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Intro — Robot Autonomy

Key components:

Perception (Situational Awareness, Data Fusion)
« Understanding of the environment
and robot state within it

Decision Making
« Plan actions (towards task of interest)

Need to deal with uncertainty

* Due to: noisy and aliased measurements,
partial information, imperfect models...
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Intro 2 — Semantic Perception

https://octomap.github.io

Geometric perception
= established methods exist
SLAM — Simultaneous Localization and Mapping

Semantic perception
= required for less-structured tasks

= need resilience to per-frame errors for
safe and reliable operation.




Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

1. The semantic perception problem (Object-Level SLAM)
2. Viewpoint-dependent semantic measurement models
3. Contributions:
|. Classification under Model and Localization Uncertainty
ll. Data Association-Aware Semantic Mapping and Localization

lll. Semantic Perception with a Continuous Learned Representation



Intro 3 — (Geometric) Simultaneous Localization and
Mapping (SLAM)

observations user controls
robot track landmarks

N/

Xy, L = argmax P(Xo.x, L | Hi)
X, L

= argmax 7 - P(Xy) | | P(X; Ui, X;) P(Z; | L, &,
L H +1| H | J )

prior ( motion model jeM,; observation model

See for example:

Kaess et al. 2008 TRO (iISAM)
Kaess et al. 2012 IJRR (iISAM2)
And related publications

=i L ,m ‘. .
© https:/morioh.com/p/bdib6fegdgeb



Intro 3 — (Geometric) Simultaneous Localization and
Mapping (SLAM)

robot track landmarks

N/

S, L7 =argmax P(Xo.g, L | Hy)

X £ Factor graph:

= argmax 1 P(X) | [P(Xisn Ui, Xi) ] P(Z; | L5, %)

X
£ prior l motion model jeM; observation model




Semantic Perception: Object-Level SLAM

(Salas-Moreno et al. 13' CVPR, Choudhary et al. 14’ IROS, Bowman et al. 17’ ICRA, McCormack et al. 18 3dv, Nicholson 19’ ral,
Yang 19’ TRO, ...)

object categories measurement
(discrete!) and control history

robot track \ /

argmax P(Xy...C,O | Hyi)
X.C.O y,

object geometry

= argmax P(Xp.x, O |C,Hy) - P(C | Hy)

X JC ) O (continuous) hypothesis hypothesis weight
ced{l,...,N}
{(c1,...,cm) = N™



Semantic Perception: Object-Level SLAM

(Salas-Moreno et al. 13’ CVPR, Choudhary et al. 14’ IROS, Bowman et al. 17’ ICRA, McCormack et al. 18 3dv, Nicholson 19’ ral,
Yang 19’ TRO, ...) .

_ _ Factor graph:
object categories measurement

obot track (discr\ete!) and control history \:
PN
argmax P(Xy.x,C, O | Hi) "
X,C,0
/ Lo

object geometry

= argmax P(Xp.x, O | C,Hy) - P(C | Hy)

x,C,0 (continuous) hypothesis hypothesis weight

P(Xok, O | C,Hy) =1+ P(Xo) [[P(Xir | Ui &) ] P(25 1 05, 4:,C5)
7 jEM; 1

observation model (per-class)



Viewpoint-Dependent Models

* Viewpoint dependency = viewpoint-dependent models
— Allow to couple semantics and geometry

object class robot viewpoint

current detection relative to object
\ / X =X o0
(rel) di
Iscrete
P(zg | ¢, X, )
category
Yuri Feldman and Vadim Indelman. "Spatially-
c o dependent Bayesian semantic perception under
6-dof model and localization uncertainty.” Autonomous
A
B g

@ robot pose



Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

3. Contributions:

|. Spatially-Dependent Classification under Model and Localization Uncertainty



Spatially-Dependent Uncertainty-Aware Classification

"Bayesian viewpoint-dependent robust classification under model and localization uncertainty”, Feldman & Indelman 18’ ICRA
“Spatially-dependent Bayesian semantic perception under model and localization uncertainty”, Feldman & Indelman 20’ ARJ

object categories measurement
(discrete!) and control history

robot track ‘ /

argmax P(Xy..,C, O | Hg)
X.C.O0 .

object geometry

= argmax P(Xo.p, O | C, Hy) (P(C | Hy)

X 7c ) O (continuous) hypothesis hypothesis weight




Semantic Measurements — Spatial Correlation

Semantic measurements spatially correlated = not i.i.d. .

