Semantic Perception under Uncertainty with Viewpoint-Dependent Models

Yuri Feldman

Under the supervision of Assoc. Prof. Vadim Indelman

Ph.D. Seminar, March 2022

Work partially supported by

The Henry and Marilyn Taub Faculty of Computer Science

Intro – Robot Autonomy

Key components:

Perception (Situational Awareness, Data Fusion)

• Understanding of the environment and robot state within it

Decision Making

• Plan actions (towards task of interest)

Need to deal with uncertainty

• Due to: noisy and aliased measurements, partial information, *imperfect models*...

Intro 2 – Semantic Perception

Geometric perception

- \Rightarrow established methods exist
 - SLAM Simultaneous Localization and Mapping

Semantic perception

- \Rightarrow required for less-structured tasks
- ⇒ need resilience to per-frame errors for safe and reliable operation.

https://octomap.github.ic

Detectron 2, Wu et al. 2019

© Wikiped

Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

- 1. The semantic perception problem (Object-Level SLAM)
- 2. Viewpoint-dependent semantic measurement models
- 3. <u>Contributions</u>:
 - I. Classification under Model and Localization Uncertainty
 - II. Data Association-Aware Semantic Mapping and Localization
 - III. Semantic Perception with a Continuous Learned Representation

Intro 3 – (Geometric) Simultaneous Localization and Mapping (SLAM)

© https://morioh.com/p/bd1b6fc9d9eb

Intro 3 – (Geometric) Simultaneous Localization and Mapping (SLAM)

© gtsam tutorial

 l_2

 x_3

Semantic Perception: Object-Level SLAM

(Salas-Moreno et al. 13' CVPR, Choudhary et al. 14' IROS, Bowman et al. 17' ICRA, McCormack et al. 18 3dv, Nicholson 19' ral, Yang 19' TRO, ...)

Semantic Perception: Object-Level SLAM

(Salas-Moreno et al. 13' CVPR, Choudhary et al. 14' IROS, Bowman et al. 17' ICRA, McCormack et al. 18 3dv, Nicholson 19' ral, Yang 19' TRO, ...)

Viewpoint-Dependent Models

- Viewpoint dependency \Rightarrow viewpoint-dependent models
 - Allow to couple semantics and geometry

Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

✓ 1. The semantic perception problem (Object-Level SLAM)

✓ 2. Viewpoint-dependent semantic measurement models

- 3. <u>Contributions</u>:
 - I. Spatially-Dependent Classification under Model and Localization Uncertainty
 - II. Data Association-Aware Semantic Mapping and Localization
 - III. Semantic Perception with a Continuous Learned Representation

Spatially-Dependent Uncertainty-Aware Classification

"Bayesian viewpoint-dependent robust classification under model and localization uncertainty", Feldman & Indelman 18' ICRA "Spatially-dependent Bayesian semantic perception under model and localization uncertainty", Feldman & Indelman 20' ARJ

Semantic Measurements – Spatial Correlation

Semantic measurements spatially correlated \Rightarrow not i.i.d.

Would like to model the joint likelihood

Can be done by fitting a Gaussian Process to classifier responses (offline training step)

$$s = f_c(x^{(rel)}) + \epsilon$$
$$f_c(x^{(rel)}) \sim \mathcal{GP}\left(\mu_c(x^{(rel)}), k_c(\cdot, \cdot)\right)$$

Semantic Measurements – Model Uncertainty

Problem: DNN output away from training set unstable

Solution (Gal & Ghahramani, 16' and others):

marginalize over weight (model) uncertainty

Formally network output sample model uncertainty training data

$$\mathbb{P}(c \mid \mathcal{D}) = \int \mathbb{P}(c \mid \mathcal{W}) \cdot \mathbb{P}(\mathcal{W} \mid \mathcal{D}) \ d\mathcal{W}$$
G&G 16': $\mathbb{P}(\mathcal{W} \mid \mathcal{D})$ " \approx " Bernoulli $\left(\frac{1}{2}\right) \cdot \hat{\mathcal{W}}$

Marginalization approximated via importance sampling.

Image source: wikipedia

Approach – Uncertainty-Aware Classification

Evaluated in synthetic simulation, 3D simulation, real-world data (BigBIRD, AVD).

Single object classification from measurements over a track. Localization uncertain but estimate available.

