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Abstract—In the context of semantic SLAM, we propose
to represent the semantic information attached to objects (or
generally, scenes) as continuous vectors in a latent space induced
by a learned predictive observation model. We propose two obser-
vation models relating spatial changes in semantic measurements
of an object to the latent object representation, and show how
they can be used for joint inference of geometry and semantics
free of discrete variables by maintaining a posterior over robot
trajectory, geometric object and environment properties, and
the learned object latent semantic representation. Both models
relax assumptions on ground truth required to learn them w.r.t.
existing analogues. In particular, one of the models is a residual-
style formulation which can be learned in a weakly-supervised
manner, under relatively mild assumptions of locally correct
odometry and data association between some object detections in
consecutive frames, not requiring prior knowledge of candidate
object categories, or an object coordinate system to be defined.

I. INTRODUCTION

Semantic SLAM methods aim to construct a representation
of the robot environment that captures information beyond ge-
ometric, and localize the robot within it. A common approach,
known as “Object-Level SLAM” [9], is to represent objects
detected in the robot environment as semantic landmarks and
estimate their poses and discrete category labels jointly with
robot trajectory. Inference of object 6dof poses is enabled by
offline fitting of a viewpoint-dependent measurement model
for each object category, requiring representative measure-
ments and ground truth poses of camera relative to the objects
be known at training time, which limits the number of object
categories that can be thus represented. Further, category
labels carry limited and specialized semantic information, as
generally the definition of categories is not unique. Adding
additional categorical information to object state leads to a
combinatorial increase in inference complexity, and requires
hand-tailored observation models.

II. NOTATIONS AND PROBLEM FORMULATION

Consider a robot traversing an unknown environment, taking
observations of different scenes. Robot motion between times
tk and tk+1 is initiated by a control input Uk, that may
originate from a human user, or be determined by a motion
planning algorithm. We denote the robot pose at time instant
k by xk, and by X0:k = {X0, . . . ,Xk} the sequence of poses
up to that time. We denote by Zk = {zk,(i)} all observations
obtained at time k. We denote with Zgk ⊆ Zk (correspondingly,
Zgk = {zgk,(i)}) geometric detections, including detections of
landmarks, object bounding boxes (coordinates) and centroids.
We denote with Zsk ⊆ Zk (correspondingly, Zsk = {zsk,(i)})
the semantic measurements, i.e. bounding box RGB images.

Fig. 1: An example factor graph with two objects described
by latent representations e1 and e2 observed from consecutive
poses x0:2. Ternary factors correspond to the learned semantic
observation model Eq. (15)

We further denote the observation and user control history up
until time k as Hk = {U0:k−1,Z0:k}.

We are interested in maintaining a posterior

P(X0:k,L,O, E | Hk), (1)

over robot track, geometric landmarks L, object geometric
information O = {oi} (centroids in the simplest case, other
representation possibilities exist including ellipsoids [7] or
cubes [15]), and per-object continuous variables E = {ei}
capturing object semantic information. In the following, we

III. APPROACH

The update equation for the target posterior at time k can
be generally written by applying Bayes rule as

P(X0:k,L,O, E | Hk) = (2)

η · P(Zk | X0:k,L,O, E ,H−k ) · P(Xk | Xk−1,Uk−1) (3)
·P(X0:k−1,L,O, E | Hk), (4)

where H−k
.
= Hk \ {Zk}, and η is a constant normalization

factor. In the above, the motion model P(Xk | Xk−1,Uk−1)
is assumed known, and priors for the map variables L,O, E
may be present or assumed uninformative. We further split the
measurement update term into a ”geometric” and a ”semantic”
part

P(Zk | X0:k,L,O, E ,H−k ) = (5)

P(Zgk | Xk,L,O) · P(Zsk | X0:k,O, E ,H−k ). (6)

The former (geometric) term is comprised of geometric models
e.g. projection factors (and thus given variables does not
depend on measurement history). The latter term is the seman-
tic observation model. Neglecting interactions among object



detections (e.g. occlusions) and assuming that data association
is known we can split the semantic term into per-detection
components

P(Zsk | X0:k,O, E ,H−k ) =
∏
i

P(zsk,(oi) | X0:k, oi, ei,H−k ),

(7)

where by a slight abuse of notation zsk,(oi) is an observation
corresponding to object oi.

In a factor graph representation, the above components
correspond to semantic factors, involving a semantic measure-
ment, variables describing the measured object geometry (oi)
and semantics (ei) and robot poses when measuring the object.

