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1 Abstract

We investigate the problem of autonomous navigation in unknown or uncertain
environments, which is of interest in numerous robotics applications, such as
navigation in GPS-deprived environments, mapping and 3D reconstruction, and
target tracking. In lack of sources of absolute information (e.g. GPS), the
robot has to infer its own state and create a model of the environment based on
sensor observations, a problem known as simultaneous localization and mapping
(SLAM). Moreover, it has to plan actions, in order to accomplish given goals
while relying on information provided by the inference (estimation) process. The
inferred state, e.g. robot poses and 3D landmarks, cannot be assumed perfectly
known because the observations and dynamics are stochastic; hence, planning
future actions has to take into account different sources of uncertainty. The
corresponding problem is known as belief space planning (BSP).

An essential ingredient in SLAM and BSP problems is correct association
of landmarks observed by robot sensors (e.g. camera), as incorrect association
might lead to wrong estimation and to catastrophic results. In particular, the
ability to re-identify a previously observed object can be challenging, especially
considering images taken airborne or on the ground with shallow viewpoints —
an object may look completely different when observed from different angles.
Yet, state of the art BSP approaches typically consider perfect ability to re-
identify an object. In this work we develop a viewpoint aware BSP approach
by modeling re-identification aspects within the planning phase. We study our
approach in simulation, considering the problem of autonomously reaching a
goal with highest estimation accuracy in a GPS-deprived unknown environment.



2 Notations

Tp
Lj

Ly
Xk

Z;
n;

Zi,j

ZO:k
Us

Uo:k

Robot state (e.g. pose) at time ¢
Coordinates of landmark number j
World state, comprising landmarks {/;} mapped until time ¢,

The joint state at time tx: Xy = {xo,..., g, L} (assumes a static
environment)

Available observations at time t;: Z; = {z; 1, ..., Zin,; }
Number of observed landmarks at time ¢;
A measurement of the jth landmark at time ¢;

Involved variables (X? C X;) in individual measurement models
that correspond to observations Z;

All the available observations until time tg: Zo.x = {Zo, ..., Zx }
Control action applied at time ¢;

All controls until time tg: wo.x = {to, ..., ug }

We use € ~ N(u, A™!) to denote a Gaussian random variable e with mean p
and information matrix A (inverse of the covariance matrix)



3 Introduction

We investigate the problem of autonomous navigation in unknown or uncertain
environments, which is of interest in numerous robotics applications, for exam-
ple, it may be used for exploration under water, exploration in space or for
navigation in any other GPS-deprived environments. Furthermore we want to
plan a suitable control strategy in order to accomplish a given task, for exam-
ple reaching a certain goal with highest estimation accuracy and possibly other
objectives.

We use simultaneous localization and mapping (SLAM) in order to infer the
state of the robot and map the environment. In order to navigate in unknown
environment, and in lack of sources of absolute information (e.g. GPS) the
robot has to infer its own state and create a model of the environment based on
sensor observations.

In order to plan a suitable control strategy to accomplish a given task, we use
belief space planning approach (BSP), while relying on information provided by
the inference (estimation) process. The inferred state, e.g. robot poses and 3D
landmarks, cannot be assumed perfectly known because the observations and
dynamics are stochastic; hence, planning future actions has to take into account
different sources of uncertainty.

Existing BSP approaches, consider perfect ability to re-identify an object.
This assumption is far from the real world - the ability to re-identify a previously
observed object can be challenging, an object may look completely different
when observed from different angles. An identification of a specific object is
possible under several conditions: it depends on the camera viewpoint, sensor
capabilities and image processing capabilities. Incorrect association might lead
to wrong estimation, wrong planning and to catastrophic results.

In this work we relax the aforementioned assumption in existing belief space
planning approaches regarding object identification from arbitrary viewpoints.
To that end, we model object identification both in SLAM part and planning
part, and study our approach in simulation, considering the problem of au-
tonomously reaching a goal with highest estimation accuracy in a GPS-deprived
unknown environment.



4 Literature Review

In order to navigate in an unknown environment and in lack of sources of abso-
lute information (such as GPS), the robot has to infer its own state and to create
a model of the environment based on sensor observations. The corresponding
problem is known as simultaneous localization and mapping (SLAM) and has
been extensively investigated by the robotics community (Kaess et al., 2012 [5];
Konolige et al., 2010 [8]; Kaess et al., 2008 [6]).

On the other hand, active aspects of this problem, i.e. how to determine best
robot actions, present numerous unresolved challenges that are of prime impor-
tance for next generation of autonomous robotic systems. The complexity stems
from the fact that robot position cannot be assumed perfectly known because
the observations and dynamics are stochastic: robot position after applying a
motion command is different from the predicted position due to actuation noise,
sensor observations are corrupted with noise, and thus robot state is always es-
timated with some error. This is especially the case when operating in lack of
sources of absolute information, such as GPS. Planning future actions therefore
has to take into account the different sources of uncertainty. Moreover, the
robot does not know, a-priori, which measurements will be acquired and what
the future sensor readings will be. A further source of complexity is that the
motion strategy directly influences the amount and the quality of the acquired
measurements, making planning and estimation even more coupled.

The corresponding problem is known as planning in the belief space, where
the belief represents a distribution of possible realizations of robot state and may
also include representation of the environment model (position of 3D landmarks
in the environment) at appropriate time instances.

There are a few approaches dealing with planning under uncertainty: (a)
Discretization - those approaches approximate the state space or the possible
control space as finite sets. In this approach, the control action is selected
from among a finite set of candidate control actions (Chaves et al., 2014 [1]
; Stachniss et al., 2005 [13]) (b) Prior knowledge of the environment - those
approaches assume that prior knowledge of the environment is available and the
belief represents only robot position. (Van Den Berg et al., 2012 [14] ; Prentice
and Roy, 2009 [12]).

In particular, Van Den Berg et al., 2012 [14] consider there are sources of
absolute information (such as GPS or known landmarks) and that the belief
only represents uncertainty in robot state. Planning in the belief space is done
in the continuous domain. They treat future measurements as random variables
but do not model the uncertainty in the fact that a future measurement may
be acquired or not.

The closest work to our research is the work by Indelman et al., 2015 [4],
which assume a completely unknown or uncertain environment, and model this
source of uncertainty as part of the belief space. They avoid discretization by
working in continuous control and state space domain. However, an implicit
assumption made in Indelman et al., 2015 [4] and other related approaches is
the ability to identify a previously observed object or area from any viewpoint.



This assumption is far from the real world. Identification of a specific object is
possible under several conditions: it depends on the camera viewpoint, sensor
capabilities and image processing capabilities. A given object looks completely
different when one observes it from a different angle. Even for a human it will be
challenging to recognize the same object from a different direction without hav-
ing a previous knowledge, all the more so it will be difficult for an autonomous
robot.

