th percentile, the
next one between 30th and 70th, etc. The area above and
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Fig. 2 Scenario with model uncertainty (no localization errors). Stan-
dard deviation for the noised observation was chosen in [0, 0.3]. Left:
the ground truth class GP model mean and simulated (noised) classi-
fier measurement over robot trajectory, plots of response for 1st label

against response for 2nd label. More intense color corresponds to later
time index. Center and right: first and second components over time
indices, respectively

Fig. 3 Model Uncertainty synthetic scenario. Left column: probability
of correct class, middle: MGR, right: MSDE. Legend in the leftmost
column shows percentage of time steps where most likely class was the
correct one. Color patches denote percentiles of the respective methods,
one step in lightness denotes 10% percentile step and median is plotted
darkest, so that the patch around the median comprises values between
the 40th and the 60th percentile, the next darkest between the 30th and

70th and so on. Dashed line denotes the uninformative prior (proba-
bility of 1/3 for label) Top row: comparison of our method to Model
Based, bottom row: to Simple Bayes. While probability of correct class
in our method rises slowly, it fluctuates significantly less over realiza-
tions, and the correct class is chosen more often. In both plots, Simple
Bayes method performs poorly where an “inverse” measurement (see
Sect. 5.3.1) exists in the model, around time index 15

below the plots contains the top and bottom 10% of the runs
respectively. Top rowshows comparison of ourmethod (blue)
toModel Based (green), bottom - toSimple Bayes (in
red).

An immediate observation in comparison to Model
Based (first row) is that our percentiles are more concen-
trated, which means that method results are more stable.

For example, in more than 20% of the runs (bottom lightest
patch and below), probability of correct class (left column)
for Model Based in time step 15 is less than 0.2 (com-
pared to more than 0.33 for ours). Indeed, in more than 20%
of the runs the MGR (middle column) for Model Based
at iteration 15 is higher than 1, which means that a wrong
(most likely) class was assigned probability more than twice
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Algorithm2MATLABsimulation: procedure for simulating
classifier outputs at step k

Input: S0:k−1,X (rel)
0:k , σ 2

max , Nsamples

1: snominal ∼ P(s | c,S0:k−1,X (rel)
0:k ) � See Eq. (31)

2: σ 2
u ∼ Uni(0, σ 2

max ) � Choose uncertainty level
3: snoised ∼ N (snominal , σ 2

u I ) � Uncertain classification
4: samples ← ∅
5: for Nsamples times do � Simulating dropout
6: s ∼ N (snoised , σ 2

u I )
7: samples ← samples ∪ {s}
8: end for
9: return snominal , snoised , samples

higher than the correct one, i.e. wrong class was chosen with
high confidence. The MSDE plot displays similar behavior.
In the bottom row, drop of accuracy of Simple Bayes
around time step 15 is the result of an “inverse”measurement
in the model, meaning that from a certain angle, classifier
response suggests a different class (see for example in Fig.
1a). This illustrates well the difference from our method,
which matches the entire sequence of measurements against
a model, and thus can use also “inverse” measurements to
classify correctly (on the downside, requiring a class model).

5.3.2 Localization uncertainty scenario

In methods making use of spatial class models, localization
errors may cause classification aliasing when acquired mea-
surements correspond to the model of a wrong class, because
of the spatial shift in the query. To exemplify this, in this
scenario, we introduced (a constant) bias in easting coordi-
nate (the robot moves eastward in a straight line), causing
aliasing between models (with no model uncertainty). Con-
sider Fig. 4. The left plot as before shows GP mean of the
correct class model (blue) and classifier output over robot
track (red). It also shows the GP mean of the model of a
wrong class (yellow). In the center plot, classifier outputs
for label 2 (red) compared without localization bias against
the corresponding GP component of the ground truth class
model (blue) show a clear match. After introducing a bias of
-8 units in easting (right plot) classifier responses (red) are
matched against shifted spatial models, making the wrong
class (yellow) a more likely match until around time step
16, after which the the blue line can be matched correctly
in spite of the shift. The effects of this on performance are
shown in Fig. 5. While our method, aware of the localization
uncertainty (standard deviation) accumulates classification
evidence gracefully, the Model Based method infers the
wrong class with high confidence (as can be seen in theMGR
plot, center) peaking at around time step 15, after which dis-
ambiguating measurements start to arrive. In the bottom row
of the same figure, Simple Bayes method performs well
(closely following the line from Fig. 4), since classifier mea-

surements are stable and not ambiguous (the aliasing happens
when trying to match against the different models).

5.4 Evaluation in synthetic 3D environments

To study our approach in amore realistic settingwhen using a
DL classifier, we created a set of 3D simulated environments
using UnrealEngine. In this setting, classifier measurements
are obtained by feeding rendered images of an object to a
neural network classifier (CaffeNet), in contrast to the basic
MATLAB simulation, where they were generated from a
manually specified GP model.

