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Nomenclature

b = accelerometer bias

d = gyro drift

H = measurement matrix

K = Kalman filter gain matrix

Q = process noise covariance matrix

R = measurement noise covariance matrix

R̂C2
C1

= image-based estimation of rotational motion

TA
B = transformation matrix from system A to system B

t̂1→2 = image-based estimation of translational motion

v = measurement noise vector

w = process noise vector

X = state vector

γ = scale constant

∆P = position error vector

∆V = velocity error vector

∆Ψ = Euler angles error vector

∆t = time step

Φ = roll angle

Φc = continuous system matrix

Φd = discrete system matrix

µ = mean

Θ = pitch angle

Ψ = yaw angle

Ψ = Euler angles vector

σ = standard deviation

Subscripts

B = body coordinate system

C = camera coordinate system

E = Earth-fixed coordinate system

L = local-level, local-north coordinate system

Nav = computation based on the navigation system

True = true value
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I. Introduction

In the first part of this work,1 we suggested a method for mosaic-based motion estimation

utilizing a scanning camera and a real-time mosaic construction. This paper focuses on fusion

of this mosaic-based motion estimation with a standard navigation system of an airborne

platform. The proposed method for mosaic-aided navigation does not rely on a digital terrain

map (DTM) or the Global Positioning System (GPS); nor does it require geo-referencing of

the mosaic image.

Vision-based algorithms use the information extracted from an image registration pro-

cess, along with information available from other sensors, to improve the estimation of the

platform’s states and navigation parameters. For example, Ref. 4 proposed integrating

the velocity-to-height vision-based estimation with additional on-board sensors; Ref. 5 ap-

plied the subspace-constraint approach6 to partially estimate an airborne platform’s states,

based on measurements from an image registration process injected into an implicit extended

Kalman filter (EKF); Ref. 7, showed that an EKF-based prediction allows better image regis-

tration, which, in turn, improves motion estimation; and Ref. 8 utilized epipolar constraints

to aid the inertial navigation of a ground vehicle. All the preceding methods assumed that

no a-priori information is available during the mission; we also adopt this assumption in the

current work.

Various methods for improving navigation by fusing inertial information, vision infor-

mation and observations from external sources have been proposed. Ref. 9 assumed that

altimeter measurements are used for scaling the imaging sensors in order to improve state

estimation during the landing phase of a space probe. Refs. 10 and 11 showed that absolute

pose and motion estimation is possible when assuming that a DTM is available.

Another fusion approach is map-based navigation, which assumes that a map of the

operational area is given and that the vehicle navigates by fusing inertial measurements,

images of the environment and a map. In this context, Ref. 12 proposed a 2-phase position

estimation: a) successive image registration and b) registration of the current image with

a stored reference image. Ref. 13, 14 proposed vision-based underwater navigation for an

unmanned underwater vehicle that relied on a previously-constructed mosaic image.

In contrast to the above, the vision-based navigation-aiding methods developed herein

do not relay on any a-priori information; thus, the map of the overflown environment is

not available but rather has to be constructed during the mission (the mosaic construction

method implemented in this work is discussed in Part I of this work1).

Constructing a representation of environment while simultaneously enhancing an exist-

ing navigation system is known as Simultaneous Localization and Mapping (SLAM) (see

e. g. Ref. 15 and references therein). The general approach for solving the SLAM problem
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is to augment the platform’s state vector with parameters that describe the observed envi-

ronment (e. g. features locations). However, the most conspicuous drawback of SLAM is

computational load, which does not allow real-time performance once the augmented state

has reached some critical size. Another difficulty is feature initialization. In this work, we

assume that the mosaic image construction is an independent process, to be utilized for

improving the performance of an existing navigation system. Therefore, our architecture

alleviates the computational load required by SLAM. Moreover, we show how to use the

camera scanning procedure and the mosaic construction process in order to improve vision-

based navigation in difficult scenarios (narrow-FOV cameras, low-texture scenes). To the

best of our knowledge, the latter aspect of mosaic-aided navigation has not been considered

thus far.

The rest of this paper is organized as follows: Section II provides a measurement model

development for fusing mosaic-based motion estimations with a standard navigation sys-

tem. Section III elaborates the sensor-fusion algorithms. Section IV presents a performance

evaluation of the proposed method for mosaic-aided navigation based on extensive experi-

mentation; Section V concludes the discussion.

II. Fusion of Image-Based Relative Motion Estimation with a

Navigation System

Throughout this paper, the following coordinate systems are assumed (cf. Ref.1): E is an

Earth-fixed inertial reference frame, also known as an Earth-centered, Earth-fixed (ECEF)

system; L is a local-level, local-north (LLLN) system, also known as a north-east-down

(NED) system; B and C are body-fixed and camera-fixed reference frames, respectively.

We assume that the relative motion parameters between each two image time instances,

t = t1 and t=t2, were already extracted by the image processing module, regardless of

whether the calculations had been performed by using the fundamental matrix or the ho-

mography matrix (cf. Ref. 1). Thus, the camera relative rotation matrix, RC2
C1

, transforming

from the camera axes at time t2 to the camera axes at time t1, is known. In addition, the

relative translation, tC2
1→2, is known up to some scale, γ. In the following discussion, we de-

velop a measurement model, which relates the image-based estimated relative motion with

the accumulating navigation errors of a standard inertial navigation system (INS).

Under ideal conditions, viz. when there are no navigation errors and tC2
1→2, RC2

C1
are

perfectly estimated, the following can be written:

PosL2
True(t2)−PosL2

True(t1) = γTC2
L2,T ruet

C2
1→2,T rue (1a)
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TC2
C1,T rue = RC2

C1,T rue (1b)

where TC2
L2

is the directional cosines matrix (DCM) transforming from C to LLLN at the

time instance t = t2; TC2
C1

is the DCM transforming from C at t = t2 to C at t = t1; and

PosL(t2)(t1) is the platform’s position at t = t1 expressed in the LLLN system at t = t2, so

that

PosL(t2)(t1) = T
L(t1)
L(t2) PosL(t1)(t1) (2)

The subscript (·)True in Eq. (1) indicates ideal conditions as defined above.