Like in Indelman et al., 2015 [4], Chaves et al., 2015 [2] take into account
the fact that a measurement may or may not be obtained, however, they do not
model object re-identification or data association aspects.

Other recent works, model object identification from other aspects which are
not related to object re-identification from different view directions: Kim and
Eustice, 2014 [7] address an active SLAM problem, assume an unknown envi-
ronment and model saliency of the measurement through the planning i.e. how
unique and distinguishable are previously observed scenes/landmarks. Chaves
et al., 2014 [1] consider discrete action space; they also model saliency, and pri-
oritize trajectories that go through high-saliency regions. Patil et al., 2014 [11]
work in a continuous domain and consider discontinuity aspects, for example
due to camera field of view: a landmark within a camera field of view is modeled
to be observed, while a landmark outside the field of view is not. However, that
work focuses on modeling the probability of acquiring a measurement, without
considering re-identification aspects.

In this work we relax the aforementioned assumption in existing belief space
planning approaches regarding object identification from arbitrary viewpoints.
We take into account that a future measurement may or may not be acquired,
while enabling operation in unknown environments. We model object identifica-
tion both in SLAM part and planning part, and focus on object re-identification
from different viewpoint when the object is previously mapped. In this work
we do not address data association aspects, and refer to recent research [10],
which incorporates data association aspects within BSP. We use a discretized
action space and consider a given set of candidate actions, provided by some
black-box method, and choose the best control action sequence from this set
while modeling landmark re-identification aspects.



5 Background

5.1 Computer vision algorithms

An essential ingredient in SLAM and BSP problems is correct association of
landmarks observed by robot sensors (e.g. camera), as incorrect association
might lead to wrong estimation and to catastrophic results. Identification of a
specific object is possible under several conditions: it depends on the camera
viewpoint, sensor capabilities and image processing capabilities.

The ability to re-identify a previously observed object can be challenging,
an object may look completely different when observed from different angles.
For example, in figure 1 there are different facets of the same house - even for a
human it will be challenging to identify that those two views indeed represent
the same object, all the more so, it will be challenging for a robot.

Figure 1: Same object from different view points.

In order to recognize an object and “understand” the image that was received
in the robot’s camera, we need to use computer vision algorithms. The decision
whether a landmark is recognized as a landmark that has been already seen
before depends on the applied computer vision algorithm. To demonstrate key
aspects, we consider the well known SIFT [9] and RANSAC [3] algorithms.

SIFT is an algorithm to detect and describe local features in images. This
algorithm finds interest points (features) in an image and generates for each
one a signature (feature description). In order to identify the object in another
image, the features need to be detectable after possible changes like scaling,
rotation and illumination. Each detected feature is described, in addition to the
descriptor, by image coordinates, scale and orientation.

In the next step, the algorithm determines correspondences between descrip-
tors in two views. This is done by comparing between the feature descriptors
(based on Euclidean distance of their feature vectors). However, after this step,
the matching results may contain false matches (outliers), for example because
of noise, occlusions, blur or significant change in camera view. These false
matches must be found and removed in order to avoid false recognition.



To identify and reject the false matches it is necessary to use a robust estima-
tion algorithm, such as the RANSAC algorithm [3]. RANSAC is an algorithm
for estimating parameters of a model from noisy data that contains outliers by
random sampling. The basic version of the algorithm proceeds as follows:

—

. Randomly sample a number of points which is sufficient for model descrip-
tion (for example - 2 points for a line)

[\

. Count the number of data points in agreement with model

w

. Repeat steps 1 and 2 N times
4. Choose model with maximum support

However, in practice, computer vision algorithms are limited in their identifi-
cation ability. This limitation defines the conditions in which two views of the
same scene will be considered as the same object; for example, in SIFT algo-
rithm, an object will be re-identified when the change in viewpoint direction is
up to 30°-40°.

In sections 8.1 and 9 we will use this fact to model cases in which the
landmark will be indeed re-identified.

5.2 SLAM

Simultaneous localization and mapping (SLAM), is an approach to enable a
robot to navigate in and map an unknown environment. In this problem the
robot constructs a map of the environment and simultaneously keeps track of
its pose (position and orientation), using incoming sensor observations and the
mapped environment thus far.

When using only odometry, meaning use of data from motion sensors to
estimate change in position over time, the new pose is calculated from previous
pose and the estimated motion. This method is sensitive to errors; thus, using
only this method the solution will drift over time.

Therefore, in SLAM we use the environment to correct the pose of the robot.
This is accomplished by extracting features from the environment (landmarks)
and re-observing them when the robot moves around, observations that are
also called loop closure measurements. A typical SLAM pipeline involves front-
end (image matching, data association) and back-end (inference/optimization)
processes. In this work we consider the front-end to ideally determine data
association, i.e. no outliers, as already mentioned earlier.

There are various SLAM approaches which differ in the definition of what
is estimated (state vector) and in the inference techniques. In this work we
use a smoothing approach (for computational efficiency): the state vector in a
smoothing approach to SLAM involves not just the most current robot loca-
tion, but the entire robot trajectory up to the current time. In other words,
the state vector includes: current state, past poses, and landmarks. We use
Gauss-Newton optimization for inference. Another alternative is to use the well
known Kalman smoother, which however, performs calculations in covariance



and not in information form. Calculations in information form have computa-
tional advantages since the system in our case is sparse.

5.3 Planning

The robot needs to plan a suitable control strategy in order to accomplish a
given task. The fact that robot observations and dynamics are stochastic makes
planning complex, because after applying a motion command the actual robot
position differs from the predicted one, e.g. due to actuation noise. Furthermore
the robot does not know in advance which measurements will be acquired and
what the future sensor readings will be.

The planning process relies on estimation and perception data, that can be
represented by the belief - a probability distribution over the state conditioned
on the currently available data. Decision making under uncertainty and belief
space planning (BSP) then refer to approaches that consider belief evolution as
a result of different candidate actions. Given an objective function, which typi-
cally comprises immediate costs such as uncertainty, path length and reaching
a specific goal, the best/optimal control strategy can be calculated. This pro-
cess involved evaluating, for each candidate action, the objective function and
choosing the action that minimizes (or maximizes) the objective function. Each
such evaluation requires calculating the posterior future beliefs for appropriate
look ahead steps.

6 Contribution

As mentioned in section 4, many existing approaches assume environment/map
is known, while some recent approaches relax this assumption, thereby enabling
operation in unknown environments. However, all existing BSP approaches
typically consider perfect ability to re-identify an object from different view
directions. In other words, these approaches assume that the view direction
in which the object was observed does not matter and that the object will be
identified from any view direction.