For simplicity, we limit ourselves to planar environments,
containing a single object, corresponding to solved data asso-
ciation. Camera moves at a constant height of 160cm, in
object proximity - corresponding to object detection, in a
way that the object occupies most of the frame—and facing
it. We selected a set of objects for which 3D models were
available, considering them as representative of the corre-
sponding classes. For each object/class we fit a spatial (2D)
GP model to classifier outputs for rendered viewpoints sam-
pled over a grid. For simplicity, each view is directed towards
the object.

Figure. 6 shows the GP models fit for each of the classes
(chest, crate, desk), sampled over a 2D spatial grid centered
on the object, as well as example images for corresponding
viewpoints and raw classifications output by the classifier
unit (as used for learning the GP models). The color of each
pixel in the rastermaps is calculated as the sumof class colors
(blue for chest, orange for crate, green for desk), weighted
by the classification vector predicted for the (object-centered)
corresponding view.

We used classifier scores for the selected classes as fea-
tures, although other choices are in principle possible, such
as using scores for additional or fewer classes, or in fact any
spatially varying feature, see discussion in Sect. 6.

We next show experiments using the above GP models
for classification under model uncertainty, Sect. 5.4.1 and
localization uncertainty, Sect. 5.4.2.

5.4.1 Model uncertainty experiments

In order to inducemodel uncertainty,wemodified the crate
3D model by filling one of its sides with plain color. Note
that while both the original and the modified crate were not
part of classifier training set, we added color to induce an
irregular appearance and elevated model uncertainty.

The spatial uncertainty map in Figure 7a shows the
standard deviation of classifier vectors obtained from MC
dropout for the corresponding views, summed over com-
ponents (corresponding to the classes of interest). For all
views camera is at a constant height, at each point oriented
towards the object center. Data at the center of the map is
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Fig. 4 Scenario with localization bias in the x axis. Time index corre-
sponds to x coordinate (robot motion is a straight line, in the direction
of the x axis). Left: as before, simulated classifier output generated
from GP of ground truth class. Center: we concentrate on responses for
class 2 (2nd component of classification vectors). Classifier output (red)

matches GP of ground truth class (in blue) at true position. Right: bias
in the x axis means that classifier output is effectively compared to a
shifted model, better matching GP of a wrong class (yellow). This leads
to classification errors unless accounting for localization uncertainty
(Color figure online)

Fig. 5 Localization uncertainty synthetic scenario. Left column: prob-
ability of correct class, middle: MGR, right: MSDE. Localization bias
of -8 units in the x axis causes severe aliasing in Model Based method
resulting in a wrong class being inferred with high confidence. Our

method is aware of localization uncertainty of standard deviation 16,
and is able to recover. Simple Bayes method does not experience alias-
ing, as it uses the rawmeasurements directly, rather thanmatching them
to a model

missing since views too close to the object become unin-
formative. As expected, the plot generally exhibits elevated
uncertainty at points corresponding to views of the colored
crate side (right side of the map). Uncertainty values also
tend to be higher around the map edges (especially left cen-
ter and corners), possibly related to larger portions of the
crate’s environment, which is different from training (natu-
ral) images, in the frame. Relatively low uncertainty values in

the center right area are due to low values of components of
the classification vector corresponding to classes of interest,
which result in low variance.

We generated 300 random tracks in the area exhibiting
elevated uncertainty values (right side of the map), render-
ing 10 viewpoints along each track. Two example tracks are
shown in Figure 7a, example viewpoints are shown in Fig-
ure 7b. As before, viewpoints are centered on the object. For
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Fig. 6 Spatial GP models learned for the classes of interest and exam-
ple views. Raster maps show spatial predicted classifications output by
the black box classifier unit when observing an object of the corre-
sponding class. Left raster shows predictions of GP model learned for a
crate object, center - model for chest, right - model for desk. Each pixel
corresponds to a classification vector predicted by the GP model. Class
GP models are fit to “raw” classifier measurements for varying relative
viewpoints. Thus, a strong orange component indicates that the element
corresponding to the crate class in the classification vector output by the
classifier is close to 1 for that viewpoint. For each model representative

views are displayed along with classification vectors output by the clas-
sifier unit (bar plots). Note the difference between “raw” chest, crate
and desk classifications output by the classifier unit, to chest, crate and
desk class models which in general need not be related (i.e. to construct
class models features other than explicit class predictions can be used).
Learnedmodels indicate that chosen crate object is for some viewpoints
mis-classified as chest by the classifier unit, chosen chest object is gen-
erally classified correctly from all viewpoints, chosen desk object may
be classified as each of the classes, depending on viewpoint, motivating
the use of class models over raw classification scores

each frame, we estimated model uncertainty using 10 for-
ward passes with MC dropout, although any other method
can be used in the context of our Bayesian fusion scheme.
In all experiments, class models, localization and classifica-
tion measurements input to the compared methods are the
same, but our method is aware of model uncertainty by using
all MC-Dropout samples, while compared method is input
only the samples average. Figures 7c and 7d compare clas-
sification of the two example tracks using Model Based
and our method showing the evolution of score assigned to
ground truth class (crate) over the time steps / track points. In
the “hard” track (shown in red in Fig. 7a) the ModelBased
method fails while ours is able to recover.