The DCM TC2
L2

is required since the extracted translation tC2
1→2 is given in the camera

reference frame, while the left side of Eq. (1a) is expressed in the LLLN system.

Next, we will develop the measurement equations considering the navigation errors and

the imperfect estimation of the relative motion. The analysis is performed based on the

following state vector definition:

X =
[
∆PT ∆VT ∆ΨT dT bT

]T

(3)

where ∆P ∈ R3, ∆V ∈ R3, ∆Ψ ∈ SO(3) are the position, velocity and attitude errors,

respectively, and (d,b) is the parametrization of errors in the inertial sensor measurements:

d ∈ R3 is the gyro drift, and b ∈ R3 is the accelerometer bias. The first 9 components of X

are given in LLLN coordinates, while the last 6 are written in a body-fixed reference frame.

A. Translation Measurement Equation

In an ideal situation, with no navigation and image processing errors, the two sides of Eq. (1a)

constitute parallel vectors. Thus, this equation yields the following constraint:

[
PosL2

True(t2)−PosL2
True(t1)

]× TC2
L2,T ruet

C2
1→2,T rue = 0 (4)

In reality, there are navigation errors that increase with time (Appendix B). Moreover,

the estimated camera matrix contains errors due to image noise. Thus, Eq. (4) no longer

holds. Denoting by Nav parameters that are taken from the navigation data and by t̂
C2

1→2

the actual estimated translation vector obtained from the image processing module, Eq. (4)

becomes [
PosL2

Nav(t2)−PosL2
Nav(t1)

]× TC2
L2,Nav t̂

C2

1→2 = ztranslation (5)

where ztranslation denotes the residual measurement vector.

Taking into account the fact that PosL2
Nav(.) = PosL2

True(.) + ∆PL2(.) and subtracting (4)
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from (5) results in

[PosTrue(t2)−PosTrue(t1) + ∆P(t2)−∆P(t1)]
L2 × TC2

L2,Navt̂
C2

1→2 −
[PosTrue(t2)−PosTrue(t1)]

L2 × TC2
L2,T ruet

C2
1→2,T rue = ztranslation (6)

or

[∆P(t2)−∆P(t1)]
L2 × TC2

L2,Nav t̂
C2

1→2 + v = ztranslation (7)

where v = [PosTrue(t2)−PosTrue(t1)]
L2 ×

[
TC2

L2,Navt̂
C2

1→2 − TC2
L2,T ruet

C2
1→2,T rue

]
. The vector v

is due to imperfect translation measurements and navigation errors. One may verify that in

ideal conditions this term is nullified.

According to Appendix B (Eq. (56)), the inertial position error for a sufficiently small

∆t = t2 − t1 or for a straight and level flight is given by (the Nav subscript is omitted for

simplicity from here on; thus, all parameters are computed based on the navigation system

data, unless otherwise specified):

∆P(t2) = TL1
L2

[
−1

6
As(t1)T

B1
L1

d · (∆t)3

+
1

2

[
As(t1)∆Ψ(t1) + TB1

L1
b
]
(∆t)2 + ∆V(t1)∆t + ∆P(t1)

]
(8)

Note that a transformation matrix, TL1
L2

, was added to express the position error at t = t2 in

LLLN coordinates.

Substituting Eq. (8) into Eq. (7), canceling position errors at t = t1 and denoting t̂
L2

1→2 ≡
TC2

L2,Navt̂
C2

1→2 yields

{
TL1

L2

[
−1

6
As(t1)T

B1
L1

d · (∆t)3 +
1

2

[
As(t1)∆Ψ(t1) + TB1

L1
b
]
(∆t)2 + ∆V(t1)∆t

]}
× t̂

L2

1→2

+v = ztranslation (9)

We shall now use the wedge operator, defined for some vector ξ = [ξ1, ξ2, ξ3]
T as

ξ∧ =




0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0


 (10)
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Thus, Eq. (9) becomes

[
TL1

L2

[
−1

6
As(t1)T

B1
L1

d · (∆t)3 +
1

2

[
As(t1)∆Ψ(t1) + TB1

L1
b
]
(∆t)2 + ∆V(t1)∆t

]]∧
t̂
L2

1→2

+v = ztranslation (11)

One can see from Eq. (11) that the translation measurement equation is of the form ztranslation =

H trX + v, where

H tr =
[
03×3 H tr

∆V H tr
∆Ψ H tr

d H tr
b

]
(12)

After some algebraic manipulations (cf. Appendix A), the submatrices of H tr can be

rendered into

H tr
∆V = −

[
t̂
L2

1→2

]∧
TL1

L2
∆t (13a)

H tr
∆Ψ = −1

2

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)(∆t)2 (13b)

Htr
d =

1

6

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)T

B1
L1

(∆t)3 (13c)

Htr
b = −1

2

[
t̂
L2

1→2

]∧
TL1

L2
TB1

L1
(∆t)2 (13d)

B. Rotation Measurement Equation

Recall Eq. (1b), written under the assumption of ideal conditions: TC2
C1,T rue = RC2

C1,T rue.

When taking into account navigation errors and errors in the estimated rotation matrix, this

equation no longer holds. Instead, we define a residual error angle vector, zRotation. Under

the assumption of small angles, this vector can be written as

I − z∧rotation,A = TC2
C1,Nav

[
R̂C2

C1

]T

(14)

Here TC2
C1,Nav denotes the DCM transforming from C at t = t1 to C at t = t2, computed

by the navigation system of the platform. This matrix differs from the true DCM due to

platform navigation errors. The matrix R̂C2
C1

is the estimated rotation matrix. One can verify

that under ideal conditions, TC2
C1,T rue = RC2

C1,T rue, and thus the rotation error angle zRotation

is equal to zero. We omit the subscript (Nav) for simplicity, and write simply TC2
C1

.

In general, TC2
C1

can be written as follows:

TC2
C1

= TB1
C1

TL1
B1

TE
L1︸ ︷︷ ︸

T E
C1

TL2
E TB2

L2
TC2

B2︸ ︷︷ ︸
T

C2
E

(15)
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where the matrices TB1
C1

and TC2
B2

are assumed to be known precisely – or at least with much

more precision compared to the developing attitude errors. Thus, TC
B = TC

B,True. The errors

in the ECEF to LLLN rotation matrix are assumed to be negligible, since they depend on

the position errors, which are small relative to Earth’s radius. Thus, TE
L = TE

L,True.

