
1

Distributed Vision-Aided Cooperative Localization
and Navigation based on Three-View Geometry

Vadim Indelman, Pini Gurfil, Ehud Rivlin and Hector Rotstein

Abstract—This paper presents a new method for dis-
tributed vision-aided cooperative localization and nav-
igation for multiple autonomous platforms based on
constraints stemming from the three-view geometry of a
general scene. Each platform is assumed to be equipped
with a standard inertial navigation system and an on-
board, possibly gimbaled, camera. The platforms are
also assumed to be capable of intercommunicating. No
other sensors, or any a priori information is required. In
contrast to the traditional approach for cooperative lo-
calization that is based on relative pose measurements,
the proposed method formulates a measurement when-
ever the same scene is observed by different platforms.
Each such measurement is constituted upon three im-
ages, which are not necessarily captured at the same
time. The captured images, attached with some nav-
igation parameters, are stored in repositories by each,
or some, of the platforms in the group. A graph-based
approach is applied for calculating the correlation terms
between the navigation parameters associated to images
participating in the same measurement. The proposed
method is examined using a statistical simulation in a
leader-follower scenario, and is demonstrated in an ex-
periment that involved two vehicles in a holding pattern
scenario.

1. Introduction

Cooperative localization and navigation has been an ac-
tive research field for over a decade. Vast research ef-
forts have been devoted to develop methods allowing a
group of platforms to autonomously perform different
missions. These missions include cooperative mapping
and localization [1], [2], [3], formation flying [4], mili-
tary tasks, such as cooperative tracking [5], autonomous
multi-vehicle transport [6], and other applications. Pre-
cise navigation is a key requirement for carrying out any
autonomous mission by a group of cooperative plat-
forms.

Assuming the GPS is available, each of the platforms
is capable of computing the navigation solution on its

V. Indelman and P. Gurfil are with the Faculty of Aerospace Engi-
neering, Technion - Israel Institute of Technology, Haifa 32000, Israel
(e-mail: ivadim@tx.technion.ac.il, pgurfil@technion.ac.il).
E. Rivlin is with the Department of Computer Science, Tech-
nion - Israel Institute of Technology, Haifa 32000, Israel (e-mail:
ehudr@cs.technion.ac.il).
H. Rotstein is with RAFAEL - Advanced Defense Systems Limited,
Israel (e-mail: hector@rafael.co.il).

own, usually by fusing the GPS data with an inertial
navigation system (INS). However, whenever the GPS
signal is absent, such as when operating indoor, un-
derwater, in space, in urban environments, or on other
planets, alternative methods should be devised for up-
dating the navigation system, due to the evolving dead
reckoning errors.

While various methods exist for navigation-aiding of a
single platform, collaboration among several, possibly
heterogeneous, platforms, each equipped with its own
set of sensors, is expected to improve performance even
further [7]. Indeed, different methods have been devel-
oped for effectively localizing a group of platforms, with
respect to some static coordinate system, or with respect
to themselves. Typically, these methods assume that
each platform is capable of measuring the relative range
and bearing to other platforms located close enough.

One of the pioneering works on cooperative localization
is [8], in which it was proposed to restrain the develop-
ment of navigation errors by using some of the robots,
as static landmarks, for updating the other robots in
the group, and then switching between the roles after a
certain amount of time. While the method was further
improved by others, all of the derived methods share the
same drawback of having to stop the motion of some of
the robots for updating the others, which is, for example,
not possible for fixed-wing aerial platforms.

Another important work is by Roumeliotis and Bekey
[7], where a centralized approach for sensors fusion was
applied based on the available relative pose measure-
ments between the platforms in the group. This archi-
tecture was then de-centralized and distributed among
the platforms. In [9] an extension was proposed to han-
dle more general relative observation models. The setup
of having a group of platforms capable of measuring rel-
ative poses to adjacent platforms have been studied also
in other works, including [6], [10], [11], [12] and [13].

A different body of works [14], [15], [16] suggests to
maintain in each platform an estimation of parameters
for all the platforms in the group. For example, in [14]
and [15] each platform estimates the pose of every other
platform relative to itself, while in [16] each platform
estimates the navigation state (position, velocity and
attitude) of all the other platforms by exchanging IMU
information and relative pose measurements.

This work proposes to utilize vision-based navigation-
aiding techniques for cooperative navigation. Each plat-
form is assumed to be equipped with a standard INS and
a camera. No further sensors or a priori information is
assumed. Several works [17], [18] on cooperative navi-
gation have been published relying on this setup. In [17],
a leader-follower formation of mobile ground vehicles
is considered, in which each vehicle is equipped with
a camera that provides bearing to the other vehicles. It
is shown that it is possible to estimate the relative pose
between the followers and the leader, except for con-
figurations that are not observable. The authors of [18]
propose to estimate the relative location of two moving
ground robots by fusing camera bearing measurements
with the robots’ odometry.

The method proposed herein relies on a recently-
developed technique [19], [20] for vision-aided naviga-
tion of a single platform based on three-view geometry
of a general scene. Cooperative navigation is a natural
extension of this technique. As opposed to all the meth-
ods for cooperative localization and navigation men-
tioned above, the platform camera is not required to be
aimed towards other platforms for obtaining measure-
ments of relative parameters (bearing, range) between
the platforms. Instead, a measurement is formulated
whenever the same scene is observed by different plat-
forms.

A similar concept has been already proposed in [3] and
[21], considering measurements that combine pairs of
platforms. In [21], a homography matrix is estimated
whenever two airborne platforms capture images of the
same scene, which is assumed to be planar. Next, the
relative motion between the two platforms is extracted
from the homography matrix, and assuming the posi-
tion of the first platform, and its height above ground
level are known, the estimated relative motion is then
used for updating the position of the second platform.
Kim et. al. [3] perform nonlinear optimization, involv-
ing the pose history of all the platforms in the group,
each time a new measurement arrives, considering rel-
ative pose and two-view measurements between pairs
of platforms.

In this work, three views of a common general scene
are required for each measurement. These views are
acquired by at least two different platforms, i. e. either
each view is captured by a different platform, or two of
the three views are captured by the same platform. The
scenario in which all the views were captured by the
same platform is handled in [19], [20]. The constraints
stemming from a general scene, observed in three dif-
ferent views [19], [20], allow to reduce the developed
navigation errors of the updated platform without any
further a priori information or any other sensors (such
as height above ground level, range sensor, etc.).

Another key aspect of the proposed method, is that the
three images of the same region are not necessarily cap-
tured at the same time. All, or some, of the platforms
maintain a local repository of captured images that are
associated with some navigation parameters [19]. These
repositories are accessed on demand to check if a region,
currently observed by one of the platforms, denoted as
the querying platform, has been observed in the past
by other platforms in the group. Images containing the
same region are transmitted, with the attached naviga-
tion data, to the querying platform. The received infor-
mation from other platforms, in addition to the naviga-
tion and imagery data of the querying platform, allow
updating the querying platform navigation system.