In the below, we consider two forms for the semantic
measurement model Eq. (7) and show how they can be learned
under relatively mild requirements on ground-truth data.

A. Viewpoint-Dependent Model

Viewpoint-dependent semantic observation models allow
joint inference of semantics and geometry (robot track, object
localization). Commonly ([14, 2, 13, 4, 12]), such models
capture the distribution of the output of a detector or a
classifier conditioned on the pose relative to the object, and
thus are of the form

P(· | c, x(rel)), (8)

where c is the object class (discrete variable) and x(rel) is the
pose relative to the object from which the measurement was
taken. In practice, a separate model of this form needs to be fit
for each class of interest, in particular requiring ground truth
classification for the training set.

We propose to consider a semantic model similar to Eq. (8),
replacing the discrete class variable with a per-object semantic
representation vector εi, i.e. - explicitly writing the term from
Eq. (7)

P(zsk,(oi) | ei,X0:k, oi,H−k ) = P(zsk,(oi) | xk, oi, ei) (9)

= P(zsk,(oi) | ei,X
(rel)
k ), (10)

with X (rel)
k - the robot pose relative to the object at time

k. Similarly to Eq. (8) under this model the relative pose is
required to be known at training time, but contrary to it, the
requirement for ground truth classification can be relaxed to
a requirement of data association among measurements of the
same instance, as we show below.

Fitting the Viewpoint-Dependent Model

A model of the form Eq. (10) can be learned from data
as the decoder in a Conditional-VAE [11] framework. We
assume a training dataset comprised of measurements (RGB
bounding boxes) Zs0:k. To simplify notations, in this subsection
we drop the superscript and assume a single measurement
per time index, i.e. Zsk ≡ Zk = {zk} (and thus, use Zk
and zk interchangeably). We assume that we are given the
corresponding poses relative to the object instance X (rel)

0:k

viewed at each time step (might be a different one at each

time index k), and the observed object instance identifiers in
discrete variables β0:k.

Formally, we wish to maximize the joint posterior over
object measurements and instance identifiers given relative
viewpoints (we neglect correlations among time steps)

logP(Z0:k, β0:k | X (rel)
0:k ) =

∑
k

logP(zk, βk | X (rel)
k ). (11)

We choose the standard Gaussian prior for the latent semantic
representation P(e) and write the evidence lower bound as1

logP(zk, βk | X (rel)
k ) ≥ (12)

−KL(qφ(e | zk,X (rel)
k ) ‖ P(e))+

E
e∼qφ(·|zk,X (rel)

k )

{logPθ(zk, βk | e,X (rel)
k )},

with standard notations of encoder qφ and decoder pθ and

Pθ(zk, βk | e,X (rel)
k ) = pθ(zk | e,X (rel)

k ) · P(βk | e) (13)

∝ pθ(zk | e,X (rel)
k ) · P(e | βk), (14)

the latter proportionality true by assuming uninformative priors
on e and βk. The term P(e | βk) determines how likely a
given representation is for a given instance. In practice, this
term pulls together the latent vectors obtained for various
viewpoints of the same instance. We model it with a Gaussian
(in latent space) with a set covariance (a parameter), fitting a
per-instance mean vector. This term can be used at test time
to determine the instance most likely to be the one having
produced a measurement. This usage however is only valid
for instances seen at training time, and is different from the
more general task of classification (or “concept grounding”),
which we address in Sec. IV-A.

B. Viewpoint-Predictive Model

Fitting a model of the form Eq. (10) requires training-time
knowledge of the pose relative to the object X (rel). Implicitly,
it also requires a coordinate system for the object to be defined.
Such an object coordinate system is in general not unique
and application - specific. Worse, while it makes sense to
define a coordinate system for individual object instances, it
can be less straightforward to extend across different instances
of the same class (as implied by the observation model),
accommodating for intra-class variations in appearance and
possibly functionality. Finally, object coordinate system needs
to be (essentially, manually) defined across class instances for
each class of interest, limiting the general applicability of the
approach.

We propose to sidestep the definition of an object coordinate
frame by using a ”viewpoint-predictive” model of the form

P(zsk,(oi) | X0:k, oi, ei,H−k ) = P(zsk+1 | zsk, ei,∆Xk), (15)

relating object measurement from the current time zsk ∈ H
−
k to

the next measurement zsk+1 of an object described by semantic
representation vector ei, with ∆Xk = Xk+1 	Xk the camera

1The full derivation of the bound is provided in [5] Sec. A.



motion between the time steps, and the underlying assumption
of known association between zsk and zsk+1. Conditioning of
the model on camera motion both obviates the need to define
an object coordinate frame, and may allow the model to be
learned in a weakly-supervised manner, only requiring locally
correct odometry, as we will show next.