Evaluation criteria:

- $\mathbb{P}(c^{GT} \mid \mathcal{H})$ Probability of ground-truth class (higher is better) 1. $MGR \doteq \frac{\arg \max_{c} \ \mathbb{P}(c \mid \mathcal{H})}{\mathbb{P}(c^{GT} \mid \mathcal{H})}$
- 2. Most-likely-to-ground-truth ratio (lower is better) \Rightarrow sensitive to confident misclassifications

Baselines:

- * "Model Based" Teacy et al. 15' AAMAS GP class model, assumes known localization
- Naïve Bayes (synthetic simulation) directly fuses class predictions, no class model

Results – Synthetic Simulation

Statistics for several hand-specified scenarios over realizations of simulated classification. 3 candidate classes with hand-specified GP models, measurements from ground truth GP.

Model uncertainty benchmark

Simulated classification is randomly offset at each step.
 Our method is input with uncertainty.

Localization uncertainty benchmark

 \Rightarrow Localization biased in a way that creates aliasing.

Our method is input with uncertainty.

Results – Synthetic Simulation – Model Uncertainty

Color patches are equal-step (10%) percentiles. Saturated line is median.

Legend lists % of steps with GT class most likely.

Results:

- ✤ Naïve Bayes arbitrarily off due to erroneous input.
- Model Based gives high scores to GT, but misclassifies in nearly 30% of the cases (MGR).
- Our method gracefully accumulates information, dense performance percentiles.

Results – Synthetic Simulation – Localization Uncertainty $\mathbb{P}(c_{GT} \mid \mathcal{H})$

- Model Based arbitrarily off due to aliasing. *
- Naïve Bayes unaffected (classification measurements are correct).
- Our method gracefully accumulates information.

10

time inde:

imple Bayes, 78,76629

25

0.8

of correct class

€ 0.4 probabil

Results – 3D Simulation

Localization uncertainty:

Model uncertainty:

Results – Real Data

BigBIRD

(Big Berkeley Instance Recognition)

⇒ 125 objects

120 views / object

AVD (Active Vision Dataset)

Results – Real Data

Localization uncertainty

Example objects and learned GPs

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-0.5

0.0

0.5

Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

✓ 1. The semantic perception problem (Object-Level SLAM)

✓ 2. Viewpoint-dependent semantic measurement models

- 3. <u>Contributions</u>:
 - I. Classification under Model and Localization Uncertainty
 - II. Data Association-Aware Semantic Mapping and Localization
 - III. Semantic Perception with a Continuous Learned Representation

DA - Aware Semantic Mapping and Localization

"Data association aware semantic mapping and localization via a viewpoint-dependent classifier model", Tchuiev, Feldman and Indelman 19' IROS

© https://morioh.com/p/bd1b6fc9d9eb

DA - Aware Semantic Mapping and Localization

Contributions:

- DA-Aware Semantic Mapping through maintaining a full hybrid belief.
 - Maintain all plausible hypotheses until disambiguation is possible. Tractable in practice (subject to pruning).
- Viewpoint-Dependent model aids DA disambiguation by coupling between geometry and semantics.
- Approach operates with rich semantic feature vectors, not limited to most-likely-class measurements.

Approach - DA - Aware Semantic SLAM

Denote
$$b\left[\mathcal{X}_{0:k}, \mathcal{O}\right]_{\beta_{1:k}}^{\mathcal{C}} \doteq \mathbb{P}(\mathcal{X}_{0:k}, \mathcal{O} \mid \mathcal{C}, \beta_{1:k})$$
 $w_{\beta_{1:k}}^{\mathcal{C}} \doteq \mathbb{P}(\mathcal{C}, \beta_{1:k} \mid \mathcal{H}_k)$ (continuous) hypothesis hypothesis