The navigation information participating in the update
process may be statistically dependent. Therefore, in
order to obtain a consistent navigation solution, the in-
volved correlation terms should be either maintained,
or calculated upon demand. However, maintaining the
correlation terms is impractical since the time instances
of the images participating in the measurements are a
priori unknown, in addition to the a priori unknown
identity of the platforms that captured these images.
Thus, one has either to neglect the involved correla-
tion terms, or to calculate these upon request. This pa-
per follows the latter approach, adjusting a graph-based
technique for calculating correlation for general multi-
platform measurement models [20] to the three-view
measurement model used herein.

2. Method Overview

Fig. 1 shows the overall concept of the proposed method
for multi-platform vision-aided navigation. The pro-
posed method assumes a group of cooperative plat-
forms capable of communicating between themselves.
Each platform is equipped with a standard inertial navi-
gation system (INS) and an onboard camera, which may
be gimbaled. Some, or all, of the platforms maintain a
local repository comprised of images captured along
the mission. These images are attached with navigation
data when they are captured. The INS is comprised of an
inertial measurement unit (IMU) whose measurements
are integrated into a navigation solution.

In a typical scenario, a platform captures an image and
broadcasts it, along with its current navigation solution,
to other platforms in the group, inquiring if they have
previously captured images containing the same region.
Upon receiving such a query, each platform performs
a check in its repository looking for appropriate im-
ages. Among these images, only images with a smaller
navigation uncertainty compared to the uncertainty in
the navigation data of the query image, are transmitted
back. Platforms that do not maintain a repository, per-
form the check only on the currently-captured image.

3The process of the querying platform is schematically
described in Fig. 1. After receiving the images and the
attached navigation data from other platforms in the
group, two best images are chosen and, together with
the querying image, are used for formulating the three-
view constraints (Section 3). These constraints are then
reformulated into a measurement and are used for up-
dating the navigation system of the querying platform,
as described in Section 4. Since the navigation data at-
tached to the chosen three images may be correlated,
a graph-based technique is applied for calculating the
required cross-covariance terms for the fusion process.
This technique is discussed in Section 5. The overall
protocol for information sharing among the platforms
in the group is discussed in Section 6.

Throughout this paper, the following coordinate sys-
tems are used:

• L - Local-level, local-north (LLLN) reference frame,
also known as a north-east-down (NED) coordinate sys-
tem. Its origin is set at the platform’s center-of-mass. XL
points north, YL points east and ZL completes a Carte-
sian right hand system.
• C - Camera-fixed reference frame. Its origin is set at
the camera center-of-projection. ZC points toward the
FOV center, XC points toward the right half of the FOV
when viewed from the camera center-of-projection, and
YC completes the setup to yield a Cartesian right hand
system.

3. Three-View Geometry Constraints

Assume some general scene is observed in three differ-
ent views, captured by different platforms. Fig. 2 depicts
such a scenario, in which a static landmark p is observed
in three images I1, I2 and I3. The image I3 is the currently-
captured image of the third platform, while I1 and I2 are
two images captured by the first two platforms. These
two images may be the currently-captured images of
these platforms, but they could also be captured in the
past and stored in the repository of each platform, as is
indeed illustrated in the figure. Alternatively, I1 and I2
could also be captured by the same platform.

Denote by Ti j the translation vector from the ith to the
jth view, with i, j ∈ {1, 2, 3} and i , j. Let also qi and
λi be a line of sight (LOS) vector and a scale parame-
ter, respectively, to the landmark p at time ti, such that
||λiqi|| is the range to this landmark. In particular, if qi
is a unit LOS vector, then λi is the range to p. The con-
straints stemming from three views observing the same
landmark can be formulated as follows [19], [20]:

qT
1 (T12 × q2) = 0 (1a)

qT
2 (T23 × q3) = 0 (1b)

(q2 × q1)T(q3 × T23) = (q1 × T12)T(q3 × q2) (1c)

1 1,λq

2 2,λq
3 3,λq

12T
23T

13T �� ���� ��
 �� ���� ��

�� ���� ��

p

Figure 2. Three-view geometry: a static landmark p
observed by three different platforms. Images I1 and
I2 were captured by the first two platforms in the past,
while image I3, is the currently-acquired image by the
third platform.

All the parameters in Eqs. (1) should be expressed in the
same coordinate system using the appropriate rotation
matrices taken from navigation systems of the involved
platforms. It is assumed that this coordinate system
is the LLLN system of the platform that captured the
second image at t2.

Recall that Eqs. (1a) and (1b) are the well-known epipo-
lar constraints, forcing the translation vectors to be co-
planar with the LOS vectors. Thus, given multiple
matching features, the translation vectors T12 and T23
can be determined only up to scale. The two scale pa-
rameters are different in the general case. Eq. (1c) relates
between these two scale parameters, thereby allowing
to calculate one of the translation vectors given the other
[19].

In practice, the three views will have more than a sin-
gle landmark in common. Therefore, three different sets
of matching LOS vectors are defined: A set of match-
ing pairs of features between the first and second view,
another set of matching pairs of features between the
second and third view, and a set of matching triplets
between all the three views. All the LOS vectors are
expressed in an LLLN system, as mentioned above.
These sets are denoted by {q1i

,q2i
}N12
i=1 , {q2i

,q3i
}N23
i=1 and

{q1i
,q2i

,q3i
}N123
i=1 , respectively, where N12,N23 and N123 are

the number of matching features in each set, and q ji is
the ith LOS vector in the jth view, j ∈ (1, 2, 3).

Taking into consideration all the matching pairs and
triplets, the constraints (1) turn into [19], [20]:


U
F
0


N×3

T23 =


W
0
G


N×3

T12 (2)

where N � N12 + N23 + N123 and

U =
[
u1 . . . uN123

]T
W =

[
w1 . . . wN123

]T

F =
[
f1 . . . fN23

]T
G =

[
g1 . . . gN12

]T

Strapdown

Camera Inertial Navigation System

IEKF

IMU

measurements
Pos

V

 
 
 
 Ψ 

r

r

r
A

B

B

A

Repository

A

New

Image

+

NavData

Three-View Constraints

Image Processing Module

- New Image+NavData

- Image 1,

NavData 1, Platform i

- Image 2,

NavData 2, Platform j

Broadcast

Receive

Images and

NavData

Choose two

best images

Compute Cross-

Covariance Terms

Graph Representation of Multi-platform updates

Update Graph

Broadcast Update

Information

C

C Filter matrices

Filter

matrices

d

b

 
 
 
 

r

r

Figure 1. Multi-platform navigation aiding - querying platform scheme

while the vectors f,g,u,w ∈ R3×1 are defined as

fT � (q2 × q3)T

gT � (q1 × q2)T

uT � (q1 × q2)T[q3]× = gT[q3]×
wT � (q2 × q3)T[q1]× = fT[q1]×

4. Three-View Based Navigation Update

Define the state vector of each platform to be its own
navigation errors and IMU error parameterization:

X =
[
∆PT ∆VT ∆ΨT dT bT

]T

where ∆P ∈ R3,∆V ∈ R3,∆Ψ = (∆φ,∆θ,∆ψ)T ∈
[0, 2π] × [0, π] × [0, 2π] are the position, velocity and
attitude errors, respectively, and (d,b) is the parame-
terization of errors in the inertial sensor measurements:
d ∈ R3 is the gyro drift, and b ∈R3 is the accelerometer
bias. The first 9 components of X are given in LLLN
coordinates, while the last 6 are written in a body-fixed
reference frame.