Figure 8 provides a statistical comparison of Bayesian
classification using our method (in blue) against the Model
Based method (in green). As before, color patches denote
respective percentiles per-timestep over the random tracks.
Plots show the evolution over time steps of probability
assigned to ground truth class by each of the methods (left
column) and the MGR (right column).

For both methods results vary over tracks. For the
ModelBased method, median score for ground truth class
was 1. However, for every time step in 20% of the tracks the
ground truth class score is exactly 0 (threshold= 10−10). For
around 25% of the tracks, ground truth class score remains
zero after measurements from the entire trajectory have been
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(a) Model uncertainty map
(b) Example frames for the easy
track (c) Classification of easy

track - magenta
(d) Classification of hard
track - red

Fig. 7 Setting of the model uncertainty experiments. a Views of the
colored side exhibit higher model uncertainty. Map shows standard
deviation of classifier vectors obtained fromMC dropout, summed over
components. Two Example random tracks are plotted in red “hard” and

magenta “easy”. b Example frames along the easy track. c and d Prob-
ability of correct class over time steps along the track for easy and hard
track respectively, using Model Based (green) and our method (blue)
(Color figure online)

incorporated, compared to none for our method. Conversely,
in our method, percentiles are rising steadily, corresponding
to gradual accumulation of information, and are less spread
out, in particular—not approaching score 0, which corre-
sponds to a confident misclassification. This can be equally
seen in the (log) MGR plot Fig. 8b, which for the Model
Based method in up to 40% of the tracks reaches around
20 (meaning e20 times higher probability assigned to wrong
class), and remains so at the end of 25% of the tracks (i.e.
after incorporating data from the entire track), while for our
method final MGR is 0 at 75% and 5.05 at 99%, imply-
ing reduced confident mis-classifications and thus relative
resilience to model uncertainty.

Table 1 summarizes MGR (75th and 95th percentile) and
correct most likely class rate, that is—ratio of tracks for
which the ground truth class was the most likely. “Final”
column presents statistics over tracks at the final time step,
that is - for each track, after information from the entire track
has been incorporated. “Overall” column presents statistics
over all time steps from all tracks. Correct rates for both
methods are similar, while MGR is considerably lower for
our method, consistent with the plots.

This behavior also corresponds to results presented in Fig.
3 for the MATLAB simulation. While ground truth class
scores for our method are generally lower than with Model
Basedmethod, reflecting the classification uncertainty, they
are more stable under model uncertainty, and information is
accumulated gracefully, as opposed to making overconfident
mistakes.

5.4.2 Localization uncertainty experiments

To assess performance under a noisy relative pose estimate
returnedbySLAM/perception algorithm,wemanually spec-
ified test tracks of varying classification difficulty (described
below). Test tracks were then corrupted by perturbing

each of the viewpoints along the track with an i.i.d. (both
among tracks and among each track’s viewpoints) Gaussian
noise N (0, σ ), coordinate-wise. Each corrupted track thus
obtained corresponds to one realization of a noisy robot tra-
jectory and object localization estimate (while the ground
truth remains the original test track before application of
noise). Corrupted tracks were fed to the compared algo-
rithms as the position estimate, our method additionally
input σ as the estimate’s uncertainty. In our experiments
we collected results over realizations of corrupting noise,
statistically exploring the effect of perception errors on clas-
sification of the chosen tracks.

Figure 9a shows the three test (ground truth) tracks over
which statistics are presented in the belowsections. Theback-
ground shows the “aliasing map” in classification of a desk
object under a (one particular) localization bias of +10cm
in the x axis, using the Model Based method (i.e., not
uncertainty-aware). Each pixel is obtained by weighting the
colors corresponding to the different classes (blue for chest,
orange for crate, green for desk) with the classification vec-
tor obtained for the given viewpoint (as before, the object is
at the coordinate origin). Thus, pixels with a strong orange
component correspond to views for which the desk object
is incorrectly classified as crate under the given localization
bias, due to the raw classifier measurements for this view
better matching the crate model.

Thus, the hard track (in red) passes (exclusively) through
viewpoints which are incorrectly classified by the Model
Based algorithm for this particular localization bias. The
moderate track (black) passes through viewpoints that are
classified correctly, but other points in their vicinity are not.
The easy track (magenta) passes away from incorrectly clas-
sified viewpoints. Note that while we selected and described
the ground truth tracks with respect to their difficulty under
one particular value of localization bias, it turns out that they
also exhibit the described behavior for sampled random val-
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(a) (b)

Fig. 8 Model uncertainty UE experiments. Blue: our method. Green: Model Based. Left (Fig. 8a): Probability assigned to ground truth class. Right
(Fig. 8b): MGR, Eq. (45) (Color figure online)

Table 1 Model uncertainty
experiment. Correct rate is ratio
of classifications where the
ground truth class was the most
likely

Correct rate-final Correct rate-overall MGR - final MGR - overall

75% 95% 75% 95%

Model Based 0.74 0.67 29.98 629.2 44.67 519.30

Our method 0.76 0.65 0 2.46 0.85 2.99

Statistics are over tracks given measurements from the entire track (“final” columns, ratio of tracks) and
given measurements up to every time step (“overall” columns, ratio of time steps from all tracks). Our method
achieves roughly the same correct classification rates, but makes less confident mis-classifications, as reflected
by the significantly smaller MGR
Bold denotes the best result for each column

ues of localization bias, generally different ones for each
viewpoint along the track, as can be seen in statistical results
described below.

