

2009 AIAA Guidance, Navigation and Control Conference

Real-Time Mosaic-Aided Aerial Navigation: II. Sensor Fusion

VADIM INDELMAN, PINI GURFIL DISTRIBUTED SPACE SYSTEMS LAB, AEROSPACE ENGINEERING, TECHNION

EHUD RIVLIN COMPUTER SCIENCE, TECHNION

> HECTOR ROTSTEIN RAFAEL

August 2009

Previously ... In Part I

Introduction

Camera scanning

On-line mosaic construction

Image-based motion estimation

- Mosaicking improves estimation precision in challenging scenarios
 - Narrow camera FOV
 - Low-texture scene

- Introduction
- **Relative Motion Measurement Model**
- Fusion with Navigation System
- **Observability Analysis**
- Performance Evaluation

Relative Motion Measurements Model

Introduction

L - Local Level Local North (LLLN)

Coordinate systems

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

B - Body

C - Camera

Image-based motion estimation

- $\vec{t}_{1\rightarrow 2}^{C_2}$ translation (known up to some scale γ)
- $R_{C_1}^{C_2}$ rotation

In **ideal** conditions, when there are no navigation errors and assuming perfect translation and rotation motion estimations:

$$\left[\overrightarrow{Pos}(t_2) - \overrightarrow{Pos}(t_1)\right]^{L_2} = \gamma T_{L_2}^{C_2} \vec{t}_{1 \to 2}^{C_2}$$
$$T_{C_1}^{C_2} = R_{C_1}^{C_2}$$

- *Pos −* Platform position
- T_M^N DCM from system N to system M

Relative Motion Measurements Model (Cont.)

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

$$\left[\overrightarrow{Pos}(t_2) - \overrightarrow{Pos}(t_1)\right]^{L_2} \times T_{L_2}^{C_2} \vec{t}_{1 \to 2} = \vec{0}$$
$$T_{C_1}^{C_2} \left(R_{C_1}^{C_2}\right)^T = \vec{I}$$

In real conditions these constraints do not hold, due to

- Navigation errors
- Imperfect image-based motion estimations

Residual measurements definition:

$$\begin{bmatrix} \overrightarrow{Pos}_{Nav}(t_2) - \overrightarrow{Pos}_{Nav}(t_1) \end{bmatrix}^{L_2} \times T^{C_2}_{L_2,Nav} \hat{t}^{C_2}_{1 \to 2} = \vec{z}_{translation}$$
$$T^{C_2}_{C_1,Nav} \begin{bmatrix} \hat{R}^{C_2}_{C_1} \end{bmatrix}^T = I - \begin{bmatrix} \vec{z}_{rotation} \end{bmatrix}_{\times}$$

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

Continuous system matrix

$$\Phi_{c} = \begin{bmatrix} 0_{3\times3} & I_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & 0_{3\times3} & A_{s} & 0_{3\times3} & T_{L}^{B} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & -T_{L}^{B} & 0_{3\times3} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \\ 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} & 0_{3\times3} \end{bmatrix} \in \Re^{15\times15}$$

 $\vec{X} = \begin{bmatrix} \Delta \vec{P}^T & \Delta \vec{V}^T & \Delta \vec{\Psi}^T & \vec{d}^T & \vec{b}^T \end{bmatrix}^T \in \Re^{15 \times 1}$

- A_s a skew-matrix constructed based on accelerometer sensors readings
- *T*^B_L − DCM from Body to Local Level Local North systems

 \vec{z}_T

 \vec{z}

Measurer

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

Translation terms

$$\begin{aligned} H_{\Delta V}^{Tr} &= -\left[T_{L_{2}}^{C_{2}} \hat{t}_{1 \to 2}^{C_{2}}\right]_{\times} T_{L_{2}}^{L_{1}} \Delta t \\ H_{\Delta \Psi}^{Tr} &= -\frac{1}{2} \left[T_{L_{2}}^{C_{2}} \hat{t}_{1 \to 2}^{C_{2}}\right]_{\times} T_{L_{2}}^{L_{1}} A_{s} \left(t_{1}\right) \left(\Delta t\right)^{2} \\ H_{d}^{Tr} &= \frac{1}{6} \left[T_{L_{2}}^{C_{2}} \hat{t}_{1 \to 2}^{C_{2}}\right]_{\times} T_{L_{2}}^{L_{1}} A_{s} \left(t_{1}\right) T_{L_{1}}^{B_{1}} \left(\Delta t\right)^{3} \\ H_{b}^{Tr} &= -\frac{1}{2} \left[T_{L_{2}}^{C_{2}} \hat{t}_{1 \to 2}^{C_{2}}\right]_{\times} T_{L_{2}}^{L_{1}} T_{L_{1}}^{B_{1}} \left(\Delta t\right)^{2} \end{aligned}$$