Would like to model the joint likelihood

object class
classifier responses ] track of relative poses
\ (rel)
P(So | ¢ Xo ')

v S

Can be done by fitting a Gaussian Process to classifier responses (offline training step)

s = fc(.:l:(rel)) + €

fol@"D) ~ GP (o), kel ) )



Semantic Measurements — Model Uncertainty

Problem: DNN output away from training set unstable

Solution (Gal & Ghahramani, 16’ and others):

* marginalize over weight (model) uncertainty

Formally network output sample model uncertainty

training data \ /

p(cy%): P(c| W) -P(W | D) dW

~

G&G 16": P(W | D)“ ~ ” Bernoulli (%) Y (’
Gal & Ghahramani, 16’

Marginalization approximated via
Importance sampling.



Approach — Uncertainty-Aware Classification

IP(C ‘ Hk) Z[X IP(C ‘ XOzk,O,%k)P(Xo;k,O ‘ Hk) dXQ;kdO
0

g A J
kO

arginalize over las @3 (}:) \ Marginalize over
) glaslsificationI t/ Landmarks
1 .
n_k Z P(C | Sk,Hk \ {Zk}) ‘/;P(Xﬁ.kaoaﬁ | Hk‘) dLl

SKESK
l Bayes

P(sk | ¢, Hi \ {z})| P(c | Hi—1)
>cec P(sk | ¢, He \ {z1}) - P(c | Hg—1)

Marginalize over

past classifications \ k—1
[
/ P(sg | ¢, So:k—1, Xo(;e )) : H P(s; | i) dSo.k—1

[ J 'L:O [ J
So:k—1 Class model Model uncertainty




Results

Evaluated in synthetic simulation, 3D simulation, real-world data (BigBIRD, AVD).

Single object classification from measurements over a track. Localization uncertain but
estimate available.

Evaluation criteria:
1. Probability of ground-truth class (higher is better) P(c“? | H)

2. Most-likely-to-ground-truth ratio (lower is better) ;,rap — 216Ma%c P(c | H)
= sensitive to confident misclassifications P(CGT | H)

Baselines:
* “Model Based” Teacy et al. 15 AAMAS — GP class model, assumes known localization
* Naive Bayes (synthetic simulation) — directly fuses class predictions, no class model



Results — Synthetic Simulation

Statistics for several hand-specified scenarios over realizations of simulated classification.
3 candidate classes with hand-specified GP models, measurements from ground truth GP.

Model uncertainty benchmark
=> Simulated classification is randomly offset at each step.
Our method is input with uncertainty.
Localization uncertainty benchmark

= Localization biased in a way that creates aliasing.
Our method is input with uncertainty.



Results — Synthetic Simulation — Model Uncertainty

Color patches are equal-step (10%) percentiles.
Saturated line is median.
Legend lists % of steps with GT class most likely.

Results:
* Naive Bayes arbitrarily off due to erroneous input.

** Model Based gives high scores to GT, but
misclassifies in nearly 30% of the cases (MGR).

¢ Our method gracefully accumulates information,
dense performance percentiles.
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Results — Synthetic Simulation

Uncertainty

* Model Based arbitrarily off due to aliasing.

*+ Naive Bayes unaffected

(classification measure

ments are COFFECt).

*» Our method gracefully accumulates

iInformation.

no localization bias
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Learned GP models

Results — 3D Simulation -

Localization uncertainty:

argmax, P(c|H
Plcgr | #) log e ]2

Plegr | H)
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Results — Real Data

BigBIRD AVD (Active Vision Dataset)

(Big Berkeley Instance Recognition)
= 125 objects
120 views / object




probability of correct class

probability of correct class

Results — Real Data

Localization uncertainty
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Example objects and learned GPs
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Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

3. Contributions:

ll. Data Association-Aware Semantic Mapping and Localization



DA - Aware Semantic Mapping and Localization

“Data association aware semantic mapping and localization via a viewpoint-dependent classifier model”, Tchuiev, Feldman and
Indelman 19’ IROS

Up until now: assumed data association solved.