$$\begin{array}{ll} \text{hypothesis}\\ \text{propagation} \end{array} b \begin{bmatrix} \chi_{0:k}, \mathcal{O} \end{bmatrix}_{\beta_{1:k}}^{\mathcal{C}} \propto b \begin{bmatrix} \chi_{0:k-1}, \mathcal{O} \end{bmatrix}_{\beta_{1:k-1}}^{\mathcal{C}} \cdot \mathbb{P}(\chi_{k} \mid \chi_{k-1}, \mathcal{A}_{k-1}) \cdot \mathbb{P}(\mathcal{Z}_{k} \mid \chi_{k}, \mathcal{O}_{\beta_{k}}, \mathcal{C}) \\ \text{motion model} \end{aligned} \quad \begin{array}{l} \text{weight}\\ \text{update} \end{aligned} \quad \begin{array}{l} w_{\beta_{1:k}}^{\mathcal{C}} \propto w_{\beta_{1:k-1}}^{\mathcal{C}} \int_{\mathcal{X}, \mathcal{O}} \mathbb{P}(\beta_{k} \mid \chi_{k}, \mathcal{O}_{\beta_{k}}) \cdot b \begin{bmatrix} \chi_{0:k}, \mathcal{O} \end{bmatrix}_{\beta_{1:k}}^{\mathcal{C}} d\mathcal{X} d\mathcal{O} \end{array}$$

Weights that fall bellow a threshold are pruned

Simulated environment:

- ✤ 6 identical objects
- 2 candidate classes with synthetic measurement models

uninformative robot pose prior

Time k = 1, without (left) and with (right) classifier model.

Time k = 15 without (left) and with (right) classifier model

With classifier:

- Fewer hypotheses
- More accurate localization

Hypothesis weight comparison, times k = 1 (left) and k = 15 (right)

With classifier:

- Fewer hypotheses
- Stronger disambiguation

Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

✓ 1. The semantic perception problem (Object-Level SLAM)

✓ 2. Viewpoint-dependent semantic measurement models

3. <u>Contributions</u>:

- I. Classification under Model and Localization Uncertainty
- II. Data Association-Aware Semantic Mapping and Localization
- III. Semantic Perception with a Continuous Learned Representation

Semantic Perception with a Continuous Learned Representation

An initial version presented as "Towards Self-Supervised Semantic Representation with a Viewpoint-Dependent Observation Model" in proceedings of Workshop on Self-Supervised Robot Learning, in conjunction with RSS, July 2020

Requires maintaining hypotheses (inefficient)
 Requires per-class models

Limited granularity of semantic representation

Semantic Perception with a Continuous Learned Representation

Continuous Learned Representation – Inference

Need a single semantic observation model (as opposed to per-class previously)
 Continuous inference
 No discretization on semantic representation

Fitting the Viewpoint-Dependent Model – Take 1

Assume a Gaussian viewpoint-dependent model conditioned on continuous representation: $\mathbb{P}(\mathcal{Z}_k \mid \mathcal{X}_{0:k}, \mathcal{E}, \mathcal{O}, \mathcal{H}_k \setminus \{z_k\}) \doteq \mathbb{P}(\mathcal{Z}_k \mid \mathcal{X}_k^{(rel)}, \mathcal{E})$

Use Maximum-a-Posteriori to fit
$$\mathcal{E}, \theta$$

representation variables corresponding
observations for n objects relative poses
arg max $\mathbb{P}\left(\mathcal{Z}_{0:k}, \mathcal{E}_{1:n} \mid \mathcal{X}_{0:k}^{(rel)}, \beta_{0:k}\right)$
 $= \underset{\theta, \mathcal{E}_{1:n}}{\operatorname{arg max}} \sum_{\substack{\substack{\ell \in \mathcal{E}_{1:n} \\ \forall i \in \mathcal{E}_{1:n} \\ \forall i \in \mathcal{E}_{1:n}}} \log \mathbb{P}_{\theta}\left(\mathcal{Z}_{i} \mid \mathcal{E}_{\beta_{i}}, \mathcal{X}_{i}^{(rel)}\right) + \log \mathbb{P}(\mathcal{E}_{1:n})$

observation model

33/46

vectors

Take 1 - Results for Fitting $\mathbb{P}_{\theta}\left(\mathcal{Z} \mid \mathcal{E}, \mathcal{X}^{(rel)}\right)$

example images

Take 1 - Results for Fitting $\mathbb{P}_{\theta}\left(\mathcal{Z} \mid \mathcal{E}, \mathcal{X}^{(rel)}\right)$

example images

mean predictions (at ground truth)

predictions for varying X (around ground truth)