Yet, as discussed in section 5.1, the ability to re-identify a previously ob-
served object can be challenging and depends on the view direction in which
the object was observed, the computer vision algorithm and sensor capabilities.
Therefore, the above assumption of ideal object identification, may lead to in-
consistent uncertainty prediction with reality (inference), and hence, to incorrect
planning, e.g. an incorrect (suboptimal) path might be chosen. The conclusion
is that correct identification of landmarks is critical, as incorrect identification
may lead to incorrect path choosing and catastrophic results.

In this work we enable operation in unknown environments without as-
suming perfect ability to re-identify an object. To do so, we model object
re-identification and take into account that the object might not be identified
when observed from completely different view directions, and develop a view-
point aware BSP approach while considering both SLAM and planning aspects.



7 Probabilistic Formulation

7.1 SLAM
We define X, as the joint state:

Xk = {wa'kaaLk}? (]‘)

where z; is the robot state, and Ly, is world state (for example, landmark coor-
dinates).
The probability distribution function (pdf) over the joint state is:
P(Xk|Zo:k; wo:k—1), (2)

where u; and Z; are, respectively, the control action and captured observations
at time t;. We consider Z; to represent landmark observations and denote

Zi ={Zi1, s Zin, }s (3)
where z; ; corresponds to observing landmark [; at time ¢; and n; is the number
of observed landmarks at that time.

The probabilistic motion model given control u; and robot state x; is:
p<$i+1|$i7ui)- (4)

The probabilistic observation model for each measurement z; ; is:

p(2i,5]zs, ). (5)

We consider the case of motion (4) and observation (5) models with additive
Gaussian noise:

Tig1 = f(xi,w) +w; . w; ~N(0,Zy) (6)

Zij = h(fL’i, lj) +vi5 5 Vi N(O, Zv), (7)

where Y denotes a covariance matrix.
The pdf in equation (2) is defined by the belief at time

b(Xk) = p(Xk|Zo:k, wo:k—1)s (8)
and represented by a Gaussian:

b(Xy) = N(X;, Aph), (9)

where the mean X} is set to the maximum a posteriori (MAP) estimate, and
the information matrix Ay is defined accordingly (as described in Indelman et
al., 2015 [4]).

The joint pdf from equation (2) can be explicitly written as



P(Xk| Zok, woik—1) = n-p(o) - [ |p(ilwioa, wia) [ p(zijlai ;)| (10)

i=1 j=1

where p(zg) is the prior information on zg, p(z¢) = N(Zo,X0), and 7 is a
normalization constant. As seen, the expression in equation (10) includes priors,
motion model (4) and the observation model (5) terms. The full derivation of
equation 10 is provided in the Appendix.

In order to estimate X}, we use maximum a posteriori (MAP) inference:

X :arngax P( Xkl Zo:kes wo:k—1)- (11)
k

For Gaussian distributions, this involves solving a nonlinear least squares prob-
lem (see details in the Appendix):

X; :arngax P(Xk| Zo:ks vo:k—1) :arngin —In (p(Xk| Zo:kes wo:k—1) - (12)
k k

7.2 Belief Space Planning

In each step the robot needs to decide its next actions. In order to find the plan-
ning actions at planning time ¢, we optimize an objective function J(ug.g+7—1)
for L look-ahead steps. We consider a general objective function:

L—1
J(upktr-1)=_E {Z a (b(Xk+l)7uk+l)} , (13)
Zk41:k+L =0
where ¢; is a general cost function that depends on the belief b(Xy;) and on the
control action ugy;. The user-defined costs ¢; can include different terms, with
weights that specify the importance of each term. In this work, at each look
ahead time [, the cost ¢; includes three terms: distance to goal, pose uncertainty
and control usage (see also [4]).
The belief at the [th look ahead step is defined as:

b(Xkt1) = P( Xt Z0:ks W0:k—1, Lot 12kt Uhikep1—1) 5 (14)

where the joint state Xj.; includes the robot states and the observed world
states until time k + [. The control actions and observations were separated:

e Uuntil planning time tg: Zp.x, uo.x—1 (which include the entire history of
observations and actions, respectively, until the current time tj)

e From planning time t511 for the first 1 look-ahead steps (until ¢y4;):
L1k 41 Ukik1—1

10



In equation 13 we sum the costs for all L look ahead steps. However, since the
future measurements Zyy1.;+ are unknown, we write the expectation operator
to consider all possible realizations of these measurements.
For notational convenience we define the history of observations and actions
as:
Hi = {Zo.k, woik—1} - (15)

We will write again equation (14), using Hy:

b(Xit1) = (X1 Mk, Zit1:k415 Whikti—1)- (16)

This belief is represented by a Gaussian:
b(Xkt1) ~ N (X1§+l7Aﬁz) ; (17)
where the mean X, is set to the MAP estimate:

Xy, =arg max b(Xp4;) =arg min — In b(Xp4q), (18)
Xkt Xkt
and the information matrix A4, is defined accordingly, (as described in Indel-
man et al., 2015 [4]).
Mathematical development of the belief in equation (16), while considering
ideal ability of object re-identification, leads to:

1 n;
P(Xppt|Hira) o< p(Xil He) [ [ 2 (@silwnsio v, unpior) [ 2 (zriglonsis 1) -
i=1 j=1
(19)
It can be seen that the belief, in equation (19), is composed of the belief at
planning time t; (obtained from SLAM), and motion and observation models
for [ look ahead steps. Also note that the above formulation assumes ideal data
association.
Calculating the optimal control involves optimization of an objective func-

tion Jk(uk;]H,L,l) :

Wik L1 = {Ws -oos Wogep,—1 } =21 Min Ty (U L—1)- (20)
Uk:k+L—1

There are two approaches, discrete and continuous, for calculating the op-

timal control v*. In the continuous approach, the optimal control is calculated

iteratively in each step, using a minimization of an objective function - the op-

timization starts from a nominal control u,(co,)C 411> and, at each iteration (i),

computes the delta vector Aug.x+1—1 that is used to update the current values

of the controls. In the discrete mode, in which we are using in this work, a

set of controls are planned offline. We approximate the control space as finite

sets, the control action is selected from among a finite set of candidate control
actions.

11



8 Approach

As explained in Section 6, in reality object re-identification is not perfect. Yet,
state of the art BSP approaches typically consider perfect ability to re-identify
an object (as can be seen in equation (19)).

Correct identification of objects is critical - the assumption of ideal object
identification may lead to inconsistent uncertainty prediction with reality (in-
ference), incorrect planning and therefore incorrect path choosing.

In this work we are not assuming perfect ability to re-identify an object. We
take into account that the object might not be identified when observed from
completely different view directions. We are modeling object re-identification
and develop a viewpoint aware BSP approach while considering both SLAM
and planning aspects.

8.1 Concept

We define the event of acquiring a measurement as an event in which the robot
recognizes the object. The ability to identify an object depends on the view
direction in which the object is being observed and on the image processing
ability (as explained in Section 5.1).