In addition to position errors, the platform navigation system tends to develop attitude

errors. These errors do not allow a perfect estimation of the DCM transforming from LLLN

to B, since the estimated LLLN system is erroneous. Thus, there are two LLLN systems:

The true LLLN system, denoted by L, and the platform’s estimation of the LLLN system,

denoted by LC . Taking this into consideration, the platform’s believed DCM, TL
B , can be

written as

TL
B = TLC

B TL
LC

(16)

where TL
LC

is the DCM transforming between the two LLLN systems. Assuming small

attitude errors, we write ΨNav = ΨTrue + ∆Ψ to obtain

TL
LC

= I −∆Ψ∧ (17)

Based on Eq. (54) from Appendix B, for a sufficiently small t− t0 or for a straight and level

flight, one can use the approximation

∆Ψ(t) = −TB
L (t0)d∆t + ∆Ψ(t0) (18)

Under this approximation, the DCM transforming from L to LC assumes the following form:

TL
LC

(t1) = I −∆Ψ∧(t1) (19a)

TL
LC

(t2) = I − [
∆Ψ(t1)− TB1

L1
d∆t

]∧
(19b)

Thus, the matrices TL1
B1

and TB2
L2

in Eq. (15) can be written as

TL1
B1

= T
LC1
B1

[I −∆Ψ∧(t1)] (20a)

TB2
L2

=
[
I +

(
∆Ψ(t1)− TB1

L1
d∆t

)∧]
TB2

LC2
(20b)

Substituting Eqs. (20) into Eq. (15) yields

TC2
C1

= TB1
C1

T
LC1
B1

{
TE

L1
TL2

E

[
I +

(
∆Ψ(t1)− TB1

L1
d∆t

)∧]−∆Ψ∧(t1)TE
L1

TL2
E

}
TB2

LC2
TC2

B2

+ O
(
∆Ψ2(t1), ∆Ψ(t1)d

)
(21)

After ignoring second-order terms and carrying out some additional algebraic manipulations
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we get

TC2
C1

= TB1
C1

T
LC1
B1

TE
L1

TL2
E TB2

LC2
TC2

B2

+ TB1
C1

T
LC1
B1

[
TE

L1
TL2

E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧ −∆Ψ∧(t1)TE
L1

TL2
E

]
TB2

LC2
TC2

B2
(22)

Note that TB1
C1

T
LC1
B1

TE
L1

TL2
E TB2

LC2
TC2

B2
is the nominal value of TC2

C1,T rue and thus

TB1
C1

T
LC1
B1

TE
L1

TL2
E TB2

LC2
TC2

B2
= RC2

C1,T rue (23)

As was mentioned before, the rotation matrix that was estimated by the image processing

module differs from the true matrix. Let TRErr
be the DCM transforming between the true

rotation matrix and the estimated one: R̂C2
C1

= TRErr
RC2

C1,T rue.

Multiplying Eq. (22) by
[
R̂C2

C1

]T

from the right and using Eq. (23) yields

TC2
C1

[
R̂C2

C1

]T

=
{

I + TB1
C1

T
LC1
B1

[
TE

L1
TL2

E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧

− ∆Ψ∧(t1)TE
L1

TL2
E

]
TB2

LC2
TC2

B2
RC2

C1,T rue

}
T T

Rerr
(24)

Substituting Eq. (24) into Eq. (14) yields

z∧rotation =
[
I − T T

Rerr

]
+ TB1

C1
T

LC1
B1

[
−TE

L1
TL2

E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧

+∆Ψ∧(t1)TE
L1

TL2
E

]
TB2

LC2
TC2

B2

[
R̂C2

C1

]T

(25)

Assuming small estimation rotation errors vR, one can write T T
Rerr

= I − v∧R. Thus, the

preceding equation becomes

z∧rotation = v∧R + TB1
C1

T
LC1
B1

[
−TE

L1
TL2

E

(
∆Ψ(t1)− TB1

L1
d∆t

)∧

+∆Ψ∧(t1)TE
L1

TL2
E

]
TB2

LC2
TC2

B2

[
R̂C2

C1

]T

(26)

Using Eq. (15), one can write the following two relations:

TB1
C1

T
LC1
B1

TE
L1

TL2
E = R̂C2

C1
TB2

C2
T

LC2
B2

(27a)

TB1
C1

T
LC1
B1

= R̂C2
C1

TB2
C2

T
LC2
B2

TE
L2

TL1
E (27b)
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Substituting Eqs. (27) into Eq. (26) entails

z∧rotation = −R̂C2
C1

TB2
C2

T
LC2
B2

(
∆Ψ(t1)− TB1

L1
d∆t

)∧
TB2

LC2
TC2

B2

[
R̂C2

C1

]T

+ R̂C2
C1

TB2
C2

T
LC2
B2

TE
L2

TL1
E ∆Ψ∧(t1)TE

L1
TL2

E TB2
LC2

TC2
B2

[
R̂C2

C1

]T

+ v∧R (28)

Using the fact that for any matrix Λ and any vector ξ, Λξ∧ΛT = (Λξ)∧, the above expression

transforms into

z∧rotation =
[
R̂C2

C1
TB2

C2
T

LC2
B2

TE
L2

TL1
E ∆Ψ(t1)

]∧
−

[
R̂C2

C1
TB2

C2
T

LC2
B2

(
∆Ψ(t1)− TB1

L1
d∆t

)]∧
+ v∧R

(29)

Thus

zrotation = R1−2T
B2
C2

T
LC2
B2

(
TE

L2
TL1

E − I
)
∆Ψ(t1) + R1−2T

B2
C2

T
LC2
B2

TB1
L1

d∆t + vR (30)

One can see that Eq. (30) is of the form zrotation = HrotX + vR, where

Hrot =
[
03×3 03×3 Hrot

∆Ψ Hrot
d 03×3

]
(31a)

Hrot
∆Ψ = R̂C2

C1
TB2

C2
T

LC2
B2

(
TE

L2
TL1

E − I
)

(31b)

Hrot
d = R̂C2

C1
TB2

C2
T

LC2
B2

TB1
L1

∆t (31c)

III. Mosaic-Based Aiding and Sensor Fusion Algorithms

A. Main Constituents

The mosaic-based navigation aiding system consists of three main modules (cf. Figure 1):

A navigation module, a camera scanning module and an image processing module.