The situation leading to classification aliasing is exempli-
fied in Fig. 9b and c for classification of viewpoints along
the hard track (red). To reduce clutter here we focus on the
“chest” component of the raw classification measurement
vector (dashed line), although in practice behavior is deter-
mined by all vector components at once, as shown in Fig.
10. In Fig. 9b, the “chest” component of the raw classi-
fication measurement vector (dashed) reasonably matches
the desk class model predictions (plain line). While crate
model appears to match the measurements better, in prac-
tice the other vector components provide disambiguation,
as described in detail in Fig. 10. In Fig. 9c the same mea-
surements (again, dashed) are compared with class models
at a wrong location, due to the localization error, matching
better the crate class model than the desk model, causing
confident erroneous classification, for this particular bias, if
not accounting for uncertainty. Figure 10 visualizes the entire
classification vectors at each time step, providing insight into
why there is disambiguation in the former (no localization
error) but not the latter (with localization error) case.

Note that this effect closely corresponds to the MATLAB
simulation, in particular what is presented in Fig. 4. Note
however, that the experiments presented in the current sec-
tion are different from the synthetic localization uncertainty

experiments in Sect. 5.3.2,where tracks, localization bias and
class models were engineered to illustrate contributions, and
presented statistics were over realizations of the synthetic
measurement models (GPs). In contrast, here classifier mea-
surements both for training of class models and at test time
are obtained fromaDeepNeuralNetwork classifier operating
on rendered images, and statistics are presented over errors
in perceived localization w.r.t. given ground-truth tracks.

Given Level of Uncertainty As described in Sects. 5.3.2,
and 5.4.2, localization error causes class aliasing when the
sequence of class measurements obtained over a track better
fits a model other than the ground truth class when matched
at the erroneous estimate. The effect of marginalization over
pose uncertainty in Eq. (19) is averaging term (a) over the
belief, term (b), i.e. matching obtainedmeasurements against
the models as above at different values of shift w.r.t. the
localization estimate, according to the belief posterior dis-
tribution.

This averaging may mitigate class aliasing if the ground
truth class is matched for at least a portion of the shift values
under the belief.On the other hand, this averagingmay reduce
confidenceof classification evenwhen there is no aliasingdue
to localization errors, if aliasing happens for some portion of
averaged shift values.

In Fig. 11 we explore statistics for a given level of uncer-
tainty σ = 10 cm over random additive noise as described
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Fig. 9 Left: tracks of varying classification complexity, used for statis-
tics presented in Fig. 11 against aliasing map for desk class, for bias
of +10 cm in the x axis. The aliasing map is obtained by comparing
per-pixel (every ∼ 5 cm) predictions from the desk GP model against
shifted class models (see Figs. 6 and 4), corresponding to a localization
bias, or a single realization in the localization uncertainty experiments.
Magenta track (Fig. 11e and f, “easy”) steers clear of aliasing areas
making correct classification easy. Red track (Fig. 11a and b, “hard”)
passes through aliasing areas, causing classification errors in the Model
Based method and high uncertainty in our method. Black track (Fig.
11c and d, “moderate”) does not pass through aliasing areas for the
particular bias pictured above, but does for other bias realizations, as
can be seen in the classification statistics. Center and Right: class alias-
ing along the red track when viewing a “desk” object, equivalent of

Fig. 4 for measurements and class models based on DL classifier out-
put. Center plot shows the evolution of “chest” feature component in
raw classification vectors (dashed line) against model predictions when
localization estimate is correct (i.e. unlike the aliasing map shown in
the left plot). Measurements curve appears to match both crate and desk
class models (orange and green respectively), in practice inferred clas-
sification is mostly correct (“desk”) as disambiguation is provided by
other components (not shown in the plot). Figure 10 details the classifi-
cation process. Right plot shows the samemeasurements curve (dashed)
against models sampled with an error of +10 cm in the x axis (corre-
sponding to the aliasing map in the left plot). Measurements match the
crate model, leading to inference of wrong classification (see details in
Fig. 10)

above (i.e. additive localization errors drawn from N (0, σ )

for each viewpoint) for the tracks fromFig. 9a, which turn out
to exemplify both cases. Thefigure showspercentiles of prob-
ability assigned to ground truth class by the twomethods (left
two columns) and theMGR (right two columns) for each time
step along the track for the hard (top row), moderate (mid-
dle row) and easy (bottom row) ground truth tracks, statistics
taken over additive localization noise as described above.