Rotation terms

$$H_{\Delta\Psi}^{Rot} = \hat{R}_{C_1}^{C_2} T_{C_2}^{B_2} T_{B_2}^{L_2} \left(T_{L_2}^E T_E^{L_1} - I \right)$$
$$H_d^{Rot} = \hat{R}_{C_1}^{C_2} T_{C_2}^{B_2} T_{B_2}^{L_2} T_{L_1}^{B_1} \Delta t$$

Relative Motion Measurements Model (Cont.)

Remarks

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

Implementation Details

Adaptive translation measurement covariance

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

 $\vec{v}^{Tr} = \left[Pos_{Nav}^{L_2}\left(t_2\right) - Pos_{Nav}^{L_2}\left(t_1\right) \right]_{\times} \overline{\Delta \hat{t}_{1 \to 2}^{L_2}} \quad , \quad \overline{\Delta \hat{t}_{1 \to 2}^{L_2}} = \hat{t}_{1 \to 2}^{L_2} - t_{1 \to 2}^{L_2}$ $R^{Tr} = -\left[Pos_{Nav}^{L_2}\left(t_2\right) - Pos_{Nav}^{L_2}\left(t_1\right) \right]_{\times} R_{Est} \left[Pos_{Nav}^{L_2}\left(t_2\right) - Pos_{Nav}^{L_2}\left(t_1\right) \right]_{\times}$

Measurement covariance matrix

 $R_{k} = \begin{bmatrix} R_{k}^{Tr} & 0\\ 0 & R^{Rot} \end{bmatrix}$

Measurements-rejection mechanism is used to avoid fusion of low-quality measurements

9

Implementation Details (Cont.)

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

- Unobservable states in \vec{X} are deteriorated due to imperfectness in image-based motion estimation $(\vec{t}_{1\rightarrow 2}^{C_2}, R_{C_1}^{C_2})$
- Fictitious Velocity measurement is introduced
 Goal to let the filter "believe" the error along the flight heading is small
 - Implementation:

$$\left(\vec{V}^{L}\right)^{T} \Delta \vec{V} = 0$$

$$H^{FV} = \begin{bmatrix} 0_{1\times3} & \left(\vec{V}^{L}\right)^{T} & 0_{1\times3} & 0_{1\times3} & 0_{1\times3} \end{bmatrix}$$

$$H_{Aug} = \begin{bmatrix} H^{Trans} \\ H^{Rot} \\ H^{FV} \end{bmatrix} \qquad R_{Aug} = \begin{bmatrix} R_{6\times6} & 0 \\ 0_{1\times6} & R^{FV} \end{bmatrix}$$

After the KF gain matrix is computed, the FV data is removed

Observability Analysis

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

 $\begin{cases} \vec{x}(k+1) = F_j \vec{x}(k) + B_j u(k) \\ \vec{z}_j(k) = H_j \vec{x}(k) \end{cases}$

• For each time segment j=1,...,r the system matrices are constant

Piece-Wise Constant System (PWCS) [Goshen-Meskin & Bar-Itzhack 1992]

- At least n measurements in each segment
- Observability matrix in each segment

$$\boldsymbol{Q}_{j}^{T} = \begin{bmatrix} \boldsymbol{H}_{j}^{T} & \left(\boldsymbol{H}_{j}^{T}\boldsymbol{F}_{j}\right)^{T} & \dots & \left(\boldsymbol{H}_{j}^{T}\boldsymbol{F}_{j}^{n-1}\right)^{T} \end{bmatrix}$$

Total Observability Matrix (TOM)

$$Q(r) = \begin{bmatrix} Q_1 \\ Q_2 F_1^{n-1} \\ \vdots \\ Q_r F_{r-1}^{n-1} F_{r-2}^{n-1} \dots F_1^{n-1} \end{bmatrix}$$

Observability Analysis (Cont.)