Take1 - Inference Using the Model

Simulation: use frames from viewpoints along a simulated trackAlso using odometry

example track frames

Take 1 - Limitations

- ✤ Factor is huge $(32 \times 32 \text{ frame} \Rightarrow 1024 \text{ Jacobian rows / keyframe!})$
- Model expressiveness?
- ✤ Maximum likelihood does not provide sufficient gradients for optimization

$$\underset{\theta, \mathcal{E}_{1:n}}{\operatorname{arg\,max}} \sum_{\substack{\theta, \mathcal{E}_{1:n}}} \log \mathbb{P}_{\theta} \left(\mathcal{Z}_i \mid \mathcal{E}_{\beta_i}, \mathcal{X}_i^{(rel)} \right) + \log \mathbb{P}(\mathcal{E}_{1:n})$$

Values of likelihood $\mathbb{P}_{\theta}\left(\mathcal{Z} \mid \mathcal{E}, \mathcal{X}^{(rel)}\right)$ around ground truth point:

Example optimization path:

37/46

A Closer Look...

The learned model is constrained on a sparse set of triplets $\mathcal{Z}, \mathcal{X}^{(rel)}, \mathcal{E}$

⇒ Can try to improve inference by shaping the model elsewhere

Fitting the Viewpoint-Dependent Model – Take 2 (a)

Use a feature extractor to reduce factor dimensionality

$$\mathbb{P}(\mathcal{Z}_{k} \mid \mathcal{X}_{k}^{(rel)}, \mathcal{E}) \doteq \mathbb{P}_{\theta}\left(f_{\psi}\left(\mathcal{Z}_{k}\right) \mid \mathcal{X}_{k}^{(rel)}, \mathcal{E}\right)$$
$$\doteq \mathcal{N}\left(f_{\psi}\left(\mathcal{Z}_{k}\right); \ \mu_{\theta}(\mathcal{X}_{k}^{(rel)}, \mathcal{E}), \Sigma\right)$$

In practice we use $\dim(\mathcal{E}) = 16 \quad \dim(f_{\psi}(\mathcal{Z}_k)) = 12$.

Fitting the Viewpoint-Dependent Model – Take 2 (b)

Data term

$$\begin{split} J_{d}^{(i)}\left(\theta,\psi,\mathcal{E}_{1:n}\right) &= \mathop{\mathbb{E}}_{\Delta\mathcal{X}^{(rel)},\Delta\mathcal{E}} \begin{cases} \frac{\left\| \left[\Delta\mathcal{X}^{(rel)},\Delta\mathcal{E}\right] + s\left(\mathcal{X}^{(rel)} + \Delta\mathcal{X}^{(rel)},\mathcal{E} + \Delta\mathcal{E}\right)\right\|^{2}}{\left\| \left[\Delta\mathcal{X}^{(rel)},\Delta\mathcal{E}\right]\right\|^{2}} \\ \end{split}$$
for training example (i)

where s is the optimization step at $\mathcal{X}^{(rel)} + \Delta \mathcal{X}^{(rel)}, \mathcal{E} + \Delta \mathcal{E}$ (that will be used at inference)

For gradient descent

$$s^{GD} \doteq -\frac{\partial}{\partial \mathcal{X}^{(rel)}, \mathcal{E}} \log \mathbb{P}_{\theta} \left(\mathcal{Z} \mid \mathcal{X}^{(rel)} + \Delta \mathcal{X}^{(rel)}, \mathcal{E} + \Delta \mathcal{E} \right)$$

Learned Model

This finally gives useful gradients with respect to both $\mathcal{X}^{(rel)}$ and \mathcal{E} . Inference experiments still in progress.

likelihood - offsets in relative pose

likelihood - offsets in semantic representation

Outline

Viewpoint-Dependent models for Semantic Perception under Uncertainty

- The semantic perception problem (Object-Level SLAM)
 Viewpoint-dependent semantic measurement models
 Contributions:
 - I. Classification under Model and Localization Uncertainty
 - II. Data Association-Aware Semantic Mapping and Localization
 - III. Semantic Perception with a Continuous Learned Representation
 - 4. Summary

Summary

We showed how to address semantic perception under uncertainty by exploiting the coupling between semantics and geometry provided by viewpoint-dependent models.

Contributions:

- I. Classification aware of Model uncertainty and correlations among viewpoints
- II. Data Association-Aware Semantic Mapping and Localization
- III. A novel approach to semantic SLAM through inference in a learned latent space

Thanks for listening!

Questions?