In the hard (Fig. 11a, b) and moderate (Fig. 11c and d)
cases, our method mitigates aliasing, significantly reduc-
ing classification variability. The MGR plots indicate that
mis-classifications, when they occur, are accompanied by
uncertainty in the output classification, i.e. the correct class
being assigned a non-negligible weight—note that the light-
est patch indicates maximum values (i.e. 100th percentile),
with lower percentiles much smaller. In contrast, confident
mis-classifications occur in significant portions of the cases
for the Model Based method, with the median MGR
higher than 0 for the hard track. These results are equally sup-
ported by Table 2, which lists correct most likely class rates
over all time steps (“Overall”) and last time step (“Final”)
and 95th percentile of MGR for statistics with each of the
test tracks. Our method reaches a similar, if slightly higher,
correct rates as Model Based, with a much lower MGR.

In the easy case (Fig. 11e and f) our method more hesi-
tantly reaches the same correct classification assigning lower
confidence to the measurements due to uncertainty, with an
identical rate of correct classifications overall.

Sensitivity Experiments We explore the sensitivity of local-
ization uncertainty aware classification to the level of local-
ization uncertainty. To this end, we repeat the experiment
from Sect. 5.4.2 for values of σ between 1 cm and 20 cm.
Note that as the actual localization errors are drawn from
a Gaussian distribution centered at 0, a higher value of σ

does not imply that localization errors are necessarily higher,
although higher errors do become more likely. As before, in
each experiment our method is input σ in addition to the
noisy localization estimate as measure of the localization
uncertainty.

Figure 12 shows percentiles of probability assigned to
ground truth class at the end of each track (“final”) - left two
columns, and at each time step using measurements up to
that time step (“overall”) - right two columns, both function
of uncertainty level, for the hard track (top row), moderate
track (middle row) and easy track (bottom row). Figure 13
shows corresponding percentiles of the MGR.

The plots generally exhibit behavior similar to the one
observed in Sect. 5.4.2 for σ = 10 cm, this time for a range
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Fig. 10 Classification of a desk object over the red track from Fig.
9 under correct localization (left column) and with localization bias
of +10 cm in the x axis (right column), corresponding to the scenario
from Fig. 9. Top row: obtained measurements and class models sam-
ples over the track time steps. For every time index, raw classification
vector (vertex on the dashed line) and model prediction mean for each
candidate class are shown as points in the 2D simplex, corresponding
to 3-coordinate classification vectors. Classification inference roughly
corresponds to selecting the model curve which best fits the measure-
ments. Figs. 10c and 10e show the Euclidean distance of measurement
vector from prediction mean for desk and crate models, for each time

index. The smaller the distance of measurement to model prediction,
the more likely is the corresponding class. Fig. 10d and f show the cor-
responding class probability (i.e. normalized class likelihood) using a
single measurement Eq. (5), whereas Fig. 10g and h show classification
at each time index using all measurements obtained up to that time Eq.
(7). While correct model (desk) does not perfectly match all obtained
measurements (particularly at time indexes 1 and 2), eventually disam-
biguating measurements arrive and correct class is inferred in the left
column. Introducing a localization error (right column) further brings
measurements relatively closer towrongmodel, causing thewrong class
to be inferred Fig. 10h

of σ values. As generally confidence of classification (proba-
bility assigned to ground truth class) is lower for our method,
its percentiles are more concentrated and so results are more
stable across the runs. Our method is also significantly less

likely to assign a high probability to awrong class, as demon-
strated by the MGR plots Fig. 13.
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(a) Ground truth probability (hard case). (b) Log MGR (hard case).

(c) Ground truth probability (moderate case). (d) Log MGR (moderate case).

(e) Ground truth probability (easy case). (f ) Log MGR (easy case).

Fig. 11 Localization uncertaintyUE experiments, for set level of uncer-
tainty σ = 10cm. Localization estimate for both methods produced
by corrupting test tracks with with an i.i.d. (both among tracks and
among each track’s viewpoints) Gaussian noise N (0, σ ), coordinate-
wise. Our method is additionally input σ as the localization uncertainty

measure. Blue: our method. Green: Model Based. Left column: Prob-
ability assigned to ground truth class. Right column: MGR, Eq. (45).
Top row: hard track (Fig. 9), middle row: moderate track, bottom row:
easy track

5.5 Evaluation with real-world imagery

Wepresent results validating our contributionsw.r.t. local-
ization uncertainty in a real-world environment with the
Active Vision Dataset (AVD) Ammirato et al. (2017), using
data from the Berkeley Instance Recognition Dataset (Big-
BIRD) Singh et al. (2014) to learn GP models. Similarly
to before, raw classifier measurements are provided by an

AlexNet neural network classifier Krizhevsky et al. (2012)
implementation in PyTorch Paszke et al. (2017).