In our case

$$\vec{X} (k+1) = \Phi_{d_j} \vec{X} (k)$$
$$\begin{pmatrix} \vec{Z}_j^{Trans} \\ \vec{Z}_j^{Rot} \\ \vec{Z}_j^{Rot} \end{pmatrix} = \begin{pmatrix} H_j^{Tr} \\ H_j^{Rot} \\ H_j^{Rot} \end{pmatrix} \vec{X} (k)$$

- Each segment may have less than n measurements
 - Measurements frequency is not as high as desired
- Examined scenario
 - Straight and Level (SL) flight + maneuver phase
 - Maneuver phase is divided into segments
 - Worst case one measurement per segment

$$\Rightarrow Q(r) = \begin{bmatrix} Q_1 \\ H_2 \Phi_{d_2} \Phi_{d_1}^{n-1} \\ \vdots \\ H_r \Phi_{d_r} \dots \Phi_{d_2} \Phi_{d_1}^{n-1} \end{bmatrix}$$
12

Observability Analysis (Cont.)

- Number of observable modes rank of Q(r)
- Unobservable modes components

 Nullspace of the Observability
 Grammian

 $G = Q(r)^T Q(r)$

- Analysis Results
 - Position terms are always unobservable
 - After several maneuver segments other states become observable
- Problematic estimation of some states in realistic scenarios

Performance Study

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

Ideal Measurements Two-view Aided Navigation Mosaic Aided Navigation

Assumed initial navigation errors and IMU errors

Description	Value	Units
Initial position error (1σ) Initial velocity error (1σ) Initial attitude error (1σ)	$(100 \ 100 \ 100)^T$ $(0.3 \ 0.3 \ 0.3)^T$ $(0.1 \ 0.1 \ 0.1)^T$	m m/s
IMU drift (1σ) IMU bias (1σ)	$\begin{array}{ccc} (0.1 & 0.1 & 0.1) \\ (1 & 1 & 1)^T \\ (1 & 1 & 1)^T \end{array}$	deg/hr mg

Platform trajectory – Straight and level north heading flight

Performance Study: Ideal Measurements

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

<u>Ideal</u> relative motion estimations, computed based on platform true trajectory (not image-based measurements)

Best possible performance

Ideal Measurements (Cont.)

- Monte-Carlo results
 - Straight and level <u>north</u> heading flight
 - Comparison to inertial scenario

Ideal Measurements (Cont.)

- Monte-Carlo results
 - Straight and level <u>north</u> heading flight
 - Comparison to inertial scenario

Euler Angles Errors

Drift and Bias Estimation Errors

Ideal Measurements (Cont.)

Conclusions

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

- Position and velocity errors perpendicular to the flight heading are considerably reduced and nearly nullified, respectively
- Roll angle error estimation
- Drift estimation in all axes
- Bias estimation in z axis

Increased observability while performing maneuvers

- Pitch angle error estimation
- Bias estimation in y axis

Performance Study: Two-view Aided Navigation

Two-view Aided Navigation (Cont.)

Wide field-of-view camera

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

D

Summary

Cumulative Distribution Function (CDF) of translation motion estimation error

Two-view Aided Navigation (Cont.)

- With Fictitious Velocity (FV) measurement
- Comparison to
 - Ideal relative motion measurements
 - Inertial scenario

Velocity Errors

Euler Angles Errors

Two-view Aided Navigation (Cont.)

- Fictitious Velocity (FV) measurement influence
 - Real images, with FV

Velocity Errors

- Real images, without FV
- Drift is not estimated in all cases

Euler Angles Errors

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

Mosaic construction based on images from camera scanning Motion estimation between a new captured image and a mosaic

- Downward-Looking images only
- Increased overlapping region

Mosaic

Original Overlapping Area Additional Overlapping Area

New image

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

Narrow field of view (FOV) camera: $5^{\circ} \times 3^{\circ}$

Low-texture type scenes

• Example image acquired from Google Earth

Cumulative Distribution Function (CDF) of translation motion estimation error

- Straight and level north heading trajectory
- Measurements fusion between $50 \le t \le 100$
- Inertial navigation elsewhere

Position Errors

Velocity Errors

- Straight and level north heading trajectory
- Measurements fusion between $50 \le t \le 100$
- Inertial navigation elsewhere

Euler Angles Errors

Bias Estimation Errors

Summary

Introduction

Measurements Model

Fusion with Navigation sys.

Observability Analysis

Performance Evaluation

Summary

D

Mosaic-aided navigation method was presented:

- Camera scanning
- Mosaic construction
- Mosaic-based motion estimation fusion with an INS
 The method does not require any a-priori information and does rely on external sensors, apart from the camera sensor
 The method may be applied also for two-view motion estimation
 Observability analysis
- Performance evaluation
 - Statistical study based on ideal motion estimations
 - Two-view aided navigation for wide FOV cameras
 - Improved performance of mosaic-aided navigation for narrow FOV cameras

Thank you ... D 0