The navigation phase consists of the following steps: (a) Trajectory generation; (b) veloc-

ity and angular increments extraction from the created trajectory; (c) inertial measurement

unit (IMU) error definition and contamination of pure increments by noise; and (d) strap-

down calculations. The strapdown mechanism provides, at each time step, the calculated

position, velocity and attitude of the platform. In parallel to the strapdown calculations, at

a much slower rate, Kalman filter calculations are performed based on the available measure-

ments. At the end of each filter cycle, the strapdown output is updated with the estimated

state vector of the filter.
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Figure 1. Overview of the system concept.

As described in Ref. 1, the camera scanning module provides camera angle commands

that yield a continuous scan, in which each image overlaps with a preceding image, as well

as with an image from a previous scan stripe (see Figure 4 in Ref. 1).

The image processing algorithm performs relative motion estimation based on previous

and current images. The previous image can be either the mosaic image, or an image

that was last captured. The algorithm is also capable of calculating ideal relative motion

measurements based on the platform trajectory, without actually using any real images.

These ideal pseudo-measurements were used as baseline for evaluating the best possible

performance of the proposed method.

B. Sensor Fusion

The image-based motion estimation is fused with INS data using a Kalman Filter (KF)

applied to the measurement model developed in Section II. The estimated state vector

X̂ is used for correcting the navigation solution from the INS and for correcting the IMU

measurements using the estimated bias and drift values (cf. Figure 1). After each such

update step, the estimated state vector is nullified, i. e., the a-posteriori estimation at some

time instant tk, X̂k|k, is set to 0.

Next, we provide some details on the Kalman Filter equations implemented in this work.

The propagation step involves computation of an a-priori covariance matrix Pk+1|k according

to

Pk+1|k = Φd(k + 1, k)Pk|kΦ
T
d (k + 1, k) + Qk (32)

where Φd(k + 1, k), Pk|k, Qk are the process discrete system matrix, a-posteriori covariance

11 of 35



matrix, and the process noise covariance matrix, respectively. The discrete system matrix

Φd is computed based on the continuous system matrix Φc, defined in Eq. (52), using

Φd = eΦc∆t (33)

where Φc is evaluated based on data taken from the navigation system, and ∆t is the prop-

agation step time interval. The process noise covariance Qk is a constant matrix, whose

entries are determined by filter tuning.

Note that the propagation step does not include propagation of the state vector based

on the a-posteriori estimation of the state vector from the previous time step, since, as

mentioned above, X̂k|k is nullified immediately after being computed. Thus, X̂k+1|k = 0.

After performing the propagation step, an update step is engaged given that the motion

estimation (tC2
1→2, R

C2
C1

) is received from the image processing module. First, the Kalman

filter gain matrix is computed according to

Kk+1 = Pk+1|kH
T
k+1

[
Hk+1Pk+1|kH

T
k+1 + Rk+1

]−1
(34)

where

Hk+1 =


H tr

k+1

Hrot
k+1


 (35)

Here H tr, Hrot are the translation and rotation measurements matrices defined in Eqs. (12)

and (31), respectively. The matrix Rk+1 in Eq. (34) is a measurement noise covariance

matrix, which is of the following block-diagonal form

Rk+1 =


Rtr

k+1 03×3

03×3 Rrot
k+1


 (36)

where Rtr, Rrot are the translation and rotation measurements noise covariance matrices,

respectively. While Rrot is a constant matrix, an adaptive translation measurement noise

covariance matrix Rtr is assumed due to Eq. (7):

Rtr = − [
PosL2

Nav(t2)−PosL2
Nav(t1)

]∧
Rest

[
PosL2

Nav(t2)−PosL2
Nav(t1)

]∧
(37)

where Rest is a 3× 3 tuning matrix that represents the level of accuracy in the vision-based

estimation of the translation direction. For example, in the experiments with real imagery

presented in Section IV-C, it was assumed to be close to I3×3.

Once the Kalman Filter gain matrix is available, a-posteriori values of the state vector
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and covariance matrix are computed as

X̂k+1|k+1 = Kk+1Zk+1 (38)

Pk+1|k+1 = [I −Kk+1Hk+1] Pk+1|k [I −Kk+1Hk+1]
T + Kk+1Rk+1K

T
k+1 (39)

where

Z ≡

ztranslation

zrotation


 (40)

and ztranslation, zrotation are the residual measurements, computed according to Eqs. (5) and

(14), respectively. The equation for the a-posteriori state vector, given in Eq. (38), is

a degeneration of the standard equation X̂k+1|k+1 = X̂k+1|k + Kk+1

(
Zk+1 −Hk+1X̂k+1|k

)
,

since X̂k+1|k = 0.

The imperfectness of the image-based relative motion estimation is projected onto the

unobservable states, resulting in degraded estimation of these states. In order to reduce this

undesired phenomenon, a fictitious ideal velocity measurement is used in addition to the

relative motion measurements, so that

(VL
true)

T ∆V = 0, (41)

implying nullification of the velocity error along the flight heading. The term VL
true refers

to the true value of the platform velocity in the LLLN system. Since it is unknown, the

platform velocity VL taken from the navigation system, is used instead.

A Kalman filter gain matrix, K, is computed according to Eq. (34) based on an a-priori

covariance matrix Pk+1|k, an augmented measurement matrix, Haug = [HT , HT
v ]T , and an

augmented measurement noise covariance matrix, Raug, where

Hv =
[
01×3 (VL)T 01×3 01×3 01×3

]
(42)

and H is the measurement matrix given in Eq. (35).

The augmented measurement noise covariance matrix Raug is of the following form

Raug =


 R 0

01×3 Rv


 (43)

where R is given in Eq. (37) and Rv is the fictitious velocity measurement noise covariance

matrix, which constitutes a tuning parameter. Small-valued entries in Rv indicate that this

additional measurement is reliable, and therefore other measurements will have a minor
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influence on the entries of the gain matrix K, corresponding to position and velocity along

the flight heading. This, in turn, prevents from erroneous image-based relative motion

measurements to affect the unobservable states.