In each observation we define the LOS (Line Of Sight) to the object, which
is the straight line between the camera of the robot and the observed image.
We also define a cone of identification in which the object can be identified
using image processing algorithms, it means that all the line of sights inside this
cone will lead to object recognition. Recall from section 5.1, in SIFT algorithm,
an object will be re-identified when the change in viewpoint direction is up to
30°-40°.

A description of LOS and cone of identification is given in figure 2 - in this
example, the robot is a UAV and the object is the house.

In figure 3 there is a description of possible states of the robot:

1. The first state A, is the first time the robot observes the object. The LOS
of this observation and cone of identification in which the object can be
identified, are showed in yellow.

2. The second state B, describes a situation in which the robot observes the
object from a different view direction, while the new LOS is inside cone
of identification that corresponds to state A. In this case the object will
be identified as the object that was observed in state A.

3. The third state C, describes a situation in which the robot observes the
object from a different view direction, but now, the new LOS is outside the
cone of identification which was defined in state A. Therefore, the object
will not be identified in this case, although it is observed in the same facet
as in state A (because, the LOS angle in state C, is not close enough to
LOS angle in state A, in order to identify the object by computer vision
algorithms).

12



4. The last state D, describes a situation in which the robot observes the
object from a completely different view direction, in different facet than
in state A, and a completely different scene. In this case it is clear that
the robot will not identify the object as the same object from the first
state A.

Note that it is not sufficient to model only whether an object is within the
field of view of the camera, as done in [11]. For example, in states C and D, the
object is in the field of view of the camera, but still is not recognized, as it being
observed from different view directions which are not allowing the identification.

Figure 2: LOS Description.

13



Figure 3: Recognition of an object.

The concept of determination about object re-identification, is described in
figure 4.

At planning time t; the robot needs to examine some candidate sequence
of actions in order to determine what is the optimal trajectory. In each future
step, the robot observes landmarks in the environment, in order to infer it’s state
from an appropriate posterior distribution. Therefore, in order to calculate the
posterior, it needs to determine in each future step whether the observed object
is recognized.

In order to determine whether an object is re-identified, we need to calculate
the examined LOS and the preserved LOS’s from SLAM and planning parts.
We use the current state of the robot and landmark coordinates, in order to
calculate the examined LOS at time t5;.

The preserved LOS’s are calculated from the estimated in the SLAM stage
(which continues until planning time ¢;; described by the blue part in figure 4),
and from the expected data in the planning part (begins at planning time ¢,
and continues until time ¢ ;_1; described by the orange part in figure 4).

We check if the examined LOS is inside one of previous cones of identification
that were defined by the preserved LOS’s. If so, the object is re-identified; oth-
erwise, the object is not re-identified. Note that if the object is not re-identified,
it will be classified as a new object. Therefore it will not add new information
about the robot’s state, and will not cause a reduction in the covariance.

14



Landmark

t=0
SLAM
He

Figure 4: Concept description.

8.2 Viewpoint Aware BSP

In this section we will provide mathematical derivation of the concept mentioned
above in section 8.1.

8.2.1 Define joint probability

In order to model object re-identification, we define a new binary random vari-
able ; ; for each observation z; ;, in order to represent the event of this measure-
ment being acquired. The new variable +; ; indicates whether a measurement
of landmark j is acquired at time ¢. If the landmark is recognized (the measure-
ment is acquired), 7; ; = 1, otherwise v; ; = 0 (as described in figure 5). We
define also I; = {%]};’;1 , where n; is the number of possible observations at
time t;.

15



Re-identification at

time i into the future

Figure 5: v; ; definition.

In order to solve the Gaussian approximation of the belief (17) we need to
take into account that we do not know ahead of time whether or not a future
observation zx4;; will be obtained, meaning whether the landmark j will be
re-identified at time k£ + [, and what the measurement will be. Therefore, we
treat z; ; and I; as random variables.

We define a joint probability density over the random variables in our prob-
lem:

P( Xkttt D 1:k415 Zh 1kt | Hk Uhikg1—1)- (21)

By using the chain rule on equation (21), we get:

P (Xotts Tt 11| Hies Zo1:ktts Whikori—1) P (Ziop 1ot [ Hie, Uikri—1) - (22)

We take the assumption that p (Zgy1.x+1|Hk, Uk:k+1—1) is uninformative (which
is a fairly standard assumption, because we can not say much about future mea-
surements given only the controls and the past measurements) and get:

P(Xbat, Drr:bats Zoa ekt Hi, Unekyi—1) o
P (Xbtts D vkt s Zott:kts Whk1-1) - (23)
Recall from section 7.2, in order to use the objective function in equation
(13), we need to know the belief b(X4;), but as Z; and I'; are treated as random
variables, we only know the joint probability function in equation (23).

Therefore, in order to get the belief, b(Xy1;) we marginalize the latent vari-
ables I'j41.54; and get:

b(Xr1) = p( X\ His Zig1:k40, Ukihyi—1) =
Z P (Xt Dt 11| Hies Zho 1kt Ukskog1—1) - (24)

Itk

For example, in case of only one measurement, in only one time step, I+ =
{Vk+1,1}, the last term will be expanded as:
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> p Kkt Tena|His Zinsun) = > p(Xiwns Yo He Zirn,ug) - (25)

Tk Ve+1,1

Since 7yx4+1,1 is a binary random variable, i.e. can be either 1 or 0, equation (25)
can be explicitly written as:

> p (X Vw11 M, Zogr, ) =

Yk+1,1

P (Xet1, Y11 = UHe, Zrgr,ur) +p (Xpg1, Yer1,1 = O/ He, Zry1, ug) - (26)

8.2.2 Examination of joint probability derivation

In this section we examine the final result of the joint probability derivation
while modeling object re-identification. The derivation of the joint probability
in equation (23) will give the final result (full derivation is detailed in section
8.2.3):

P (Xitts Dot r:brt| Hirt) = P (Xitts Dot 1:b1| Hi, Zo1:k+1, Ukikpi—1) X
1
P (Xk|[He) Hp($k+i|$k+if1>uk+i71)p (Zhti> Dip Hiorio1, X21) - (27)

i=1
where Hyy; = {uo.p+i1—1, Zo:k+1}, and with

D (Zivir Dipil Hgrim1, X245) = 2 (Zigsl X2 i Tkgei) P (Tt P, X244)
(28)
which can be further expanded in terms of individual observations 21, ; € Zs,
ie.:
ng

P (Ziti, Dipi Moo, X i) = Hp(2k+i,j|$k+i7lja'Yk+i,j)p(7k+i,j|7'[k+i71a$k+i7lj)~

j=1
(29)
Plugging in equation (29) into equation (27) we get:
!
P Xty Ternst[Hara) o p (Xe[He) [ p @repi i1, unpion) -
=1
TP Gl b vmrig) p i Hirions @iy 1) - (30)
j=1

We assume that the variables ;4; ; are statistically independent. Also note
the difference with respect to the derivation in section 7.2 , equation (19) and
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in Indelman et al., 2015 [4], where the last term in the above equation does not
account for the history Hy4;—1.