Consider data association: data association
per measurement measurement
(discrete) and control history
N\ /

argmax P(Xy.x,C, 0, Bor | Hi)

X,C,0,p3 / I \

robot track . ~ object geometry
(continuous) object categories (continuous)

(discrete)
= arg max P(Xo.x, O | C, Bo.k) - P(C, Bo:k | He)
X 30,0 3/3 (continuous) hypothesis hypothesis weight
ced{l,...,N} ...which is still better than ...

{(c1s s ems By Be)H = N -mF



DA - Aware Semantic Mapping and Localization

Contributions:

s DA-Aware Semantic Mapping through maintaining a full hybrid belief.

= Maintain all plausible hypotheses until disambiguation is possible.
Tractable in practice (subject to pruning).

“* Viewpoint-Dependent model aids DA disambiguation by coupling between geometry
and semantics.

“ Approach operates with rich semantic feature vectors, not limited to most-likely-class
measurements.



Approach - DA - Aware Semantic SLAM

Denote b [‘XO:ka O]glzk = IED(‘XO:ka O ‘ C)Bl:k) wgl;k = P(C?Blik | %k)

(continuous) hypothesis hypothesis weight
hypothesis C C
motion model viewpoint-dependent model

Welght (ujg)l:k X ?Ugl:kl / IED(/Bk ‘ Xk’ OBk:) ) b [XOAJ’ O}gl:k dXdO

update
X, O association probability

Weights that fall bellow a threshold are pruned



Results

Simulated environment:

*» 6 identical objects

s 2 candidate classes with synthetic
measurement models

Y axis [m]

@ robot pose hypothesis
(darker means more likely)
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Results

Time k = 15 without (left) and with (right) classifier model

robot pose hypothesis object pose ground truth robot pose hypothesis ¥ object pose ' ground truth
(darker means more likely) (estimated) robot track (darker means more likely) (estimated) robot track
~. @ s
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With classifier:
s Fewer hypotheses
** More accurate localization



Results
Hypothesis weight comparison, times k = 1 (left) and k = 15 (right)

. with classifier . no classifier gL?g;i;:;T;
10 1.0
0.8 0.8 1
2 2
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0.6 |
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o [
5 o
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._51 0.4- 5, 0.4 1
9] 2
g =
0.2 I 0.2 1
0_0_! l h— 0.0J .| ' LI B B e

With classifier:
s Fewer hypotheses
s Stronger disambiguation



Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

3. Contributions:

lll. Semantic Perception with a Continuous Learned Representation



Semantic Perception with a Continuous Learned
Representation

An initial version presented as “Towards Self-Supervised Semantic Representation with a Viewpoint-Dependent Observation
Model” in proceedings of Workshop on Self-Supervised Robot Learning, in conjunction with RSS, July 2020

object categories  measurement = Requires maintaining hypotheses (inefficient)

robot track >0 ¢'®)  and control history Requires per-class models

\ \ / Limited granularity of semantic representation

o P(Xok, C, O | Hy)
- /

1 object geometry




Semantic Perception with a Continuous Learned
Representation

object categories measurement continuous
(discrete) and control history representation
robot track \ / \

IP(X();]C,C, @, | %k) — P(Xo:kaga O | %k)
/

object geometry




Continuous Learned Representation — Inference

n
. €1,€e2 € R
continuous
representation measurement
robot track \ and control history
maintain \ /

joint beliet: by, = P(Xp.., £, O | Hi)
/
object geometry
=1 lP(Zk | XO:ka 87 O? %k \ {Zk}?

semantic observation model
- P(Xk | Xoik—1, Ak—1) - bk—1

motion model
= Need a single semantic observation model (as opposed to per-class previously)
Continuous inference
No discretization on semantic representation



Fitting the Viewpoint-Dependent Model — Take 1

Assume a Gaussian viewpoint-dependent model conditioned on continuous
representation: frame semantic description

\ e
P(Zy | Xou, £, O, Hi \ {zi}) =P(Z, | XD, €)

/ . i (rel)
Use Maximum-a-Posteriori to fit &, 6 re'titi(\)/te)jsgtse =N (Zk, 1o (X, ,5)@)

representation variables corresponding
observations for n objects relative poses

\ l / data association
/

rel
arg max P (Z():k;gl:n ‘ X[E:k )?BD:R)