Fitting the Viewpoint-Predictive Model

Adopting once more the notations from Sec. III-A, our goal
is to maximize the joint posterior over measurements

P(Z0:k | U0:k−1) = (16)∫
P(Z0:k | ∆X0:k) · P(∆X0:k | U0:k−1) d {∆X0:k} (17)

(1)
≈ P(Z0:k | ∆X̂0:k)

(2)
∝

∏
k

P(zk+1 | zk,∆X̂k), (18)

where ∆Xk
.
= Xk+1 	 Xk is the robot motion between time

indexes k and k + 1 and

∆X̂0:k
.
= arg max

∆X0:k

P(∆X0:k | U0:k−1), (19)

i.e. a maximum likelihood single-sample approximation (1) in
Eq. (18) and a uniform prior assumption on P(z0) in propor-
tionality (2) (in the same equation). The target function thus
obtained only requires knowledge of (local) camera motion
and implicitly - of data association, as measurements zk, zk+1

are assumed to originate in the same object. In particular, the
product (1) in Eq. (18) in practice splits into independent per-
object products (omitted here for simplicity of presentation).

Finally, note that although the assumption of known robot
motion appears formally equivalent to the assumption of
known localization w.r.t. the initial pose, in practice it is much
weaker, as the estimate Eq. (19) is only required to be locally
correct, and there is no accumulated drift.

We can now write down the lower bound for optimizing the
objective Eq. (18). As before, we develop for a single term -
the summand, in the log posterior expression, or a factor in
the product as it appears in Eq. (18).

P(Zk+1 | Zk,∆Xk) ≥ (20)
−KL(qφ(e | Zk) ‖ P(e))+

E
e∼qφ(e|Zk)

{log pθ(Zk+1 | e,Zk,∆Xk) + log pθ(Zk | e)}+K,

where K is (a negative) constant w.r.t. the optimization. The
full derivation is provided in [5], Sec. B. The obtained expres-
sion does not depend on ground truth beyond data association
and robot motion between consecutive time indexes and so
can be fit in a weakly-supervised manner.

IV. FEASIBILITY OF THE APPROACH FOR ONLINE
SEMANTIC SLAM

In the following we address the applicability of our
approach in the context of three specialized sub-tasks of
online semantic SLAM, namely: inference of semantics
(Sec. IV-A), localization and mapping (Sec. IV-B), online
operation (Sec. IV-C).

A. “Grounding” of the Semantic Representation
Our formulation thus far made no use of semantic in-

formation beyond instance-level data association, yet - the
latent representation variables would clearly carry semantic
information (as long as instance - level association, or object
images can be inferred back from them, as in Eqs. (12, 20,
14). In other words, the described approach could allow to
perform semantic mapping without need for ground truth class
information, provided that the learned model holds, i.e. that
objects encountered at test time are not very different from
those seen during training (which in turn requires little ground
truth and so could be performed on demand).

Still, for the map to be interpretable by a human operator,
given a (task-specific and possibly non-unique) set of candi-
date classes, a correspondence to the latent space needs to be
established. Pirk et al. [8] report the learned latent space (with
a different objective function) to reflect semantic structure, i.e.
objects that are similar in appearance (and thus, in their case
- in function) tend to emergently be close in the learned space
(based on appearance only). In such an ideal case, manual
tagging of a few example images (which through the encoder
induces tagging of a region of the latent space) followed by a
nearest neighbor search in the latent space could likely produce
satisfactory classification results.

In the general case however, classes of interest could encom-
pass objects with significantly varying appearance which will
not be close in the latent space unless explicitly forced. In such
a case we can assume a limited amount of classification-tagged
instances (a single tagged image implies a tagged instance
because of the known data association assumption). For a
measurement zk for which classification is available (denote
class c), we can modify the cost function along the lines of
Eq. (14) to pull its latent representation (encoder output) closer
to that of others of the same class. For a viewpoint-dependent
model Sec. III-A the modified term (from Eq. (12)) would be

P(Zk, βk, c | X (rel)
k ) ≥ (21)

−KL(qφ(e | Zk,X (rel)
k ) ‖ P(e))+

E
e∼qφ(·|Zk,X (rel)

k )