The corresponding transition matrix Φi
ta→tb

satisfying

Xi(tb) = Φi
ta→tb

Xi(ta) +ωi
ta:tb

(3)

for the ith platform is given in [22]. Here ωta:tb is a
discrete process noise.

When real navigation and imagery data is considered,
the constrains in Eq. (2) will not be satisfied. Thus, a
residual measurement is defined as

z �


U
F
0


N×3

T23 −

W
0
G


N×3

T12 � AT∈3 − BT∞∈

Noting that T12 = Pos2 − Pos1 , T23 = Pos3 − Pos2, and
the matrices F,G,U,W are functions of the LOS vectors,
the residual measurement z is a nonlinear function of
the following parameters3:

z = h
(
Pos3,Ψ3,Pos2,Ψ2,Pos1,Ψ1,

{
qC1

1i
,qC2

2i
,qC3

3i

})
(4)

Linearizing Eq. (4) we obtain

z ≈ H3X3 + H2X2 + H1X1 + Dv (5)

where the Jacobian matrices H3,H2,H1 and D in the
above equation are given in [20], and Xi is the state
vector of the appropriate platform at the capture-time
of the ith image. This state vector models the errors in
the navigation data attached to this image. The term Dv
represents contribution of image noise from all the three
images and of linearization errors to the measurement
z.

3In Eq. (4), the notation
{
qC1

1i
,qC2

2i
,qC3

3i

}
refers to the fact that LOS

vectors from all the three images are used for calculating the residual
measurement z. Note that each of the matrices F,G,U,W is a function
of a different set of matching points [20].

5As can be seen, the residual measurement is a function
of all the three state vectors, which in the general case
may be correlative. Thus, all the involved platforms in
the measurement can be updated.

This is indeed an approach used in some works (e. g.
[7]), in which the measurement is a function of the nav-
igation parameters from current time of several plat-
forms. Since navigation parameters only from the cur-
rent time participate in the measurement, it is possible
to maintain the cross-covariance terms between the plat-
forms in the group. Assuming M platforms in the group,
and an m × m covariance matrix Pi for each platform i,
the total covariance matrix of the group, containing also
all the cross-covariance terms among platforms in the
group is an Mm ×Mm matrix

PTotal =



P1 P12 · · · P1M
P21 P2 · · · P2M
...

...
. . .

...
PM1 PM2 · · · PM



where Pi = E[X̃iX̃
T
i] and Pi j = E[X̃iX̃

T
j]. The matrix PTotal

may be efficiently calculated in a distributed framework
[7].

Yet, the measurement model in the method proposed
herein, Eq. (5), involves data from different platforms
and from different, and a priori unknown time instances.
Maintaining a total covariance matrix PTotal containing
the covariance for every platform and cross-covariance
terms between each pair of platforms in the group, for
the whole mission duration is not a practical solution.
Thus, an alternative technique should be used. The pro-
posed technique, described in Section 5, represents the
platforms update events in a directed acyclic graph, lo-
cally maintained by every platform in the group. Given
a measurement, the relevant cross-covariance terms are
computed based on this graph representation, going
back and forth on the time domain according to the
time instances involved in the measurement. This tech-
nique is developed in [20] for a general multi-platform
measurement model, and is adopted in this work for
three-view measurements.

The graph needs to be acyclic, since otherwise, a mea-
surement might trigger recursive updates in past mea-
surements. In a general scenario involving three-view
measurements between different platforms and differ-
ent time instances, the graph is guaranteed to be acyclic
if only platforms that contributed their current (and not
past) image and navigation data are updated. For sim-
plicity, in this paper we consider only one such platform,
which is the querying platform, i. e. the platform that
broadcasted the query image to the rest of the platforms
in the group. Moreover, without loss of generality, it is
assumed that the querying platform captures the third
image, as illustrated in Fig. 2.

An implicit extended Kalman filter (IEKF) is applied,
whereby the Kalman gain matrix is computed as [20]
K = PX3zP−1

z , where

PX3z = P−3 HT
3 + P−32HT

2 + P−31HT
1 (6)

Pz = H3P−3 HT
3 + (7)

+
[
H2 H1

] [P2 P21
PT

21 P1

] [
H2 H1

]T
+ DRDT

As can be seen from Eqs. (6) and (7), the cross-covariance
terms P21,P31 and P32 indeed participate in the update
process, and therefore need to be calculated.

The update equations are the IEKF standard equations.
In particular, the a posteriori estimation error of the
querying platform is given by:

X̃+
3 = [I − K3H3] X̃−3 − K3H2X̃−2 − (8)

− K3H1X̃−1 − K3Dv

where X̃ denotes the estimation error of X.

It is worth mentioning that there are specific scenarios,
in which all the participating platforms in the measure-
ment may be updated, since it is guaranteed that the
graph will always be acyclic. In these scenarios, the fil-
ter formulation changes as described next. An example
of such a scenario is given in Section 7.

All the Involved Platforms are Updated

The following augmented state vector is defined:

X �
[
XT

3 XT
2 XT

1

]T

with an augmented covariance matrix P � E[XXT].
The a posteriori estimation errors of the state vectors in
X are:

X̃+
3 =

[
I − K̆3H3

]
X̃−3 − K̆3H2X̃−2 − K̆3H1X̃−1 − K̆3Dv

X̃+
2 =

[
I − K̆2H2

]
X̃−2 − K̆2H3X̃−3 − K̆2H1X̃−1 − K̆2Dv

X̃+
1 =

[
I − K̆1H1

]
X̃−1 − K̆1H3X̃−3 − K̆1H2X̃−2 − K̆1Dv

while the augmented covariance matrix is updated ac-
cording to

P+ = [I −KH]P− [I −KH]T + [KD]R [KD]T

where H �
[
H3 H2 H1

]
and K �

[
K̆T

3 K̆T
2 K̆T

1

]T
.

The augmented Kalman gain matrix K is computed as
K = P−HT

(
HP−HT + R

)−∞
.

5. Cross-Covariance Calculation

In this section we discuss how the cross-covariance
terms can be calculated upon demand. Recall that it

is unknown a priori what platforms and which time
instances will participate in each three-view measure-
ment. First, the development of expressions for the
cross-covariance terms is presented in a simple scenario.
Next, the concept of a graph-based technique for auto-
matic calculation of these terms in general scenarios is
discussed.

Simple Scenario

Consider the scenario shown in Fig. 3. Platform III is
the querying platform, and therefore only this platform
is updated. Two three-view updates are performed. In
each of these updates, the first two images are transmit-
ted by platform I. For example, the first measurement is
formulated using images and navigation data denoted
by a1, a2 and a3, where a1, a2 are obtained from platform
I.

It is assumed that the platforms do not apply any up-
dates from other sources. As shall be seen, these re-
strictions are not necessary, and are undertaken here for
clarifying the basics of the approach.

II

III

I

a1 a2

b3

b1 b2

a3

Figure 3. Measurement schedule example. Platform
III is updated based on images transmitted by platform
I. The filled circle marks denote images participating in
the measurement, square marks indicate update events.