Once K is computed, its last column is discarded, since it represents the fictitious velocity

measurement. The time update step of the state and the covariance matrix is performed

without using any additional information. In addition, due to the varying quality of the

image measurements (see Ref. 1), a measurements-rejection mechanism is used to avoid

fusion of low-quality measurements (outliers).

IV. Experimental Results for Mosaic-Aided Navigation

This section contains simulation results of the developed mosaic-aided navigation method.

The majority of the experiments are based on real image sequences acquired using Google

Earth (cf. Section IV-B in Part I of this work1). We note that the simulation runs were

performed without the captive flight stage, during which the platform partially estimates its

IMU errors from an external reference system.

The assumed 1σ values of IMU errors and initial navigation errors are given in Table 1.

Actual values of initial navigation errors and IMU errors in the statistical simulation runs

are determined by drawing samples from a zero-mean normal distribution with a standard

deviation σ, that is, the value of some parameter si is drawn according to si ∼ N(0, σsi
).

Table 1. Initial Navigation Errors and IMU Errors

Parameter Description Value Units

∆P Initial position error (1σ) (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (1, 1, 1)T deg/hr

b IMU bias (1σ) (1, 1, 1)T mg

A. Ideal Pseudo-Measurements

We start by presenting the performance of the proposed method assuming ideal image-based

relative motion measurements. This is the best possible performance, since the real-world

image-based measurements are imperfect. The ideal image-based relative motion measure-

ments, which are referred to pseudo-measurements, were calculated based on the platform

true trajectory.

14 of 35



Figures 2-6 show Monte-Carlo results for a straight and level north-heading trajectory, in

which the ideal pseudo-measurements were injected into a Kalman filter at a 1 Hz frequency.

Each figure contains 5 curves: mean (µ), mean+standard deviation (µ + σ), minimum and

maximum values, and the square root of the filter covariance, defined for the i-th component

in the state vector X as
√

P (i, i), where P is the a-posteriori covariance matrix.

Velocity errors (Figure 3) normal to the flight heading are reduced and blocked. However,

due to errors introduced by expressing the translation measurement in the LLLN system,

these errors are not nullified. As a consequence, position errors (Figure 2) normal to the

flight heading are considerably reduced compared to an inertial scenario. Velocity errors and

position errors along the flight heading are not diminished due to lack of observability.

The roll angle error ∆Φ (Figure 4) is significantly reduced (from an initial error of 0.1 deg

to a stable 0.05 deg error), while pitch and yaw angles errors (∆Θ, ∆Ψ), become bounded

(refer also to a comparison with an inertial scenario - Figure 7).

As for the filter estimation, the drift state, d = (dx, dy, dz)
T , (Figure 5) is fully estimated

due to the ideal relative rotation measurement (however, as will be seen next, the precision

of this measurement in reality is not sufficient for estimating drift). The bias state, b =

(bx, by, bz)
T , (Figure 6) is estimated in the z-direction.

0 50 100 150 200 250 300 350 400
−5000

0

5000

N
or

th
 [m

]

 

 

0 50 100 150 200 250 300 350 400
−500

0

500

E
as

t [
m

]

0 50 100 150 200 250 300 350 400
−500

0

500

A
lt 

[m
]

Time [sec]

Mean Mean+Sigma Min Max Filter

Figure 2. Position errors statistics vs. filter covariance (Monte-Carlo run). Examined scenario:
Straight and level north-heading flight; Ideal pseudo-measurements. Errors normal to the
flight heading are reduced, errors along the flight heading are not diminished due to lack of
observability.
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Figure 3. Velocity errors statistics vs. filter covariance (Monte-Carlo run). Examined scenario:
Straight and level north-heading flight; Ideal pseudo-measurements. Errors normal to the
flight heading are reduced and blocked, but not nullified due to errors associated with the
DCM transforming the translation measurement from the camera system to the LLLN system.
Errors along the flight heading are not diminished due to lack of observability.
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Figure 4. Euler angle errors statistics vs. filter covariance (Monte-Carlo run). Examined
scenario: Straight and level north-heading flight; Ideal pseudo-measurements. Roll angle error,
∆Φ, is significantly reduced and bounded; pitch and yaw angles errors (∆Θ, ∆Ψ), development
is arrested. See Figure 7 for a comparison with an inertial scenario.
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Figure 5. Drift estimation errors statistics vs. filter covariance (Monte-Carlo run). Exam-
ined scenario: Straight and level north-heading flight; Ideal pseudo-measurements. Full drift
estimation due to ideal relative rotation measurement.

0 50 100 150 200 250 300 350 400
−5

0

5

b x [m
g]

 

 

0 50 100 150 200 250 300 350 400
−5

0

5

b y [m
g]

0 50 100 150 200 250 300 350 400
−5

0

5

b z [m
g]

Time [sec]

Mean Mean+Sigma Min Max Filter

Figure 6. Bias estimation errors statistics vs. filter covariance (Monte-Carlo run). Examined
scenario: Straight and level north-heading flight; Ideal pseudo-measurements. The bias in the
z direction is estimated after about 50 sec.
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Figure 7. Comparison to an inertial scenario: Solid line - navigation errors (1σ) with ideal
pseudo-measurements; Dashed line - navigation errors (1σ) in an inertial scenario.
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B. Two-View Aided Navigation: Experimental Results Based on Real Images

Taken by a Wide-FOV Camera

This section presents experimental results of vision-aided navigation based on the two-view

motion estimation method. A wide-FOV camera and high-texture scenes are used, establish-

ing a valid scenario for fundamental matrix estimation (cf. Section III-B.1 in Ref. 1). The

precision of motion parameters extracted from the estimated fundamental matrix is given

in Figure 7 in Ref. 1. In the following discussion, results are presented for two different

platform trajectories: straight and level trajectory; and a trajectory with a maneuver.

1. Straight and Level Trajectory

The trajectory in this experiment consists of a straight and level north-heading flight for

400 sec at 1600 m above sea level (height above ground ranges from 600 to 1300 m) and a

velocity of 150 m/s. The image-based relative motion measurements were injected at a 1 Hz

frequency. Hence, 400 images were captured from Google Earth. The same IMU errors and

initial navigation errors as in Table 1 were assumed.