{logPθ(Zk, βk, c | e,X (rel)
k )},

with

Pθ(Zk, βk, c | e,X (rel)
k ) ∝ (22)

pθ(Zk | e,X (rel)
k ) · P(e | βk) · P(e | c), (23)

where P(e | c) a Gaussian density with constant covariance
and class-specific learnable mean, as in Eq. (14). Similarly for
the viewpoint-predictive model Sec. III-B the modified term
from Eq. (20) is

P(Zk+1, c | Zk,∆Xk) ≥ (24)
−KL(qφ(e | Zk) ‖ P(e))+

E
e∼qφ(e|Zk)

{log pθ(Zk+1 | e,Zk,∆Xk)+

log pθ(Zk | e) + P(e | c)} ,

with P(e | c) defined as before.



(a) Embedding space induced by the Viewpoint-Dependent
model fit on the BigBIRD dataset

(b) Embedding space induced by the Viewpoint-Predictive
model fit on the Active Vision Dataset

Fig. 2: Learned latent space visualization using tSNE [6]. Left: latent vectors (encoder output) and (roughly) corresponding
input images from the BigBIRD dataset [10], while training the Viewpoint-Dependent model from Sec. III-A. Right: the
embedding space obtained when fitting the Viewpoint-Predictive model Sec. III-B on pairs of detections from adjacent views
of the Active Vision Dataset [1].

B. Improving Localization

A similar principle as was mentioned in the previous clause
to adapt the latent space to facilitate classification, could be
applied to attempt to facilitate localization. Formally, analo-
gously to the above Sec. IV-A and in the notations of Eq. (1),
we could set the optimization objective to be the joint posterior

P(X0:k,L,O,Zs0:k | Z
g
0:k,U0:k−1) = (25)

P(X0:k,L,O, | Hk) · P(Zs0:k | Z
g
0:k,U0:k−1). (26)

Here the second term in Eq. (26) can be developed similarly
to e.g. Eq. (18), while the former term is the localization
problem from Eq. (1) with a twist: here the model parameters,
participating in the semantic factors are variable too, giving a
scheme for concurrent learning and inference.

C. Computational Aspects

The results in Sec. V were obtained for RGB detections
of size 32x32 and embedding size 128 (a 24x reduction in
dimensionality). Since those are detections rather than entire
images, a reasonable amount of object appearance detail can in
general be captured and consequently modeled. However, di-
rectly using the raw detections as measurements would imply a
prohibitive factor size of ≈3000 for each semantic observation.
One possible approach we currently are considering to tackle
the dimensionality problem is using the first few layers of the
encoder to reduce the dimensionality of the measurement, then
fitting a model to predict the lower-dimensional measurement.
Ideally, the dimensionality-reduced measurement would still
retain the semantic information relevant to the task, as well
as be sensitive to viewpoint changes, to allow for precise
localization inference.

V. EXPERIMENTAL RESULTS

We fit a viewpoint-dependent observation model following
Sec. III-A to images and ground truth relative poses of objects
from the BigBIRD dataset [10]. Each image is cropped using
the provided object mask, and resized to 32x32x3. Fig. 2a

visualizes the resultant latent space using tSNE [6]. On the
left, latent vectors (encoder output) for the various viewpoints
for each object show as well-localized clusters of the same
color, a single cluster per object - although distinct clusters
of very similar colors are present, in practice they correspond
to different objects. Right: input images corresponding to the
sub-region of the tSNE space highlighted on the right. The
images are nearest neighbors to points of an axis-aligned
grid in the tSNE space. The same clustered structure of the
embedding space shows, with all viewpoints of an object
appearing grouped. The observed structure of the embedded
space is segregated among clusters corresponding to object
instances and is expected to allow the envisioned reasoning
using the learned model.

Fig. 2b shows the corresponding result obtained when fitting
the viewpoint-predictive model following Sec. III-B with the
Active Vision Dataset [1], using pairs of detections of the
same instance from adjacent views. Clusters corresponding to
the different instances are much less localized, as the data is
more challenging, due to occlusions, partial detections, and
multiple objects appearing in the same detection.

VI. RELATED WORK

Pirk et al. [8] learn object representations which emergently
capture semantics, in an unsupervised manner, for associating
detections in consecutive frames, not defining probabilistic
models or performing inference. Bloesch et al. [3] perform
inference over a latent per-frame residual depth representation.
Yu and Lee [16] use a learned model to perform inference
over encoded depth measurements (i.e. the learned latent space
corresponds to measurements, not to object instances). Both
of the latter ([3], [16]) use supervised learning.
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