The cross-covariance terms are computed in the follow-
ing recursive way. Assume the first measurement, com-
prised of a1, a2 and a3 was carried out, and that the a
priori and a posteriori covariance and cross-covariance
terms are known. Now, it is required to calculate the
cross-covariance terms E[(X̃−b3

)(X̃−b2
)T],E[(X̃−b3

)(X̃−b1
)T] and

E[(X̃−b2
)(X̃−b1

)T] for performing the second three-view up-
date.

The following equations may be written regarding the
state propagation:

X̃−b3
= Φa3→b3 X̃+

a3
+ωa3:b3

X̃−bi
= Φa2→bi X̃

−
a2

+ωa2:bi , i = 1, 2

where ωi: j is the equivalent process noise between the
time instances ti and t j of the appropriate platform4. The
cross-covariance terms E[(X̃−b3

)(X̃−bi
)T] with i = 1, 2, may

4From now on, explicit notations of platform identities and time in-
stances are omitted for conciseness, since these may be concluded by
context.

be calculated as:

E
[(

Φa3→b3 X̃+
a3

+ωa3:b3

) (
Φa2→bi X̃

−
a2

+ωa2:bi

)T
]

(9)

The a posteriori estimation error X̃+
a3

is given, according
to Eq. (8), by:

X̃+
a3

=
(
I − Ka3 Ha3

)
X̃−a3
− Ka3 Ha2 X̃−a2

− (10)

− Ka3 Ha1 X̃−a1
− Ka3Dava

Since ωa2:b2 is statistically independent of X̃−a3
, X̃−a2

, X̃−a1
,

and since ωa3:b3 is statistically independent of X̃−a2
and

ωa2:b2 (cf. Fig. 3)

E
[
X̃+

a3
ωT

a2:b2

]
= 0

E
[
ωa3:b3

(
Φa2→b2 X̃−a2

+ωa2:b2

)T
]

= 0

Denoting Pab � E[(X̃a)(X̃b)T] and incorporating the above
into Eq. (9) yields

P−b3b2
= Φa3→b3

{(
I − Ka3 Ha3

)
P−a3a2
−

−Ka3 Ha2 P−a2a2
− Ka3 Ha1 P−a1a2

}
ΦT

a2→b2

where the expectation terms involving a3, a2, a1 are
known (from previous update). In a similar manner
we get

P−b3b1
= Φa3→b3

{(
I − Ka3 Ha3

)
P−a3a2
−

−Ka3 Ha2 P−a2a2
− Ka3 Ha1 P−a1a2

}
ΦT

a2→b1
(11)

while P−b2b1
� E[(X̃−b2

)(X̃−b1
)T] is given by

P−b2b1
= Φb1→b2 P−b1b1

Graph-Based Cross-Covariance Calculation

The required cross-covariance terms may be calculated
using a graph representing the history of the applied
three-view measurements. Such a method is presented
in [20] for a general multi-platform measurement model
and it can be easily adjusted for handling the three-view
measurement model discussed in this paper. Thus, this
section describes only the concept of the method.

A directed acyclic graph (DAG) G = (V,E) is locally
maintained by every platform in the group, where V is
the set of nodes and E is the set of directed arcs connect-
ing between the nodes in V. Two type of nodes exist
in this graph: nodes that represent images and the at-
tached navigation data that participated in some multi-
platform update, and update-event nodes. The nodes
are connected by directed weighted arcs. The weight of
each arc reflects the information flow between the two
connected nodes. Each node in G, can be connected to

7another node by a transition relation, and in addition, it
may be involved in a three-view measurement, in which
case it would be also connected to an update-event node
by an update relation.

The transition relation is given by Eq. (3), relating be-
tween the state vectors of the ith platform at two differ-
ent time instances ta and tb. G will contain two nodes,
representing these two time instances, only if each of
them participates in some three-view measurement. In
this case, these two nodes will be connected by an arc,
weighted by the transition matrix Φi

ta→tb
. The noise pro-

cess covariance matrix Qi
ta:tb

� E[ωi
ta:tb

(ωi
ta:tb

)T] is associ-
ated to this arc as well.

The update relation is given by Eq. (8):

X̃+
3 = [I − K3H3] X̃−3 − K3H2X̃−2 − K3H1X̃−1 − K3Dv

Thus, G will contain 4 nodes representing the above
equation. Let the nodes βi represent the a priori esti-
mation errors X̃−i , with i = 1, 2, 3, and the node α rep-
resent the a posteriori estimation error X̃+

3 . Then, the
arc weights connecting the nodes β1, β2 and β3 with the
node α are −K3H1, −K3H2 and I − K3H3, respectively.
Each such arc is also associated with the relevant mea-
surement noise covariance matrix [20].

It is assumed that the a priori and a posteriori covariance
and cross-covariance terms between the nodes partici-
pated in the same multi-platform update, that has been
already carried out, are known (e. g. this information
may be stored in the nodes themselves).

Consider, for example, the simple scenario discussed in
the previous section (cf. Fig. 3). The equivalent graph is
given in Fig. 4(a). As seen, two update events are carried
out, both on platform III. At each update, the first two
images of the three are transmitted by platform I, while
the third image is the currently-captured image by the
querying platform III. Platform II has not transmitted
any images and therefore has no nodes in the graph.
The transmission action is denoted by a dashed arc in
the graph. Nodes of the first type are denoted as circle
nodes, while the second-type nodes are designated by
a square notation. The arc weights are not explicitly
specified in the graph (for clarity of representation). For
example, the weight of an arc connecting between the
nodes a−1 and a−2 is the transition matrix φa1→a2 , since no
measurement updates were performed between these
two time instances. On the other hand, the arcs con-
necting a−1 , a

−
2 and a−3 to a+

3 are weighted, according to
Eq. (10), as −Ka3 Ha1 , −Ka3 Ha2 and I − Ka3 Ha3 , respec-
tively. In addition, each arc is also associated with the
appropriate noise covariance, as mentioned above.

The construction process of the graph, as well as the
communication protocol between the platforms in the

group, is delayed until Section 6.

The graph representation suggests a convenient ap-
proach for computing the correlation terms. Assume
we need to calculate the cross-covariance between some
two nodes c and d in the graph, representing X̃c and X̃d,
respectively. The first step is to construct two inverse-
trees, containing all the possible routes in the graph G to
each of the nodes c and d. This is performed as follows.
The first tree, Tc, is initialized with the node c. Each
next level is comprised of the parents of nodes that re-
side in the previous level, as determined from the graph
G. Thus, for example, the second level of Tc contains
all the nodes in G that are directly connected to c. The
same process is executed for constructing a tree Td for
the node d. Fig. 4(b) shows an example of two trees
with c � b−3 and d � b−1 , constructed based on the graph,
given in Fig. 4(a), for calculating the cross-covariance
P−b3b1

. This term and the terms P−b3b2
,P−b2b1

are required for
carrying out the measurement update b+

3 .

Note that each node in Tc and Td has only one child but
may have one or three parents. In the latter case, the
node represents an update event.

3b+

3b−

2a−

1a−

1b−

2b−

3a−

3a+

I IIIII

(a)

3a+

3b−

3a−
2a−

1a−

3 1a aK H−
3 2a aK H−

3 3a aI K H−

3 3a bφ →

1b−

2a−

2 1a bφ →

1a−

1a−

(b)

Figure 4. (a) Graph representation for the scenario
shown in Fig. 3. (b) The two inverse-trees Tb−3 and Tb−1
required for calculating P−b3b1

.