It can be seen that the final result of the derivation in equation (30), is
composed of three main terms:

The first two terms are the same as seen in equation (19) when assuming
ideal object identification. p (Xj|Hy) is the inference in the past until planning
time ¢, (SLAM) and p (g44|k+i—1, Uk+i—1) is motion model for I future states
from planning time .

The last term is now composed of two different terms (differently than
in equation (19) when assuming ideal object identification). The first term
D (Zkti,j|Thti, Ui, Yets,;) T€Presents the probability to get a certain measurement
Zk+4,j, given robot state xj;, landmark coordinates /;, and data about object
identification vj4; ; - whether the measurement is acquired or not. In the case
of object identification (meaning measurement acquirement) - the term will turn
into the basic measurement model as in equation (19), and we only need to calcu-
late the probability of acquiring a measurement. If the object is not identified -
this term is uninformative, because, when the measurement is not acquired, and
therefore loop closure does not achieved, it is useless to consider the probability
of achieving a certain measurement. The second term p (Vi+i j|Hr+i—1, Th+i, ;)
represents the probability of acquiring a measurement j at time k + 4, given the
history Hp;—1, robot state xx; and landmark coordinates I;.

In this work, as opposed to existing BSP approaches which are described
in section 7.2 (and for example like in previous work of [4]), we are model-
ing the event of acquiring a measurement as an event which depends on the
past estimated robot states, world states and observations. Therefore the term
D (Vi j | He+i—1, Thti, ;) includes the history Hyi;—1. The concept of deter-
mination whether a measurement is acquired, meaning whether a landmark is
re-identified, is described using figure 4 in section 8.1.

Note that the term Hpii—1 = {Hk, Uk:k+i—2, Zk+1:k+i—1} includes the in-
formation that is needed in order to determine whether the measurement has
been acquired in two levels. First, it includes the information in the SLAM
part until time t; (Hj, described using blue color in figure 4). Second, it also
includes the expected information about the measurements and controls, from
planning time ¢ until time ¢;; in the future (ug.g+i—2,2k+1.5+i—1, described
using orange color in figure 4).

In order to determine whether a measurement is acquired, we use the data
about robot state xj,,; and landmark coordinates [;, at the examined time step
tg+i, to compute the current LOS. The preserved LOS’s (which is composed of
estimated LOS’s in the SLAM part, and the expected LLOS’s in the planning
part) can be obtained from the history Hy;—1. Note that X , , can be
obtained from P (Xk+i—1|Hk+i—1) = ]\/v()(;;rii17 Al;iifl)'

Now, we have all the information in order to determine whether a measure-
ment is acquired, as explained in section 8.1: if the examined LOS is inside one
of previous cones of identification then the object is identified and the measure-
ment is acquired, else, the measurement is not acquired.
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The determination process about measurement acquirement is described in
figure 6.

p(ykﬂ',j | Hk+i—1’ xk+i’lj)

History of
measurements and
controls up to time

leti—1

Data of previous
LOS’s

Check if examined LOS is inside previous cones of identification

Event of acquiring a measurement

Figure 6: Determination process about measurement acquirement.

8.2.3 Full derivation of joint probability

In this section we describe the full derivation of the joint probability in equation
(23), which its final result was presented in section 8.2.2.
The derivation of equation (23) proceeds in a recursive manner as follows

D (Xptt, Dieg1:k41 Hies Zhg1:k1s Ukikgl—1) =
P (Zitts it Mt i—15 Uhgri—15 Xt D t:k1=1) D (Xt g tihri—1 b= 1, Un1—1)
P (Zrt| Hbti—1, Uk41-1)

)

(31)
where Hp11-1 = {vokt1—2, Zo:kti—1}-

We assume that the term p (Z41|Hr+1—1, Uk+i—1) is uninformative, therefore
we can write equation (31) as:

19



P (Xnotts Dot 1:k41| s Zho 1k Whikgi—1) X
P (Zitt, Dt Hbti—15 Whgri—15 Xt D tikr1=1) D (Xiorts Db tibi—1 | Hbri— 15 Uni—1) -

(32)

We now proceed with derivation of the two terms in the above equation
separately.

Term p (Xpy 1, Pegrihri—1|Hri—1,ur1-1) Applying chain rule we get

P (Xbtt, Cogreri—1[Heri-1, Upr1-1) =
P (@t Hrgr—15 Urri—1, Xpyi—15 Drgrier1-1) P (X1, Thg e -1 [ Hegi— 1, Upgi-1) =
P (Th|Thgi—1, ubt1-1) P (Xpri—15 Thrrbri—1 | Her-1) - (33)

where in the last equation (33) we used the Markovian property of the motion
model and the fact that future control does not impact past/current state.

We also used the assumption Ly = Lj;, which means that the world state
in planing time k is the same state as in future time k + . Therefore X, ; =
Xpq1-1 U Tpyg-

Term p (Zy1, Uit H1—15 Whi—1, Xbis T 1:k41—1)  Also here, we apply chain
rule and get

P (Zist, Ukt M 1—1, Uk i—1, Xiorts Th1kgi-1) =
P (ZrvtHeri-15 wkri—15 Xiwt, Dk 1) p (Dt Haer1— 15 kyi—1, Xoowt, Thrkgi-1) =
P (Zist| X040, i) P (Tt Hioi—1, Xg41) - (34)
The first term in the last equation (34) was obtained by recalling the measure-
ment model. To get to the second term we employed simplification by assuming

Iiy; and Tgyq.541-1 are statistically independent. Ome can simplify further,
and consider only the history at planning time k, i.e. p (Tpqt|He, X20y)-

Plugging in into Eq. (31) (p (Xi+4i, [kt1:6+1|Hi+:)) Combining the two
terms we get
P (Xt Dot Hir) o p (Xpi—15 D tnri—1Hia-1) -

P (@hgt|Trgi—1, Wor1=1) P (Zrgt| X R0 Togt) D (Tt [ Hii—1, Xpgy)  (35)
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As seen, a recursive formulation is obtained. Proceeding in a similar manner all
the way until [ = 1 we get

P (Xitt, Dig 1kt Hit1) = 0 (Xetts D vkt His Zig1:k40 Ukekpi—1) X
1

P (Xk|Hr) Hp (ThgilThtimts Ukti=1) D (Ziti> Digi Hrrio1, XP4i) - (36)

i=1
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9 Implementation details

We define the event of acquiring a measurement as an event in which the robot
recognizes the landmark, this will happen in the following conditions:

1. The landmark is in camera’s field of view
2. The landmark is in a suitable range for detection
3. The landmark is recognized as a known landmark

A recognition of a landmark can occur if the landmark has been seen before from
a similar view direction, we use LOS (line of sight) in order to define the view
direction of the landmark from the robot’s camera point of view (as explained
in section 8). In order to define whether a landmark can be recognized, we need
to preserve all the line of sights from the past.