Figures 8-11 provide the experimental results. The following three scenarios are shown:

• Inertial scenario.

• Real-images-based measurements; without a fictitious velocity measurement.

• Real-images-based measurements; with a fictitious velocity measurement.

It can be seen that the errors in position and velocity normal to flight heading (Figures 8

and 9) are significantly reduced compared to the inertial scenario, regardless of whether the

fictitious velocity measurement was applied or not. As expected (cf. Section IV-A), the

velocity errors are not nullified since the translation measurements are not ideal. The errors

along the flight heading (north) behave as in the inertial scenario when the fictitious velocity

measurement is applied, and are much degraded when this measurement is not applied.

The errors in the Euler angles are shown in Figure 10. The roll angle error ∆Φ is nicely

estimated and is nearly nullified (after 100 sec of flight in the current filter tuning); The

pitch angle error ∆Θ coincides with the error in an inertial scenario in case the fictitious

velocity measurement is applied, and is enlarged otherwise (in accordance with the velocity

error in the north direction). The relative rotation measurement precision does not allow

estimation of the drift, since drift contribution to the angular motion in 1 sec (which is the

time between two measurements) is 0.00027 deg (for a 1 deg/hr drift) while the measurement

precision is only around 0.2 deg. As a consequence, the drift state is not estimated (Figure

11) and the errors in pitch (assuming fictitious velocity measurement is applied) and yaw
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angles are not restrained compared to an inertial scenario (in contrast to the situation when

ideal pseudo-measurements are used).
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Figure 8. Position errors. Real-images-based relative motion measurements, straight and level
north-heading trajectory. Three curves are presented: inertial scenario, fusion of real imagery
measurements with and without the fictitious velocity measurement. Errors normal to the
flight heading are considerably reduced compared to the inertial scenario; inertial behavior of
the errors along the flight heading is obtained if fictitious velocity measurement is applied.
Significantly larger errors along the flight heading are obtained if the fictitious measurement
is not applied.
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Figure 9. Velocity errors. Real-images-based relative motion measurements, straight and
level north-heading trajectory. Three curves are presented: inertial scenario, fusion of real
imagery measurements with and without the fictitious velocity measurement. Errors normal
to the flight heading are considerably reduced compared to the inertial scenario, though not
nullified due to 1) errors in the DCM transforming the translation measurement from camera
the system to the LLLN system, and 2) imperfect translation measurements. Inertial behavior
of errors along the flight heading is obtained if the fictitious velocity measurement is applied.
Significantly larger errors along the flight heading are obtained if the fictitious measurement
is not applied.
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Figure 10. Euler angle errors. Real images based relative motion measurements, straight and
level north-heading trajectory. Three curves are presented: inertial scenario, fusion of real
imagery based measurements with and without the velocity fictitious measurement. Roll angle
error is nearly nullified. Inertial pitch angle error in case the fictitious velocity measurement is
applied, and enlarged error otherwise (due to enlarged velocity errors along the flight heading).
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2. Trajectory With a Maneuver

The platform trajectory in this experiment consists of the following three segments:

• Straight and level north-heading flight (0 ≤ t < 70 sec).

• 90-degree turn west with a constant 15 degrees roll angle (70 sec ≤ t < 160 sec).

• Straight and level west-heading flight (160 sec ≤ t ≤ 210 sec).

The velocity and height above sea level are identical to those in the preceding section. The

trajectory is described in Figure 12.
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Figure 12. Description of a trajectory with a maneuver.

Figures 13-16 present the experimental results. Each figure contains the following three

curves: Navigation errors fusing relative measurements based on real images, square root of

the filter covariance and navigation errors in an inertial scenario for comparison.

During the first trajectory segment (north-heading straight and level flight, 0 ≤ t <

70 sec), position and velocity errors (Figure 13 and 14) in the east and down directions are

considerably reduced, while errors in the north direction coincide with an inertial scenario

due to lack of observability, as is the case in the first trajectory. Roll angle error ∆Φ (Figure

15) is also reduced during this segment.

The second trajectory segment comprises a 90 degrees turn with a constant roll angle Φ

(70 sec ≤ t < 160 sec); the motion dynamics of this maneuver excite variables that were nul-

lified during the straight and level flight (e. g. variables of the accelerometer measurements,
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fNED) leading to a partial estimation of the pitch angle error (Figure 15). Furthermore, the

north axis gradually becomes observable on account of the east axis, which leads to reduction

in the north velocity and position errors.

During the last trajectory segment (west-heading straight and level flight, 160 sec ≤ t <

210 sec), the unobservable direction is east and thus position and velocity errors in this

direction grow inertially, while errors in north and down directions are reduced.

As in the straight and level trajectory, the precision of relative rotation measurements is

not sufficient for drift estimation (the rotation measurements were rejected by the filter).
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Figure 13. Position errors. Real-images-based relative motion measurements, trajectory with
a maneuver. Reduced position errors compared to an inertial scenario.
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Figure 14. Velocity errors. Real-images-based relative motion measurements, trajectory with
a maneuver. The velocity errors are significantly reduced compared to the inertial scenario:
For 0 ≤ t < 70 sec, the platform performs a straight and level north-heading flight, therefore the
errors are reduced in the east and down axes; during the maneuver phase, 70 sec ≤ t < 160 sec,
the north direction becomes gradually observable on account of the east direction and thus
the errors in the north direction are partially diminished; when the flight heading is west at
160 sec ≤ t < 210 sec, the east velocity errors are enlarged as this direction is unobservable,
while north and down errors are reduced.
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Figure 15. Euler angle errors. Real-images-based relative motion measurements, trajectory
with a maneuver. Roll angle error is well estimated during the north-heading trajectory
segment (0 ≤ t < 70 sec); pitch angle error is partially reduced during the maneuver phase
(70 sec ≤ t < 160 sec). Yaw angle error inertial development due to lack of observability.
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Figure 16. Filter estimations. Real-images-based relative motion measurements, trajectory
with a maneuver. Solid line - estimation error; Dotted line - filter covariance. Drift is not
estimated due to insufficient relative rotation measurement precision. The z-bias is estimated
as well as partial y-bias estimation.
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C. Mosaic vs. Two-View Aided Navigation: Experimental Results Based on

Real Images Taken by a Narrow-FOV Camera

This section demonstrates the superior performance of mosaic-aided navigation over two-

view motion estimation. The examined scenario consists of a narrow-FOV camera (5o × 3o)

and a low-texture scene. The platform performs a straight and level north-heading flight.