The concept of the proposed graph-based approach for
calculating the cross-covariance terms is as follows. We
start with the two nodes c and d, which are the first-level
nodes in the trees Tc and Td, respectively. Since the term
E[X̃cX̃

T
d] is unknown, we proceed to the parents of these

nodes. As noted above, two types of relations exist for
a general graph topology. At this point it is assumed
that both of the nodes c and d are related to the nodes
in the next level by a transition relation, and therefore
have only one parent. This assumption is made only for
clarity of explanation5. Denote the parents of c and d as
c2 and d2, respectively. The nodes c2 and d2 constitute
the second level in the trees Tc and Td, respectively. For
example, c2 and c are connected via X̃c = Φc2→cX̃c2 +
ωc2→c.

5In practice, c and d will usually represent images that are going to
participate in a three-view update event, and therefore c and d will
indeed have only one parent each.

The convention used here is that if some node ai has
several parents, the jth parent is denoted as a j

i+1. Also,
a ≡ a1.

Now, the required cross-covariance term Pcd � E[X̃cX̃
T
d]

may be written in several forms:

E
[
X̃c

(
Φd2→dX̃d2 +ωd2:d

)T
]

E
[(

Φc2→cX̃c2 +ωc2:c

)
X̃T

d

]

E
[(

Φc2→cX̃c2 +ωc2:c

) (
Φd2→dX̃d2 +ωd2:d

)T
]

Since the expression from the previous level, i. e. the
first level, was already checked, it is now required to
check whether any of the expressions involving nodes
from the current level are known. In other words, the
question is whether any of the pairs Pcd2 , Pc2d and Pc2d2

are known. In addition, it is also required to know
the correlation between the noise terms and the state
vectors.

Assuming none of the pairs is known, we proceed to the
next level, the third level. Each node in the second level
may have either transition or update relation, given by
Eqs. (3) and (8), respectively, with the nodes in the third
level. In this case, since the second level contains only a
single node in each tree (c2 and d2), there are four possi-
ble cases: transition relation for c2 and update relation
for d2; update relation for c2 and transition relation for
d2; update relations for c2 and d2; transition relations for
c2 and d2. At this point, we choose to analyze the first
case. Other cases are treated in a similar manner.

Thus, c2 has a single parent, denoted by c3, while d2 has
three parents denoted by d1

3, d
2
3 and d3

3 (in this case d2

represents an update event, while d1
3, d

2
3, d

3
3 represent the

three participating images). The relations for c2 and d2
can be written as

X̃c2 = Φc3→c2 X̃c3 +ωc3:c2

X̃d2 = Ad3
3
X̃d3

3
+ Ad2

3
X̃d2

3
+ Ad1

3
X̃d1

3
+ Ad123

3
vd123

3

where Ad3
3
� (I − Kd3

3
Hd3

3
), Ad2

3
� −Kd3

3
Hd2

3
, Ad1

3
� −Kd3

3
Hd1

3

and Ad123
3
� −Kd3

3
Dd123

3
.

Having reached a new level, the third level, new ex-
pressions for the required term E[X̃cX̃

T
d] may be written

utilizing nodes from this level and lower levels. Note
that all the expressions from the previous (second) level
were already analyzed.

Consider that some term, for example, E[X̃c3 X̃T
d3

3
], is

known, which means that the nodes c3 and d3
3 in Tc

and Td, respectively, either represent images that par-
ticipated in the same three-view update in the past, or
that these two nodes are identical (c3 ≡ d3

3). In any case,

the known term E[X̃c3 X̃T
d3

3
], accordingly weighted, as de-

scribed in [20], is part of E[X̃cX̃
T
d].

Having a known term also means that there is no need
to proceed to nodes of higher levels which are related to
this term. In the case of a known E[X̃c3 X̃T

d3
3
], we would

not proceed to the parents of c3 and d3
3, unless this is

required by the unknown terms in the current level. In
this example, if the unknown terms are E[X̃c3 X̃T

d2
3
] and

E[X̃c3 X̃T
d1

3
], then we would proceed to the parents of c3 in

Tc, and of d1
3 and d2

3 in Td, but not to the parents of d3
3 in

Td.

The procedure proceeds to higher levels until either all
the terms required for calculating the cross-covariance
E[X̃cX̃

T
d] are known, or reaching the top level in both

trees. In the latter case, the unknown terms of cross-
covariance are actually zero.

The process noise terms are assumed to be statistically
independent of each other, E[ωi1:i2ω

T
j1: j2

] = 0, if ωi1:i2

and ω j1: j2 belong to different platforms, or in the case
the two noise terms belong to the same platform but
{i1 : i2}∩{ j1 : j2} = {}. The measurement noise is assumed
to be statistically independent with the process noise.
On the other hand, the process and measurement noise
terms are not necessarily statistically independent with
the involved state vectors. Their contribution to the
required cross-covariance E[X̃cX̃

T
d] is analyzed in [20].

Computational Complexity

The computational complexity changes from one sce-
nario to another. However, it can be shown [20] that
the worst case is bounded by O

(
n2logn

)
, where n is

the number of multi-platform updates represented in
G. Moreover, the actual computational complexity can
be significantly reduced using efficient implementation
methods [20].

It is worth noting that in practice, many scenarios ex-
ist in which the worst-case computational complexity is
significantly less. One example is the scenario consid-
ered in Figs. 3 and 4, which requires processing only 3
levels in each tree.

6. Overall Distributed Scheme

Assume a scenario of M cooperative platforms. Each, or
some, of these platforms maintain a repository of cap-
tured images attached with navigation data. All the
platforms maintain a local copy of the graph, that is up-
dated upon every multi-platform update event. This
graph contains M threads, one thread for each plat-
form in the group. The graph is initialized to M empty
threads. The formulation of a single multi-platform up-

9date event is as follows.

The querying platform broadcasts its currently-
captured image and its navigation solution to the rest of
the platforms. A platform that receives this query, per-
forms a check in its repository whether it has previously
captured images of the same region. Platforms that do
not maintain such a repository perform this check over
the currently captured image only. Different procedures
for performing this query may be devised. One possible
alternative is to check only those images in the repos-
itory, that have a reasonable navigation data attached,
e. g. images that were captured from a vicinity of the
transmitted position of the querying platform.

Among the chosen images, only images that have a
smaller uncertainty in their attached navigation data,
compared to the uncertainly in the transmitted naviga-
tion data of the querying platform, are transmitted back
to the querying platform. More specifically, denote by
PQ the covariance matrix of the querying platform, and
P the covariance matrix attached to one of the chosen
images from a repository of some other platform in the
group. Then, in our current implementation, this im-
age is transmitted back to the querying platform only
if its position uncertainty is smaller than the position
uncertainty of the querying platform, i. e.:

(P)ii < α(PQ)ii , i = 1, 2, 3 (12)

where (A)i j is the member from the ith row and jth col-
umn of some matrix A, and α is a constant satisfying
0 < α ≤ 1. Naturally, other criteria may be applied as
well.