9581:’!‘]‘,
= argax Z log Py (Zz ‘ 8/3“ X?L(Te{)) + 10g P(‘gln)
9581:?’?, ‘ I l '

viewpoint - dependent prior on representation
observation model vectors



Take 1 - Results for Fitting Py (Z | 5,;4%0)

oROE RO AR
BEOCCONOEEENNECE
DO DN EEREODNCE B
mEGRCAERRDEOCIEN B
Ol\\\LﬂT'lllll\h 3
o= | mosolole BB O
[ =[1=[Fc[a[ [efe[c[AS[N8] S
s|=|=l=|~T0[0]1|[=wlo/s[NNN] O
[ Z[E[ [ (a1 = e[ ww ] 2
| | | [ | 1 | um e [ | o0 [ @ .m
0| 0|m|m|=|o| o w|d]| @ bn o] O
l!loL.L..l'_'_L o |0 w
||| =00 - ole]| =
..LL"O““.‘I‘.‘-" m
‘._ﬁ_‘,\.\""‘_r‘.‘\.'
e o - c ©
L. o/ &
et mis .
..1- Y nE
° ° °. - ®©
° - ’ ° ath
! ! : 9
. ° * o)
e . Q@
B Y m
©
° S ]
-
®
TWEER] e
o= & =N\
=
|~ laNOR
IEIDEL :
(LA L =
AL I ) - l|@®|=<
—tt - £
liown NRERCRE
| |- . lj=
v
CIEE me| g




Take 1 - Results for Fitting Py (Z | 5,;50"61))
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y [metres]

Takel - Inference Using the Model

Simulation: use frames from viewpoints along a simulated track
¢ Also using odometry
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Take 1 - Limitations

% Factor is huge (32 x 32 frame = 1024 Jacobian rows / keyframe!)

s Model expressiveness?

+» Maximum likelihood does not provide sufficient gradients for optimization

arg max Zlog Py (Zz- | 55%.,2('?;(?6”) + logP(&1.00)
0 81 m I

only constraints at training examples!

Example optimization path:

max likelihood: 3619.74 | current: 3861.41

Values of likelihood IPa Z| €, X(T’el)) around ground truth point:

embedding axis 0 v:
“ ZZZZZ

pose pitch [rad] vs. roll [rad)
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.‘l-" ‘]-" e e e o o e
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! 1 02 o3 o4 2834 . . 2 00
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A Closer Look...

The learned model is constrained on a sparse set of triplets Z, X(T’e”, E

= Can try to improve inference by shaping the model elsewhere

P(z| :c(“’”,e)

P (21 | :ng.’l): 61)




Fitting the Viewpoint-Dependent Model — Take 2 (a)

Use a feature extractor to reduce factor dimensionality
P2 | 40,8) = Po (£ (21) | 2", )
=N (fw (Zk); Me(XkEml)ag)aZ)
In practice we use dim(€) =16 dim (f, (Z)) = 12.

representation

Jointly fit all parameters reqularization / prior  1€3ture extractor
data term l regularization

argmin J (0,1, &1.,) = argmin Jg (6,1, E1.n) + Jr (E1.0) + J¢ (V)
95¢151:n 93%51:71



Fitting the Viewpoint-Dependent Model — Take 2 (b)

Data term
| AXTeD Ag xrel) L AxCed g 4 A€)|?
Ji (0.4, 6n) =  E {IH Al e )H}
data term AX(reh ,AE H [AX(Tel)a Ag] H

for training example (i)

where s is the optimization step at X"V + Ax(<) £ + A€ (that will be used at inference)

For gradient descent

GD - 9
aX(Tel)’g

s log Py (Z | xre) p Ax(rel) g 4 AS)



Learned Model

This finally gives useful gradients with respect to both X (7" and &

Inference experiments still in progress.

g

likelihood - offsets in relative pose

il O
7

. ctottrg st s |

likelihood - offsets in semantic representation



Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

4, Summary



Summary

* We showed how to address semantic perception under uncertainty by exploiting the
coupling between semantics and geometry provided by viewpoint-dependent models.

Contributions:
|. Classification aware of Model uncertainty and correlations among viewpoints

ll. Data Association-Aware Semantic Mapping and Localization

lll. A novel approach to semantic SLAM through inference in a learned latent space
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