We choose to represent the LOS, separated into vertical and horizontal plane
(for implementation convenience) as described in figure (7). The calculations in
this work were made in horizontal and vertical planes, but another option is to
perform similar calculations in 3D.

ZJI

Robot

Landmark

Figure 7: LOS Description.

In order to calculate Ay and Ay we will write in detail the robot’s position
vector and landmark’s position vector:
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The relative position of the landmark with respect to robot’s position is:

R ZRel Zp — IR
RelativePosition =15 — &; = | Jgra = 9L — YR
ZRel 2L — 2R

Ag is the horizontal angle of the LOS:

Ag = arctan mel
Lrel

Av is the vertical angle of the LOS:
2rel

Ay = arctan —
V Liel + Yrel

Note that A\gy,\y are a function of estimated values of robot’s position and
of landmark’s position.

Recall the notion of cone of identification (see section 8.1). In order to
represent the cone of identification we define an equal radius for each plane
(vertical and horizontal) in which the computer vision algorithms will still be
able to recognize the observed object, and mark it as r,p -

We define:
Av.

» is Ay of landmark j in time ¢;

We preserve all former line of sights in order to define if the landmark is recog-
nized. Therefore:

Av, are former angles that were preserved at time s of landmark j
dsv is the difference between Ay from the current examined time ¢;
(Av;,), and all former Ay (Ay, ;), of landmark j:
dsv,; & | M, -Av., |, Vs €L, .0 —1] (37)
dv is the minimum difference between Ay at current examined time ¢;

(Av;,), to one of the former Ay (Ay, ;), of landmark j:

dy,; = min(dsv.;) (38)
Similarly, we define for horizontal plane:
AH; is Ay of landmark j at time t;
AH, are former angles that were preserved at time ¢; of landmark j
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dsm,j is the difference between Ay at current examined time ¢; ()\Hi,j)?
and all former Ay (Mg, ;), of landmark j:

dsH,j £ |>\Hi,j—)\Hs.j , Vs € [1, ey — 1] (39)

dy is the minimum difference between Ay at the current examined time
ti (Am, ), to one of the former Ay (Mg, ;), of landmark j:

dHﬁj = min(dSHyj) (40)

The probability to acquire a measurement j at time ¢; (;;), given history
H;—1 , robot state z; and landmark’s coordinates [; is modeled as

1 if dyv.: < rimp anddg.; < rim
p(Vij 1|Hi—1,9€i,lj){ 0 else (v fme 7 imP)
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10 Results

In order to show the effect of modeling landmark identification from different
view directions, and using viewpoint aware BSP approach, we are using a sim-
ulation and compare the influence of applying the new addition (as detailed in
sections 8 and 9), to a simulation which uses the existing BSP approach.

The simulation, which models both SLAM and planning parts, considers a
robot, for example an unmanned aerial vehicle (UAV), that has a camera and
a range sensor. The robot operates in an unknown 3D area and has to reach a
specific goal. The robot uses its sensors to observe landmarks in the environ-
ment and to estimate its own position. We currently use imagery and range
measurements (the measurements are corrupted with Gaussian noise, according
to the measurement noise covariance ¥, from equation (7)). Note that we do
not solve the problem of data association in the simulation and assume it is
given.

In this work, we use discretization of the action space, a set of controls
are planned offline in order to examine a given trajectory and investigate the
evolution of the objective function along the trajectory.

We examine two predefined trajectories in order to validate the assumption
in this work: taking into account landmark view directions, will have a great
influence on the objective function Jy(ug.x+r—1), and therefore on trajectory
selection. The objective function that were defined for trajectory examination

is Jp = tmce(A,;i ), i.e. square root of covariance trace in the end of the
trajectory.

10.1 Scenario

We check two predefined trajectories that differ in the landmarks view directions
and their lengths, but reaching the same target. The trajectories are shown in
figure 8.

Planning occurs at time k. By that time, the robot performs SLAM for
estimating robot pose and mapping the environment, by observing landmarks in
its field of view and mapping them. In each landmark observation, it determines
whether the landmark is recognized, using current and preserved LOS’s (as
described in sections 8 and 9).

Now (at planning time k) it has two candidate trajectories to choose from.
In each planing step, the robot determines about the expected landmarks obser-
vations, whether the landmarks are recognized. The decision about landmark
re-identification (when applying viewpoint aware BSP), is done using examined
LOS, preserved LOS’s from SLAM part and expected LOS’s of planning part
until examination point (as explained in figure 4, section 8.1).

The trajectories differ in their path length, and view directions of the land-
marks:

Trajectory 1 has shorter path, but the landmarks view directions in planning
part, are completely different than in SLAM part.
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Trajectory 2 has longer path, but the landmarks view directions in planning
part, are similar to landmarks view directions in SLAM part.
We expect the version of simulation which contains the existing BSP ap-
proach with ideal landmark identification, to prefer Trajectory 1 which is shorter.
When applying the new viewpoint aware BSP approach, which takes into ac-
count landmark’s view direction in order to recognize the landmark, we expect
to prefer Trajectory 2, though it is longer, similarly to what we expect in reality.
In order to compare between the trajectories, we calculate the position co-
variance along the trajectories.
We will first examine an environment which includes only one landmark, and
then proceed to examine the results in an environment which includes multiple

landmarks.
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Figure 8: Trajectories definition.
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In the figures below we will describe the trajectories that were examined.
We shall use the following different marks in the figures and their represen-
tation:
Blue line - true trajectory of the robot
Magenta line - estimated trajectory of the robot, for Trajectory 1
Magenta ellipse - position covariance in Trajectory 1
Cyan line - estimated trajectory of the robot, for Trajectory 2
Cyan ellipse - position covariance in Trajectory 2
- points in the trajectory in which the landmark is identified

10.2 Results examination - one landmark

In this section, we will examine the results in an environment which includes
one landmark.

In order to make a comparison, we examine three cases: SLAM , SLAM +
Planning when assuming ideal landmark identification, SLAM + Planning when
modeling landmark identification.

10.2.1 SLAM

This case represents the results we expect to have in practice from a SLAM sys-
tem. In this case, the trajectory of the robot is calculated in SLAM mode along
the trajectory (the robot does not perform planning). Meaning, at each step
k, the robot performs SLAM in order to estimate it’s state X; and covariance
A;l, as shown in section 7.1, equation (9).