The chosen images, satisfying the above condition are
transmitted to the querying platform, along with their
attached navigation data. In addition, a transition ma-
trix between the transmitted images, should more then
one image is transmitted by the same platform, is sent.
In case the replying platform has already participated
in at least one multi-platform update of any platform in
the group, its thread in the graph will contain at least
one node. Therefore, transition matrices bridging the
navigation data attached to the images being transmit-
ted in the current multi-platform update to the closest
nodes in this thread are also sent.

As an example, consider the scenario shown in Fig. 5.
Fig. 6 presents the construction details of the graph for
this scenario, for each of the executed three-view mea-
surement updates. Assume the first update, a+

3 , was ex-
ecuted, and focus on the second update, b+

3 . As shown
in Fig. 6(b), platform I transmits two images and naviga-
tion data, denoted by the nodes b−1 and b−2 in the graph.
However, in addition to the transmitted transition ma-
trix and process noise covariance matrix between these
two nodes, φb1→b2 and Qb1→b2 , the transition matrix and

noise covariance matrix between the nodes b2 and a3,
φb2→a3 and Qb2→a3 , are transmitted as well.

II

III

I

a1 a2 b3 c3

b1 b2 a3 c1

c2

Figure 5. Three-platform scenario

Upon receiving the transmitted images and the navi-
gation data, two best images are selected6, the cross-
covariance terms are calculated based on the local graph,
as discussed in Section 5, followed by computation of
all the relevant filter matrices: H3,H2,H1,A,B,D.

Next, the update of the querying platform is carried out
based on Section 4. Now, it is only required to update the
local graphs of all the platforms in the group by the per-
formed update event. The querying platform broadcasts
the following information: a) identity of the involved
platforms in the current update; b) time instances (or
some other identifiers) of the involved images; required
transition matrices of the involved images; c) a priori
and a posteriori covariance and cross-covariance ma-
trices; d) filter matrices K3,H3,H2 and H1. Then, each
platform updates its own graph representation.

The described-above process is summarized in Algo-
rithms 1 and 2. Algorithm 1 contains a protocol of ac-
tions carried out by the querying platform, while Algo-
rithm 2 provides the protocol of actions for the rest of
the platforms in the group.

Handling Platforms Joining or Leaving the Group

Whenever a platform joins an existing group of cooper-
ative platforms, it must obtain the graph describing the
history of multi-platform updates among the platforms
in the group. This graph may be transmitted to the join-
ing platform by one one of the platforms in the group.
Departure of a platform from the group does not require
any specific action.

An interesting scenario is one in which there are several
groups of cooperative platforms, and a platform has to
migrate from one group to another. Refer the former and
the latter groups as the source and destination groups.
For example, this might be the case when each coop-
erative group operates in a distinct location and there
is a need to move a platform within these groups. In
these scenarios the migrating platform has already a lo-
cal graph representing the multi-platform events of the

6The selection is according to some criteria, e. g., Eq. (12). Alterna-
tively, the proposed approach may be also applied on more than three
images.

3a+

3 1a aK H−

3 2a aK H−

3 3a aI K H−

I IIIII

1a−

2a−

3a−

1 2a aφ →

(a)

3a+

1a−

2a−

3a−

1b−

2b−

3b+

3 3b bI K H−

3 2b bK H−

3 1b bK H−

3b−

2 1a bφ →

1 2b bφ →

2 3b aφ →

I IIIII

(b)

3a+

1a−

2a−

3a−

1b−

2b−

3b+

1c −

2c−

3c−

3c+
3 3c cI K H−

3 2c cK H−

3 1c cK H−

3b−

3 3b cφ →3 1a cφ →

I IIIII

(c)

Figure 6. Graph update process: a) update event a+
3 ; b) update event b+

3 ; c) update event c+
3 .

Algorithm 1 Querying Platform Protocol
1: Notations: Q - Querying platform; A,B - two other platforms.
2: Broadcast current image IQ and current navigation data.
3: Receive a set of images and associated navigation data from other platforms. See steps 2-11 in Algorithm 2.
4: Choose two best images IA, IB transmitted by platforms A and B, respectively.
5: First graph update:
• Add a new node for each image in the appropriate thread (A,B and Q).
• Denote these three new nodes in threads A,B and Q as β1, β2 and β3, respectively.
• Connect each such node to previous and next nodes (if exist) in its thread by directed arcs associated with the

transition matrices and with the process noise covariance matrices.
6: Calculate cross-covariance terms based on the local graph.
7: Calculate the measurement z and the filter matrices K3,H3,H2,H1,D based on the three images IA, IB, IQ and the

attached navigation data.
8: Perform navigation update on platform Q.
9: Final graph update:
• Add an update-event node, denoted by α, in the thread Q.
• Connect the nodes β1, β2 and β3 to the update-event node α by directed arcs weighted as −K3H1,−K3H2 and

I − K3H3, respectively. Associate also measurement noise covariance matrix to each arc.
• Store a priori and a posteriori covariance and cross-covariance terms (e. g. in the nodes β1, β2, β3 and α).

10: Broadcast update event information.

Algorithm 2 Replying Platform Protocol
1: Notations: Q - Querying platform; A - current platform.
2: if a query image and its navigation data are received then
3: Search repository for images containing the same scene.
4: Choose images that satisfy the navigation uncertainty criteria (12).
5: For each chosen image, captured at some time instant k, look among all the nodes in thread A in the local graph,

for two nodes with time l and m that are closest to k, such that l < k < m.
6: Calculate transition matrices φl→k and φk→m and noise covariance matrices Ql:k and Qk:m.
7: if more than one image was chosen in step 4 then
8: Calculate transition matrices and noise covariance matrices between the adjacent chosen images.
9: end if
10: Transmit the chosen images, their navigation data and the calculated transition and noise covariance matrices

to the querying platform Q.
11: end if
12: if update message is received from Q then
13: Update local graph following steps 5 and 9 in Algorithm 1.
14: end if

11source group, while the destination group has its own
graph.

These two graphs have no common threads only when
each platform is assigned only to one group, and, in ad-
dition, no migration between the groups have occurred
in the past. In any case, upon receiving the graph of the
destination group, the joining platform may fuse the
two graphs and broadcast the updated graph to all the
platforms in the destination group.

Efficient Calculation of Transition and Process Noise Covari-
ance Matrices

The problem this section refers to is of calculating the
transition matrix and the process noise covariance ma-
trix between some two time instances which are un-
known a priori. These matrices participate in calculation
of the cross-covariance terms, as explained in Section 5.
We first handle calculation of transition matrices. Re-
call that each image stored in the platform repository is
associated with navigation parameters taken when the
image was captured. In particular, the transition matrix
from the previously-stored image time instant to cur-
rent image that is about to be added to the repository is
calculated.