The AVD comprises a set of indoor scenes, each one
with images taken over a grid of spatial locations and cam-
era orientations, allowing to simulate real-world trajectories.
Each scene contains a set of BigBIRD object instances, with
bounding boxes provided for each object in the set for each
containing frame.
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Table 2 Localization uncertainty scenarios—ratio of correct classifi-
cations, i.e. classifications where the ground truth class was the most
likely given measurements from the entire track (“final” columns, ratio

of tracks) and given measurements up to every time step (“overall”
columns, ratio of time steps from all tracks)

Easy Moderate Hard

Correct rate MGR (95%) Correct rate MGR (95%) Correct rate MGR (95%)
final overall final overall final overall final overall final overall final overall

Model based 1.0 0.97 0 0 0.958 0.90 0 8.8 0.66 0.64 48.6 29.0

Our method 1.0 0.974 0 0 1.0 0.946 0 0.007 0.72 0.70 1.1 1.26

As in the model-uncertainty experiments, uncertainty-awareness results in correct classification rates similar to the non-aware case, but significantly
reducing rate of confident mis-classifications, see MGR in Fig. 11
Bold denotes the best result for each column

(a) (b)

(c) (d)

(e) (f )

Fig. 12 Localization uncertainty sensitivityUE experiments, results for
varying levels of localization error (σ ). Probability assigned to ground
truth class. Blue: our method. Green: Model Based. Left column: statis-

tics over final time index. Right column: statistics over all time steps
(see Table 2 and Eq. (46)). Top row: hard track, middle row: moderate
track, bottom row: easy track
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(a) (b)

(c) (d)

(e) (f )

Fig. 13 Localization uncertainty sensitivity UE experiments, results
for varying levels of localization error (σ ). MGR, Eq. (45). Blue: our
method. Green: Model Based. Left column: statistics over final time

index. Right column: statistics over all time steps (see Table 2 and Eq.
(46)). Top row: hard track, middle row: moderate track, bottom row:
easy track (Color figure online)

For our initial evaluation, we focus on classification
of an “aunt jemima original syrup” instance in scene
Home_001_1. Figure 14 shows the scene layout. On the
left (Fig. 14a) all viewpoints in the scene are denoted as blue
dots. A subset of viewpoints chosen to demonstrate contri-
butions is numbered with time step indexes as appear in later
plots, arrows showing the ground truth camera orientations,
pointed roughly towards the object, which is denoted by a
large black dot. On the right, the frame at time 0 (top Fig.
14b) and time 4 (bottom Fig. 14c) are overlayed with object
bounding boxes as provided in the dataset.

5.5.1 Learning spatial GP models with BigBIRD data

The BigBIRD dataset Singh et al. (2014) provides images of
a set of “object instances” taken from varied angles. Images
were taken using a set of static cameras with imaged objects
placed on a rotating table Fig. 15. Ground truth poses for
the cameras and the rotating table are provided, as well as
a binary segmentation mask for each frame marking pixels
belonging to the object.

We learn a spatial GP model for each object in the Big-
BIRD dataset, treating it as a separate class and using the
provided segmentation masks to compute bounding boxes
(Fig. 16 top row). These are then cropped and fed to an
AlexNet to produce a set of classification/feature vectors,
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Fig. 14 AVD evaluation setting. Figure 14a shows the scene layout, viewpoints chosen for evaluation and corresponding object detections. Figure
14b and c show two example views of the scene

associated to corresponding camera poses relative to the
rotating table, which can be directly computed from ground
truth data. For simplicity, we limit ourselves to 2D models,
implying classification of upright objects—which is enough
for this evaluation. Accordingly, we only use features and
corresponding relative poses computed for images from the
bottom ring of relative camera poses in Fig. 15c. We fit GP
modelsEq. (7) to capture the spatial variation of chosen (elab-
orated below) classification vector components.

In Fig. 16 the second row from the top shows the GP
model mean learned for each instance, as sampled at training
set points, for a chosen subset of 4 classification vector com-
ponents. As before, each component is assigned a color (as
listed in the legend, alongwith component indexes), the color
of a pixel in the raster is calculated by weighting the compo-
nent colors with the corresponding values predicted by the
model. Similar colors in raster plots correspond to similar raw
classification vectors (components), thus indicating aliased
(single) views and motivating both the accounting for (rela-

tive) localization uncertainty and the fusion ofmeasurements
from multiple viewpoints for disambiguation.

The third row from the top shows rasters of the same
GP models, this time over the unit square, similar to Fig.
6. The bottom row shows rasters of GP models learned
for a different set of components (again, elaborated below).
BigBIRD object instances generally do not have an ade-
quate corresponding ImageNet “ground truth” class, yet -
as demonstrated by our evaluation - scores of an ImageNet-
trained classifier can be directly re-used by our method as
features to correctly classify an object fusing measurements
from multiple views.

Choice of features The AlexNet classifier outputs scores for
1000 ImageNet Russakovsky et al. (2015) categories. While
using the entire classification vectors to learn GP models
is possible (especially under the independent components
approximation Sect. 5), it is inefficient Sect. 4.4.1, and more
so as the vast majority of components are negligible for most
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objects. We thus choose to model 4 raw classification com-
ponents with high (in particular, not negligible) scores across
views for the object instances we used as classification can-
didates. The learned GP models are shown in the second and
third rows of Fig. 16. Other choices are possible (e.g. bottom
row of Fig. 16). The choice of good features is a research
topic in its own right and is beyond the scope of this work.