Figure 9 shows the estimated trajectories X} in 2D plane (which is calculated
according to equation (11)), with the ellipses indicating the covariance A '
(from equation (9)). Figure 10 depicts the square root of the covariance A, '
trace, for the two trajectories.

As seen, in Trajectory 1, in which the path is going through new view direc-
tions of the landmark, the landmark is not identified, as expected to happen in
real world (sections 5.1, 8.1). Therefore, the covariance keeps growing until the
end point and is not reduced.

In contrast, in Trajectory 2, the path is going through similar landmark’s
view directions, to the view directions that the landmark was observed in the
beginning of the trajectory. Therefore the landmark is identified (as can be seen
by the green triangles in figure 9) and the covariance drops at the identification
point.

This is compatible to what was explained in figure 3, section 8.1.
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Figure 9: One landmark, SLAM.
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Figure 10: One landmark, SLAM, square root of covariance trace.

10.2.2 SLAM + Planning, Assuming ideal landmark identification

In this case, the robot performs SLAM until planning start point. From planning
start point, the robot performs planning, i.e. it needs to choose a trajectory
from amongst predefined trajectories, which we assume that are given. The
trajectories can be also calculated online.

In this part, we do not apply our contribution of taking into account the
landmark’s view direction in the planning part. Landmark identification is
defined only by distance to the landmark, when it is in the field of view of the
camera. In other words, this part represents the existing BSP approach which
assumes ideal landmark identification.

Figure 11 describes the estimated trajectories in 2D plane, the ellipses indi-
cates the position covariance. In the SLAM part of the trajectory, the estimated
trajectory is a plot of X} which is calculated according to equation (11) and
the covariance is A, ' from equation (9). In the planning part the estimated
trajectory is a plot of X}, and the covariance is A,;il which are described in
equation (17). Figure 12 describes the square root of covariance trace for the
two trajectories, where the covariance is A,;l in SLAM and A,;il in planning.

It is shown that both in Trajectory 1 and Trajectory 2, the landmark is
identified in a certain point of the path and thus the covariance decreases. This
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is in contrary to what happens in SLAM and real world (section 10.2.1 figures 9
and 10), in which the landmark is not identified when the path of the trajectory
goes threw a completely different view directions, as in trajectory 1.

The incorrect landmark identification leads to incorrect drop of the covari-
ance, which is inconsistent with reality, and finally to an incorrect decision about
the trajectory selection. Therefore it is incorrectly deduced that Trajectory 1,
which has a shorter path and assumed to has lower covariance, is preferred.
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Figure 11: One landmark, Slam+Planning , Without modeling landmark re-
identification. .
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Figure 12: One landmark, Slam-Planning, square root of covariance trace,
Without modeling landmark re-identification.

10.2.3 SLAM + Planning, Modeling landmark identification

In this case, the robot performs SLAM until planning start point in which
the trajectories are separated, from planning start point, the robot performs
planning, according to the predefined trajectory.

In this part, we apply our contribution of taking into account landmark’s
view direction in the planning part (viewpoint aware BSP approach). The
landmark identification is defined by distance to the landmark, and in addition,
the landmark will be identified in a condition that the landmark is being viewed
from a similar view direction as explained in sections 8.1 and 9.

Figure 13 describes the trajectory in 2D plane; the ellipses indicates the
position covariance. Figure 14 describes the square root of covariance trace for
the two trajectories.

In the SLAM part the estimated trajectory is a plot of X’ which is calculated
according to equation (11) and the covariance is A, ' from equation (9). In the
planning part the estimated trajectory is a plot of X, and the covariance is
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A,;}l which are described in equation (17).

It is shown that in Trajectory 1, in which the path goes through a completely
different path than in the SLAM part, the landmark is not recognized and the
covariance continues to evolve. In Trajectory 2 which goes through a path in
which the landmark’s view directions are similar to the view directions that the
landmark was observed in the SLAM part, the landmark is being recognized
and the covariance drops to a lower level, until the point where the landmark
can not be recognized anymore - from that point, the covariance evolves again.

When using our viewpoint aware BSP approach, the results fit the results
of the SLAM part (section 10.2.1, figures 9 and 10), and therefore model better
the reality. This is also aligned with the explanation given using figure 3 from
section 8.1, and figure 1 from section 5.1.

Here, the trajectory that is identified as a better trajectory is Trajectory 2
(as in SLAM part, section 10.2.1), which has lower covariance but a longer path
compared to Trajectory 1. This is in contrast to the results without applying
view directions (section 10.2.2).
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Figure 13: One landmark, Slam+Planning, With modeling landmark re-
identifications.
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Figure 14: One landmark, Slam-Planning, square root of covariance trace,
With modeling landmark re-identification.

10.2.4 Results conclusions - one landmark

We divided the results into three parts: SLAM , SLAM + Planning when assum-
ing ideal landmark identification, SLAM + Planning when modeling landmark
re-identification. Square root of covariance trace of the different parts are sum-
marized in table 1.

In the SLAM part, in which the robot does not perform planning, and
represents the reality, the landmark is re-identified only in trajectory 2 where
the path goes through a similar view directions of the landmark. Trajectory 2
is preferred because it has lower covariance though it is longer.

In the SLAM+Planning part, when assuming ideal landmark iden-
tification, the landmark is re-identified incorrectly in trajectory 1, which goes
through a path with completely different view directions of the landmark, and
cause an incorrect drop of the covariance. Trajectory 1 is incorrectly preferred,
because it has shorter path, and assumed to has lower covariance. The results
in this part are not consistent with SLAM part and reality.

In the SLAM+Planning part, when modeling landmark re-identification,
the landmark is re-identified only in trajectory 2, in which the path goes through
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Ideal identification | Modeling re-identification

Trajectory 1 27.54 92.34
Trajectory 2 49.72 49.72

Table 1: Square root of covariance trace - Summary

a similar view directions of the landmark, similarly to SLAM and reality. Tra-
jectory 2 is preferred because it has lower covariance though it is longer. The
results in this part are consistent with SLAM part and reality.

We note that the covariance was calculated in different ways in SLAM and
Planning part according to implementation convenience. Therefore the form
of the covariance trace is slightly different, but the tendency is similar and is
satisfying for proving the desirable issues.

10.3 Results examination - multiple landmarks

In this section, we will examine the results in an environment which includes
multiple landmarks.

As in previous section 10.2, in order to make a comparison, we examine three
cases: SLAM |, SLAM + Planning when assuming ideal landmark identification,
SLAM + Planning when modeling landmark re-identification.

The results are compatible with the results that were presented in section
10.2 using an environment that includes one landmark. As can be seen:

In SLAM part (figures 15 and 16) in which the robot does not perform plan-
ning and represents the reality, the landmarks are re-identified only in trajectory
2 in which the path goes through a similar view directions of the landmarks.
Trajectory 2 is preferred because it has lower covariance though it is longer.