The experiment consisted of 50 sec of inertial flight, followed by a 50 sec of vision-

aided phase, during which the mosaic- and two-view-based motion estimations were injected

into the navigation system. The last phase is another inertial navigation flight segment

for 50 sec. Figures 17 - 20 provide the experimental results. Each figure compares the

navigation performance for the two examined methods (mosaic and two-view). In addition,

INS performance is given for reference.

The enhanced performance of the mosaic-based aiding can be clearly seen in Figures 17

and 18: During the vision-aided phase, the position and velocity errors perpendicular to the

flight heading are significantly reduced. The mosaic-based aiding yields better results due

to more accurate vision-based motion estimation. It can be concluded from these graphs

that the number of measurements accepted by the filter is considerably higher in case of

the mosaic framework (between 60 sec and 80 sec, all the measurements in the two-view

method were rejected by the filter). As for the roll angle error (Figure 19), although this

error is smaller with the two-view method, it is expected to reach higher values if more

measurements were accepted by the filter.

When examining the behavior of the navigation errors in the inertial segment (after the

vision-aided phase), one can notice the slow development of inertial errors when using mosaic

aiding. The reason for this is the improved bias estimation compared to the estimation using

the two-view method, as shown in Figure 20: bz is almost exactly estimated and thus it does

not contribute to the growth of inertial position and velocity errors in the down axis.

It should be noted that the drift state was not estimated at all, since all the relative

rotation measurements were rejected by the filter due to their low quality. This is not

surprising, since these measurements were not accepted even in the much easier scenario of

a wide-FOV camera (cf. Section IV-B).

The relative motion measurements have another interesting effect: Although the position

error does not have a representation in the translation measurement matrix (cf. Eq. (12)),

the measurements still reduce the position errors (Figure 17), due to the developing cross-

correlation terms in the covariance matrix of the state vector.

Figure 21 compares the filter covariance to the actual developed errors. As seen, the

covariance is consistent overall. Better tuning might have yielded improved results. For ex-

ample, in the last segment of the inertial flight (after t=100 sec), the covariance development

rate does not match the actual rate of the developing inertial navigation errors. After the
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vision-aided segment, part of the IMU error parameters are estimated by the filter (e. g.

bz) and are used to correct the actual IMU measurements. As a consequence, the actual

IMU measurements injected into the navigation system are corrupted by the residual IMU

parameters only, resulting in a much slower development of navigation errors. One possible

alternative to account for this behavior is to perform a dynamic adjustment of the filter

noise covariance matrix Q as a function of the actual covariance values of the estimated IMU

states.
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Figure 17. Position errors. Vision-aided navigation: Mosaic aiding vs. two-view framework.
Inertial error development in the north direction due to lack of observability. Reduced errors
in the east and down directions, with a significant improvement in favor of the mosaic aiding.
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Figure 18. Velocity errors. Vision-aided navigation: Mosaic aiding vs. two-view aiding. Iner-
tial error development in the north direction due to lack of observability. Reduced errors in
the east and down directions, with a significant improvement in favor of the mosaic aiding.
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Figure 19. Euler angle errors. Vision-aided navigation: Mosaic aiding vs. two-view aiding.
Roll angle error estimation for both motion estimation methods. Pitch and yaw angles errors
are not reduced due to lack of observability.
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Figure 20. Bias estimation errors. Vision-aided navigation: Mosaic aiding vs. two-view aiding.
Considerably improved bz estimation in favor of the mosaic aiding.
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Figure 21. Actual navigation errors vs. filter covariance - Mosaic aiding. A consistent overall
behavior of filter covariances, compared to the actual errors.
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V. Conclusions

This paper presented a method for fusing mosaic-based motion estimation with a standard

inertial navigation system of an airborne platform. This motion estimation was calculated by

utilizing the on-line mosaic construction process and camera scanning procedure, as described

in Part I of this work.1

A measurement model was formulated for fusing mosaic-based motion estimation with

inertial navigation data using a Kalman filter. An extensive performance evaluation of the

developed mosaic-aided navigation method was performed. The performance evaluation con-

sisted of a statistical simulation study assuming ideal pseudo-measurements, and experiments

involving realistic scenarios based on real imagery from Google Earth. These experiments

included implementation of camera scanning and mosaic construction.

A comparison between the proposed method for vision-aided navigation using mosaic-

based motion estimation and the same method utilizing the standard two-view motion esti-

mation was carried out, focusing on difficult scenarios that involved a narrow-field-of-view

camera and low-texture scenes. This comparison showed considerable improvement in navi-

gation errors when mosaic-based aiding is used. The performance study indicated that the

position and velocity errors normal to the flight heading, as well as the roll angle, can be sig-

nificantly reduced, despite the imperfect nature of the estimated motion parameters. Errors

along the flight heading were not reduced due to lack of observability.