GP parametrization/coordinates As BigBIRD data is only
available on a ring (semi-sphere in 3D), images taken from
front object views, we parametrize the GP models Eq. (7)
with (uncertain) 2D location relative to the object, projecting
the (relative) coordinates to the unit circle, that is, for the
sake of this explanation denoting robot 2D relative pose to
object o as x (rel)

i
.= (to→i , Ri ) (i.e. too→i is robot 2D location

w.r.t. the object), we approximate

P(S0:k | c,X (rel)
0:k ) ≈ P(S0:k | c, too→i/‖too→i‖). (47)

Note that the above is an approximation, since in general
classifier scores may be affected by distance from the object
impacting e.g. the ability to distinguish detail due to finite
resolution of input images. Additionally, an object viewed
from farther away is more likely to be partially occluded and
affected by limitations of the object detector, all of which
could in principle be incorporated into the class model (but
are out of scope of the present work). While distance from
object could be simulated by purportedly blurring and sub-
sampling input images, we did not go as far in the present
initial evaluation.

Finally, it makes sense to consider parametrizing the class
models with polar coordinates, which could allow to better
capture different co-variation levels in the radial and tangen-
tial directions (partly visible in Fig. 6), to reduce calculations
(e.g. in Eqs. (15), (16)) by reducing the dimensionality of GP
inputs, andpossibly to improveprecisionwith a given amount
of samples. On the downside, polar parametrization would
entail domain considerations, such as ensuring continuity at
boundaries. As using GPs for spatial modeling of classifier /
detector scores (e.g. Teacy et al. (2015), Velez et al. (2012))
is not a contribution of this research (rather, the extension of
the approach to handle localization and model uncertainty)
we did not explore the various parametrization options in
depth.

5.5.2 Evaluation in classification under localization
uncertainty

In Fig. 17a we present the evolution of classification over the
set of views treated as a track, and the object instance shown
in Fig. 14 in a setting similar to Sect. 5.3.2, i.e. we introduce
a bias corresponding to erroneous localization estimate to
each pose along the track, producing an erroneous estimate

of pose relative to the object. For classification candidates,we
randomly chose a subset of 3 object instances (in addition to
the ground truth class “aunt jemima original syrup”), shown
in Fig. 16. The corresponding models display relatively little
aliasing with the ground truth model (mostly in the second
quadrant, with “crest complete minty fresh” and “red bull”).

BothModel Basedmethod and ours are fedwith classi-
fication vectors from the true poses along with the erroneous
pose estimate, our method in addition being input a stan-
dard deviation of 30cm for the 2D localization estimate
(on each axis). The Model Based method is first affected
before recovering, while our method, accounting for the pose
uncertainty, is able to correctly accumulate information. To
statistically examine this behavior, we randomize the local-
ization estimate in the vicinity of the above biased estimate,
adding to it a vector drawn from a zero centered Gaussian
with standard deviation of 30cm along each axis. As before,
our method receives a constant standard deviation of 30cm
as the estimate uncertainty. The center and right columns of
Fig. 17 show percentiles of the correct class/instance (“aunt
jemima original syrup”) probability output by each method
(Fig. 17b) as well as the log MGR Eq. (45) (Fig. 17c) over
the track / time indexes. Similarly to before, while in most
cases both methods eventually deduce the correct class, the
Model Basedmethod experiences hard failures in around
10% of the runs outputting high probability for an incorrect
class (around 10 times the score of the correct class) at the
last step, while our method is able to classify correctly.

The reason for this behavior can be seen by consider-
ing variations in classification as function of localization
bias, i.e.—given a raw classifier response—what is the GP
model / class likelihood for various deviations of the localiza-
tion estimate from ground truth. Computing this likelihood
is equivalent to classification using the Model Based
method (i.e., not considering localization uncertainty). Fig-
ure 18 shows the classification obtained for a range of bias
in 2D localization at different steps along the track from Fig.
14a. For each plot, the axes denote the amount of localization
error in centimeters, the value at (0, 0) corresponding to clas-
sification obtained with ground truth localization. The color
at each pixel is obtained as the sum of colors correspond-
ing to the object classes (shown in the legend), weighted
by their likelihood given the localization error, e.g. pixel
value at (−30, 20) corresponds to classification obtained (by
Model Based) given that localization estimate is off by
−30cm in the x axis, and +20cm in the z axis, the correct
class, “aunt_jemima_original_syrup”, correspond-
ing to blue color. For example, in view 0 the classification is
correct for the above bias, whereas in views 3 and possibly
also 6 classification is incorrect, which can be seen as the
color departs from blue.