A naive approach for calculating the transition matrix
φi→ j between some image i to some other image j in the
repository would be based on

φi→ j = φ j−1→ j · . . . · φi→i+1 (13)

However, a much more time-efficient alternative is to
calculate φi→ j using transition matrices bridging be-
tween several images time instances. For example, if
we had available the matrix φi→ j−1, the computation of
φi→ j would require multiplication of only two matrices:
φi→ j = φ j−1→ j · φi→ j−1. This concept may be obtained by
maintaining a skip list [23] type database. The lowest
level is comprised of the stored images and its associ-
ated navigation data, including the transition matrices
between adjacent stored images. This level is a pos-
sible implementation of the repository maintained by
all/some platforms. Each next level is constructed by
skipping several nodes in the lower level, and assign-
ing the appropriate transition matrix, transferring from
previous node to next node in the same level. No other
data is stored outside the first level nodes.

An example of this concept is given in Fig. 7, in which
every two nodes in some level contribute a node in the
next level. Thus, for instance, calculation ofφ2→5 may be
performed by searching for the appropriate route in the
skip list formation, which will yield φ2→5 = φ3→5φ2→3,
instead of carrying out the three matrix multiplications
φ2→5 = φ4→5φ3→4φ2→3.

The process noise covariance matrix between any two

time instances may be efficiently calculated following a
similar approach. For example, Qi: j, for general i and j,
i < j is given by

Qi: j = Q j−1: j + Φ j−1→ jQ j−2: j−1Φ
T
j−1→ j +

+ · · · + Φi+1→ jQi:i+1Φ
T
i+1→ j

However, if each node in the skip list database contains
the noise covariance matrix between the previous node
in the same level, Qi: j may be also calculated, for in-
stance, as Qi: j = Q j−1: j + Φ j−1→ jQi: j−1Φ

T
j−1→ j.

1

- Image 1

- t1

- Nav. data

2 3

- Image 3

- t3

-

- Nav. data

2 3 2:3,Qφ →

4

- Image 4

- t4

-

- Nav. data

3 4 3:4,Qφ →

5

- Image 5

- t5

-

- Nav. data

4 5 4:5,Qφ →

1

1 3 1:3,Qφ →

3

3 5 3:5,Qφ →

5

1

1 5 1:5,Qφ →

5

n

2 2:,n n n nQφ − → −

n

- Image n

- tn

-

- Nav. data

1 1:,n n n nQφ − → −

- Image 2

- t2

-

- Nav. data

1 2 1:2,Qφ →

4 4:,n n n nQφ − → −

n

1

1 1:,n nQφ →

n

Figure 7. Skip list repository database example.

Incorporating Other Measurements

The proposed graph-based technique for calculating
cross-covariance terms may be also applied when, in ad-
ditional to the multi-platform three-view updates, other
measurements should be incorporated as well. For in-
stance, each platform can apply epipolar-geometry con-
straints based on images captured by its own camera
(e. g. [24]). Moreover, some of the platforms may be
equipped with additional sensors, or additional infor-
mation might be available (e. g. DTM).

For simplicity, we assume at this point a standard
measurement model for these additional measurement
types, i. e. z = HX + v. These measurement updates
will be termed in this section as basic measurement up-
dates. Next, it is shown how the basic measurements
may be incorporated with the proposed approach for
cooperative localization and navigation.

Since a standard measurement model was assumed, the
a posteriori estimation error is given by

X̃+
= (I − KH)X̃− − Kv (14)

Going back to the three-view measurement model, con-
sider the simple scenario shown in Fig. 3. Assume a
single basic update was performed between the first
update event, at a3, and the second update event, at b3.
Denote by γ the time instant of this additional update,

γ ∈ (a3, b3). X̃−b3
is no longer inertially propagated from

X̃+
a3

, but instead may be expressed as

X̃−b3
= φγ→b3 X̃+

γ +ωγ:b3 (15)

Based on Eq. (14), X̃−b3
may be expressed as

φγ→b3

[
(I − KγHγ)

(
φa3→γX̃+

a3
+ωa3:γ

)
− Kγv

]
+ωγ:b3

or, alternatively:

X̃−b3
= φ∗a3→b3

X̃+
a3

+ω∗a3:b3
(16)

where φ∗a3→b3
� φγ→b3 (I − KγHγ)φa3→γ is the equivalent

transition matrix and ω∗a3:b3
� φγ→b3 (I − KγHγ)ωa3:γ −

φγ→b3 Kγv +ωγ:b3 is the equivalent noise term with noise
covariance Q∗a3:b3

given by

φγ→b3 (I − KγHγ)Qa3:γ

[
φγ→b3 (I − KγHγ)

]T
+

+φγ→b3 KγRKT
γφ

T
γ→b3

+ Qγ:b3

where R � E[vvT].

Thus, for example, P−b3b1
is given by (cf. Eq. (11)):

P−b3b1
= Φ∗a3→b3

{(
I − Ka3 Ha3

)
P−a3a2
−

−Ka3 Ha2 P−a2a2
− Ka3 Ha1 P−a1a2

}
ΦT

a2→b1

In the general case, there might be a number of basic up-
dates in each of the platforms. However, these updates
are treated in a similar manner, by calculating the equiv-
alent transition matrix Φ∗ and noise covariance matrix
Q∗ between the time instances that participate in the
three-view measurement and updating accordingly the
repository database (cf. Section 6).

7. Simulation and Experimental Results

In this section the proposed approach for vision-aided
cooperative navigation is studied in two different sce-
narios. First, a formation flying scenario is considered,
involving two platforms, a leader and a follower. Sta-
tistical results, based on simulated navigation data and
synthetic imagery are presented. Next, a holding pat-
tern scenario is demonstrated in an experiment using
real imagery and navigation data.

Implementation Details

Navigation Simulation— The navigation simulation for
each of the two platforms consists of the following steps
[24]: (a) Trajectory generation; (b) velocity and angular
velocity increments extraction from the created trajec-
tory; (c) inertial measurement unit (IMU) error defini-
tion and contamination of pure increments by noise;
and (d) strapdown calculations. The strapdown mecha-
nism provides, at each time step, the calculated position,

velocity and attitude of the platform. Each platform
is handled independently based on its own trajectory.
Once a platform obtains three images with a common
overlapping area, the developed algorithm is executed:
cross-covariance terms are computed, followed by esti-
mation of the state vector. The estimated state vector is
then used for updating the navigation solution and the
IMU measurements (cf. Fig. 1). Next, the update infor-
mation is stored and delivered to the second platform
in the group.

Image Processing Module— Given three images with a
common overlapping area, the image processing phase
includes [20] features extraction from each image us-
ing the SIFT algorithm [25] and computation of sets of

matching pairs between the first two images,
{
xi

1, x
i
2

}N12

i=1
,

and between the last two images,
{
xi

2, x
i
3

}N23

i=1
, where

xi = (xi, yi)T are the image coordinates of the ith feature.
This computation proceeds as follows. First, the features
are matched based on their descriptor vectors (that were
computed as part of the SIFT algorithm), yielding the

sets
{
xi

1, x
i
2

}Ñ12

i=1
,
{
xi

2, x
i
3

}Ñ23

i=1
. Since this step occasionally

produces false matches (outliers), the RANSAC algo-
rithm [26] is applied over the fundamental matrix [27]
model in order to reject the existing false matches, thus

obtaining the refined sets
{
xi

1, x
i
2

}N12

i=1
and

{
xi

2, x
i
3

}N23

i=1
. The

fundamental matrices are not used in further computa-
tions.