Appendix A: Development of the Translation Measurement

Matrix

This appendix presents the development of the translation measurement matrix. We

start with Eq. (11):

[
TL1

L2

[
−1

6
As(t1)T

B1
L1

d · (∆t)3 +
1

2

[
As(t1)∆Ψ(t1) + TB1

L1
b
]
(∆t)2 + ∆V(t1)∆t

]]∧
t̂
L2

1→2

+v = ztranslation (44)

¿From Eq. (44), one can conclude that the translation measurement equation is of the

following form:

ztranslation = H trX + v (45)

where

H tr =
[
03×3 H tr

∆V H tr
∆Ψ H tr

d H tr
b

]
(46)

and X is defined in Eq. (3).
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Next, we elaborate on each submatrix of H tr:

1. Velocity errors

[
TL1

L2
∆V(t1)∆t

]∧
t̂
L2

1→2 = −
[
t̂
L2

1→2

]∧
TL1

L2
∆V(t1)∆t

⇒ H tr
∆V = −

[
t̂
L2

1→2

]∧
TL1

L2
∆t (47)

2. Attitude errors

[
1
2
TL1

L2
As(t1)∆Ψ(t1)(∆t)2

]∧
t̂
L2

1→2 = −1
2

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)∆Ψ(t1)(∆t)2

⇒ H tr
∆Ψ = −1

2

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)(∆t)2 (48)

3. Drift

−1
6

[
TL1

L2
As(t1)T

B1
L1

d(∆t)3
]∧

t̂
L2

1→2 = 1
6

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)T

B1
L1

d(∆t)3

⇒ H tr
d = 1

6

[
t̂
L2

1→2

]∧
TL1

L2
As(t1)T

B1
L1

(∆t)3 (49)

4. Bias

1
2

[
TL1

L2
TB1

L1
b(∆t)2

]∧
t̂
L2

1→2 = −1
2

[
t̂
L2

1→2

]∧
TL1

L2
TB1

L1
b(∆t)2

⇒ H tr
b = −1

2

[
t̂
L2

1→2

]∧
TL1

L2
TB1

L1
(∆t)2 (50)

Appendix B: A Model for Inertial Navigation Errors

The development of inertial navigation errors can be expressed for short time instances

using a simplified model of the state-space formulation. Eq. (51) presents such a model, in

which the gyro and accelerometer errors are considered to be random constants and thus the

state vector consists of the navigation error parameters (position error ∆P, velocity error

∆V and Euler angles error ∆Ψ) and of an IMU error parametrization: The drift vector, d,

and the bias vector, b. Note that the navigation errors (∆P, ∆V and ∆Ψ) are expressed

in the LLLN system, while the states dB and bB are expressed in the body system. The
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residual IMU errors are considered to be white noise signals:

Ẋ = ΦcX + w (51)

where X is defined in Eq. (3) and

Φc =




03×3 I3×3 03×3 03×3 03×3

03×3 03×3 As 03×3 TB
L

03×3 03×3 03×3 −TB
L 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3




w =




03×1

ev

eΨ

03×1

03×1




(52)

Here TB
L = TB

LC
is the DCM transforming from the body system to the computed LLLN

system and As is the skew-symmetric matrix of the specific force vector f measured by the

accelerometers:

As =




0 −fD fE

fD 0 −fN

−fE fN 0


 (53)

Note that the first three entries of the state vector, X, are represented in the LLLN system,

whereas the last two entries are represented in the body system.

From Eq. (51), one can get the following explicit expressions for the navigation errors

(these expressions are valid for short time intervals, (t− t0), or for a straight and level flight

trajectories):

Euler angles error:

∆Ψ(t) = −TB
L dB∆t + ∆Ψ(t0) (54)

Velocity error:

∆V(t) = −1

2
AsT

B
L dB(∆t)2 +

[
As∆Ψ(t0) + TB

L bB

]
∆t + ∆V(t0) (55)

Position error:

∆P(t) = −1

6
AsT

B
L dB(∆t)3 +

1

2

[
As∆Ψ(t0) + TB

L bB

]
(∆t)2 + ∆V(t0)∆t + ∆P(t0) (56)

References

1Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., Real-Time Mosaic-Aided Aircraft Navigation: I.
Motion Estimation, AIAA GN&C Conference, USA, 2009.

34 of 35



2Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., Navigation Performance Enhancement Using
Rotation and Translation Measurements from Online Mosaicking , AIAA GN&C Conference, SC, USA, 2007.

3Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H., Navigation Aiding Using On-Line Mosaicking ,
IEEE/ION PLANS, California, USA, 2008.

4Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from Visual Terrain Information Part
1: Recursive Image Registration,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 5,
1986, pp. 583–587.

5Gurfil, P. and Rotstein, H., “Partial Aircraft State Estimation from Visual Motion Using the Subspace
Constraints Approach,” Journal of Guidance, Control and Dynamics, Vol. 24, No. 5, July 2001, pp. 1016–
1028.

6Soatto, S. and Perona, P., “Recursive 3-D Visual Motion Estimation Using Subspace Constraints,”
International Journal of Computer Vision, Vol. 22, No. 3, 1997, pp. 235–259.

7Oshman, Y. and Menis, B., “Maximum a Posteriori Image Registration/Motion Estimation,” Journal
of Guidance, Control and Dynamics, Vol. 17, No. 5, September-October 1994, pp. 1115–1123.

8Diel, D., DeBitetto, P. and Teller, S., “Epipolar Constraints for Vision-Aided Inertial Navigation,”
Proceedings of the IEEE Workshop on Motion and Video Computing , Vol. 2, January 2005, pp. 221–228.

9Roumeliotis, S., Johnson, A. and Montgomery, J., “Augmenting Inertial Navigation with Image-Based
Motion Estimation,” IEEE International Conference on Robotics and Automation, Vol. 4, 2002, pp. 4326–
4333.

10Merhav, S. and Bresler, Y., “On-Line Vehicle Motion Estimation from Visual Terrain Information Part
2: Ground Velocity and Position Estimation,” IEEE Transactions on Aerospace and Electronic Systems,
Vol. 22, No. 5, 1986, pp. 588–604.

11Lerner, R., Rivlin, E., and Rotstein, H., “Pose and Motion Recovery from Feature Correspondences
and a Digital Terrain Map,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28,
No. 9, September 2006, pp. 1404–1417.

12Sim, D., Park, R., Kim, R., Lee, S., and Kim, I., “Integrated Position Estimation Using Aerial Image
Sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, January 2002,
pp. 1–18.

13Gracias, N., Zwaan, S., Bernardino, A. and Santos-Victor, J., “Results on Underwater Mosaic-based
Navigation,” IEEE OCEANS , Vol. 3, 2002, pp. 1588–1594.

14Gracias, N. and Santos-Victor, J., “Underwater Video Mosaics as Visual Navigation Maps,” Computer
Vision and Image Understanding , Vol. 79, 2000, pp. 66–91.

15Davison, A.J., Reid, I.D. and Molton, N.D., “MonoSLAM: Real-Time Single Camera SLAM,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 6, 2007.

35 of 35