In the SLAM+Planning part, when assuming ideal landmark identification
(figures 17 and 18) the landmarks are re-identified incorrectly in trajectory 1,
which goes through a path with completely different view directions of the land-
marks, and cause an incorrect drop of the covariance. Trajectory 1 is incorrectly
preferred, because it has shorter path, and assumed to has lower covariance. The
results in this part are not consistent with SLAM part and reality.

In the SLAM+Planning part, when modeling landmark re-identification,
the landmarks are re-identified only in trajectory 2 in which the path goes
through a similar view directions of the landmarks, similarly to SLAM and
reality. Trajectory 2 is preferred because it has lower covariance though it is
longer. The results in this part are consistent with SLAM part and reality.
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Figure 15: Multiple landmarks, SLAM.
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11 Conclusions

In this work we investigated the problem of autonomous navigation in unknown
or uncertain environments. We considered the problem of autonomously reach-
ing a goal with highest estimation accuracy and possibly other objectives.

We used simultaneous localization and mapping (SLAM) in order to infer
the state of the robot and map the environment, and used belief space planning
approach (BSP) in order to plan a suitable control strategy to accomplish a
given task, while relying on information provided by the inference (estimation)
process. The observations and dynamics are stochastic, therefore the inferred
state cannot be assumed perfectly known, and planning has to take into account
different sources of uncertainty.

While existing BSP approaches consider perfect ability to re-identify an ob-
ject, in this work we relax this assumption, model object re-identification and
develop a viewpoint aware BSP approach, while considering both SLAM and
planning aspects. That is because the assumption about ideal object identifi-
cation is far from real world, as the ability to re-identify a previously observed
object can be challenging, and depends a lot on the view direction in which the
object is observed.

While studying the working concept of computer vision algorithms and in
order to model object re-identification, we defined the cone of identification,
in which, change in object’s view direction, still makes the identification of an
object possible. We defined a new binary random variable which defines whether
a measurement is being acquired or not, and developed the BSP equations while
taking into account object re-identification from different view directions, and
the fact that the event of acquiring a measurement is unknown on planning
time.

We examined the effects of the new addition using simulation, considering
the problem of autonomously reaching a goal with highest estimation accuracy
in a GPS-deprived unknown environment. We deduced as expected, that using
the existing BSP approach which assuming ideal object identification, may lead
to incounsistent uncertainty prediction with reality (inference), incorrect planning
and therefore incorrect path choosing. When we modeled object re-identification
and used a viewpoint aware BSP approach, the results were consistent with
reality.

We conclude that correct identification of landmarks is critical, and incorrect
identification may lead to catastrophic results.

The BSP approach that was developed in this work, enables the usage of
belief space planning while considering realistic object identification, when it is
being viewed from different view directions, and will lead to much more realistic
planning and path choosing.
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12 Appendix - Complete Derivation of SLAM Equa-
tions

Mathematical development of equation (2) will lead to:
P(Xk|Zo:ks wo:k—1) = p(Xk|uok—1, Zok—1, Z)- (41)
Using Bayes rule, we can write equation (41) as:

P( 25| Xy woik—1, Zoke—1)- P(Xg|wo:k—1, Zo:k—1)

42
P(Zk|uo:k—1, Zo:k—1) (42)
Applying Markov assumption we get:
Zk| X?) p(Xp|uok—1, Zo-k—
p(Zk| k) P(Xk|uok—1, Zo:k 1). (43)

P(Zk|wo:k—1, Zo:k—1)

Where X are involved variables (X C X}) in individual measurement mod-
els that correspond to observations Z;. We assume that the term p(Zx |uo.x—1, Zo:k—1)
is uninformative, therefore we can write equation (43) as:

M- P(Zk| XE)- p(Xk|wo:k—1, Zo:k—1), (44)

while 7, is a normalization constant.

Note that the measurements are given until time ¢;_1, therefore the world
is mapped until time t5_; : Ly = Li_1, and, Xy = {Xp_1, 2} . Using this fact
and the chain rule on equation (44) we get:

e P(Zk| XE)- plak|wok—1, Zo:k—1, Xk—1)- P(Xk—1|w0:5-1, Zo:k—1)- (45)

Using Markov assumption on equation (45) we get:

e P(Zk| XE)- p(@r|ug—1, 1) p(Xp—1|v0:1—2, Zo:k—1)- (46)
The derivation proceeds in a recursive manner as follows:

k

=..=np(x,) Hp(fci|ui—1,mi—l)'P(Zi|Xio)’ (47)
i=1

while 1 is a normalization constant, p(xg) is the prior information on o,
p(wo) ~ N (o, Zo).

The final result of the mathematical development of the probability distri-
bution function from equation (2) is:

P(Xk| Zok work—1) = n-p(o) - [ | |p(ilwioa, wia) [ p(zijlai )| - (48)

i=1 j=1
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It is received when expanding the term p(Z;|X?) in equation (47) for all
measurements available in time ¢;.
n; is the number of observed landmarks at time ;.

In order to estimate X} we use Maximum a posteriori (MAP) estimate:

X} =arg max p(Xg|Zo.k, vo:k—1)- (49)
k
For Gaussian distributions, involves solving a nonlinear least squares prob-
lem:

X :arngax P(Xk| Zo:k» vo:k—1) :arngin —In (p(Xk| Zo:kes wo:k—1) - (50)
k k

We use the Mahalanobis norm, ||z — ul|% = (z — p)" ="' (z — ) to write

again equation (50):

Xii = J(Xy) =arg min {||x0 — o3, +

k

. (51)
]}

This equation is solved using Gauss-Newton optimization, which includes
the following steps:

+ 30 s = f @imn,win)lly, + 2 120 — h(@i 1))
7 J

1. Linearization by first order Taylor expansion

2. Reorganize equation to get a term in the form of A - AXj — b
3. Solve for AX},

4. Update linearization point X}, < X, + AXy

Linearization of equation (51) by first order Taylor expansion leads to:

J(Xy + AX}y) ~arg min {||Ax0H220 +
Xe+AXp

+Z {H@ —f@icr,uim1) +1-Axy =V, f- A33¢—1||22W

B

+ Z ||Zi,j — h(.i‘i,lj) — Vg, - Aml\ 22;’ . (52)
J

with Jacobians:
of

O0zi_1

vwi—lf =

Ti—1,Ui—1 (53)
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oh |
8.Ti Zisli
In the next step, reorganize equation (52) in order to get a term in the form
_ o112
of J(Xi + AXy) =~ HA AXy — bH and calculate optimal increment AX, by

solving the linear equation A - AXj = b.

Update linearization point by X, « X, + AX} and repeat process until
convergence.

Vg h = (54)
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