In the plot, colors of pixels indicate specific values of
localization error causing the Model Based method to
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Fig. 15 BigBIRD dataset setup (Fig. 15a, b taken from the dataset).
Left: data collection setup, cameras facing the rotating table. Center:
an example dataset image of the target instance on the rotating table.
Right: Subset of camera poses relative to the rotating table for the dif-
ferent rotating table states. In all, images for 120 poses of the rotating

table are provided, for each of the 5 cameras. We only use images from
NP1 (i.e. the bottom row of relative poses in Fig. 15c) to learn 2D GP
models, accordingly limiting ourselves (for simplicity) to classification
of objects that are upright (w.r.t. BigBIRD coordinates)

fail - the real-world equivalent of Fig. 4. Assuming model
uncertainty negligible, the output of our method is obtained
according to Eq. (42), roughly by averaging the output of
Model Based over localization samples, drawn from a
Gaussian centered at the erroneous estimate. Localization-
uncertainty-aware classification score (i.e. using ourmethod)
thus depends on the proportion of samples of the correct
color (the “average color”) in the vicinity of each pixel. The
wider spread of percentiles in Fig. 17 of the Model Based
method is likewise explained by that its classification deci-
sions are based on the value at a single localization sample,
whereby bad estimates directly lead to erroneous classifica-
tion ouputs. Averaging over a belief rather than using a single
estimate allows us to mitigate the localization uncertainty-
induced aliasing where enough localization samples produce
the correct classification, and in any case - produces smoother
classification decisions. On the downside, this sampling /
averaging may reduce the confidence in the correct class
where some of the samples produce incorrect classifications,
as in view 1 in Fig. 17a.

6 Conclusions

We described a method for robust visual classification of an
object of interest observed from multiple views under model
and localization uncertainty, using a viewpoint-dependent
semantic measurement model to capture viewpoint vari-
ability and spatial correlations in classifier scores and a
Bayesian classifier providing ameasure ofmodel uncertainty
to account for uncertainty due to out-of-distributionmeasure-
ments in inference.We evaluated ourmethodfirst in synthetic
simulation, then in a 3D environment where rendered images
were fed into a Neural Network classifier and finally on

real-world data, comparing it to baseline methods in sce-
narios affected to varying levels by model uncertainty and
localization uncertainty, in particular investigating in detail
the behavior under varying levels of localization uncertainty
w.r.t. the baseline method.

The results display a general improvement in resilience
to localization error and to classifier noise due to out-
of-distribution inputs w.r.t. not taking into account the
uncertainty in the above. While correct classification rates
are generally similar to the baseline method, our method
accounts for the different sources of uncertainty, significantly
reducing confident mis-classifications. Ability to operate
under localization uncertainty allows deployment of our
method in autonomous systems that need accurate seman-
tic perception.

There are however fundamental limitations that must be
noted and possibly addressed in further research. First, cap-
turing correlations betweenmultiple views requiresmarginal-
ization over a track, which in our case is done by sampling.
While sampling can be limited to poses from which the tar-
get object is observed, faithfully representing a distribution
over multiple viewpoints using a limited number of sam-
ples is generally challenging, especially so as all marginal
distributions of poses of interest change with each new
view, thus a simple reuse of samples is not possible. A
possible approach is to re-use most samples from previ-
ous time steps, weighting them correspondingly to the new
localization posterior (importance sampling). In practical
applications, the limited amount of samples may be less of
a challenge, as heuristics can be used to approximate the
joint distribution over multiple views, and massively parallel
processing (e.g. GPUs) can be used to efficiently perform
computations with sufficiently many samples. For further
efficiency, viewpoint-dependent class models can be com-
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Fig. 16 Object instances and corresponding GP models. Top row: Big-
BIRD instances, cropped using provided bounding boxes. Second from
top: GP models at training points. Third row: GP models raster. Bot-

tom row: GP models for a different set of features (chosen as ones with
highest significance with xgboost Chen and Guestrin (2016)). Instance
names are listed in captions as they appear in the dataset

bined with non-viewpoint-dependent ones, to only describe
salient objects for which estimating orientation is of inter-
est. Another limitation, which is a general issue to class
models, is that representative classifier responses need to
be obtained for each class to be recognized, capturing all
variability in appearance from all viewpoints, which more-
over for a viewpoint-dependent model need to be known at
training time as ground truth. As coming up with objects rep-
resentative of an entire class is challenging, class models are
perhaps better suited to recognizing particular objects or sets

of objects which are known and can be measured in advance.
Finally, the current method is an inference method, and as
such it depends on externally collected measurements, possi-
bly insufficient or in a sub-optimal way. Possible future work
can involve developing a scheme to plan information collec-
tion in this setting, as well as rigorously address limitations
mentioned above.
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Fig. 17 Left: classification results (probability of ground truth class
“aunt jemima original syrup”) over the track from Fig. 14a with erro-
neous localization estimate for the Model Based and our method.
Center and right: statistical results when randomizing the error in local-
ization estimate in the vicinity of the error from before. As before, color

patch denotes the respective percentile range. Top row: probability of
correct class, bottom row: log MGR Eq. (45). As the Model Based
method classifies based on a single localization sample, its results vary,
while our method is more resilient to the noisy estimate, consistent with
the behavior observed in simulation

Fig. 18 Variations in classification function of localization bias for sin-
gle views of the track from Fig. 14a. Each plot is obtained for a given
semantic observation obtained from ground truth pose / viewpoint. The
axes denote the amount of bias in centimeters, the color at each pixel is
obtained as a (weighted) sum of colors corresponding to object classes

(shown in the legend), weighted by their likelihood for the given local-
ization error, i.e. the pixel at (0, 0) shows classificationwith localization
estimate equal to ground truth position (Note the difference from the
raster plots of Fig. 16, where colors correspond to raw classification
vector components)
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