The next step is to use these two sets for calculating
matching triplet features, i. e. matching features in the
three given images. This step is performed by matching

all x1 ∈
{
xi

1, x
i
2

}N12

i=1
with all x3 ∈

{
xi

2, x
i
3

}N23

i=1
, yielding a set

of matching triplets
{
xi

1, x
i
2, x

i
3

}N123

i=1
. The matching process

includes the same steps as described above.

When using synthetic imagery data, a set of points in the
real-world are randomly drawn. Then, taking into ac-
count the camera motion, known from the true platform
trajectory, and assuming specific camera calibration pa-
rameters, the image coordinates of the observed real-
world points are calculated using a pinhole projection
[27] at the appropriate time instances. See, for example,
Ref. [28] for further details. Consequently, a list of fea-
tures for each time instant of the three time instances,
which are manually specified, is obtained:

{
xi

1

}
,
{
xi

2

}
and{

xi
3

}
. The mapping between these three sets is known,

since these sets were calculated using the pinhole pro-
jection based on the same real-world points. Thus, in

order to find the matching sets
{
xi

1, x
i
2, x

i
3

}N123

i=1
,
{
xi

1, x
i
2

}N12

i=1

and
{
xi

2, x
i
3

}N23

i=1
it is only required to check which features

are within the camera field of view at all the three time

13instances.

Finally, the calculated sets of matching features are
transformed into sets of matching LOS vectors. A LOS
vector, expressed in the camera system for some fea-
ture x = (x, y)T, is calculated as qC = (x, y, f)T, where
f is the camera focal length. As a result, three match-

ing LOS sets are obtained:
{
qC1

1i
,qC2

2i
,qC3

3i

}N123

i=1
,
{
qC1

1i
,qC2

2i

}N12

i=1

and
{
qC2

2i
,qC3

3i

}N23

i=1
. When handling real imagery, the cam-

era focal length, as well as other camera parameters,
are found during the camera calibration process. In ad-
dition, a radial distortion correction [27] was applied
to camera-captured images, or alternatively, to the ex-
tracted feature coordinates.

Formation Flying Scenario - Statistical Results

In this section the proposed method for vision-aided co-
operative navigation is applied on a formation flying
scenario, comprised of a leader platform and a single
follower platform. Each platform is equipped with a
camera and an IMU. In this scenario, the leader’s IMU
is of a better quality than the follower’s IMU. It is also
assumed that the leader’s initial navigation errors are
small compared to those of the follower. Table 1 sum-
marizes the assumed initial navigation errors and IMU
errors for the two platforms.

Both platforms perform the same trajectory, which is a
straight and level north-headed flight at a 100 m/s ve-
locity. The mean height above ground level is 2000 m.
The distance between the leader and follower platforms
is 2000 meters (the follower is behind the leader), i. e. 2
seconds delay. The synthetic imagery data was obtained
by assuming a 200×300 camera field of view, focal length
of 1570 pixels, and image noise of 0.5 pixel. The ground
landmarks were randomly drawn with a height varia-
tion of ±200 meters relative to the mean ground level.

The follower was updated using the proposed method
every 10 seconds, applying the same measurement
schedule as in Fig. 3 (platform I in the figure is the
leader, platform III is the follower). The first update was
carried out after 27 seconds of inertial flight, while the
leader platform performed an inertial flight the whole
time duration. The true translation motion between any
three views participating in the same measurement is
T12 = 200 meters and T23 = 400 meters, in north direc-
tion.

In each update, two of the three images7, that participate
in the measurement, were taken from the leader. Since
the two platforms perform the same trajectory, with a
2 seconds time delay, these two images have been ac-
quired by the leader 2 seconds before the measurement.

7Since in this section a synthetic imagery data is used, the term “im-
age” refers to a synthetic data, e. g. features coordinates.

Therefore they were stored in the leader’s repository
and retrieved upon request. The cross-covariance terms
were calculated in each update according to Eq. (11).

The Monte-Carlo results (1000 runs) for the follower
platform are presented in Fig. 8, in terms of the mean
navigation error (µ), standard deviation (σ) and square
root covariance of the filter. In addition, the results are
compared to inertial navigation of the follower. As seen,
the position and velocity errors (Figs. 8(a) and 8(b)) are
significantly reduced, compared to the inertial scenario,
in all axes. The bias state is estimated also in all axes,
while the drift state is only partially estimated. The
updates yielded a mild reduction in Euler angle errors
as well.

A comparison of the follower navigation errors to the
leader navigation errors, given in Fig. 9, reveals further
insight. Since leader images and navigation data with a
2 second delay were used for updating the follower, the
comparison should be made between the follower navi-
gation errors and the leader navigation errors 2 seconds
back in time.

The position errors (and velocity errors to a less ex-
tent) of the follower are lower than those of the leader
(Fig. 9(a)), despite the fact that the leader has a consid-
erably better navigation system, and the follower is up-
dated solely based on the leader’s navigation data. The
reason for this phenomenon is that the measurement z,
given in Eq. (4), is a function of both the follower’s and
the leader’s navigation parameters, while only the fol-
lower is actually updated (cf. Section 4). Carrying out
the updates on both platforms, using the filter formula-
tion discussed in Section 4, will yield an improvement
also in the leader’s navigation errors [7]. Assuming the
measurement schedule given in Fig. 3, it is guaranteed
that the graph will remain acyclic even if both of the
platforms are updated each measurement.

It is also worth mentioning that should the leader per-
form self-updates based on the available sensors and
information (e. g. epipolar constraints, GPS, DTM), im-
proved navigation errors will be obtained not only in
the leader but also in the follower navigation system.

The importance of incorporating the cross-covariance
terms in the update process is clearly evident when com-
paring the results of Fig. 8 with Fig. 10, that presents
Monte-Carlo results when the cross-covariance terms
are neglected. As seen in Fig. 10, the position and veloc-
ity errors are biased, mainly along the flight heading.

Holding Pattern Scenario - Experiment Results

In this section the proposed method is demonstrated in
an experiment. The experiment setup consists of a single
ground vehicle, attached with a 207MW Axis network

Table 1. Initial Navigation Errors and IMU Errors in Formation Flying Scenario

Parameter Description Leader Follower Units
∆P Initial position error (1σ) (10, 10, 10)T (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.1, 0.1, 0.1)T (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (1, 1, 1)T (10, 10, 10)T deg/hr

b IMU bias (1σ) (1, 1, 1)T (10, 10, 10)T mg

0 50 100 150
0

100
200
300

N
or

th
 [m

]

0 50 100 150
0

100
200
300

E
as

t [
m

]

0 50 100 150
0

100
200
300

A
lt

[m
]

Time [sec]

µ σ Sqrt cov. Inertial

(a)Position errors.

0 50 100 150
−5

0

5

10

V
N

 [m
/s

]

0 50 100 150
−5

0

5

10

V
E
 [m

/s
]

0 50 100 150
−5

0

5

10

V
D

 [m
/s

]

Time [sec]

µ σ Sqrt cov. Inertial

(b)Velocity errors.

0 50 100 150
−0.2

0
0.2
0.4

Φ
 [d

eg
]

0 50 100 150
−0.2

0
0.2
0.4

Θ
 [d

eg
]

0 50 100 150
−0.2

0
0.2
0.4

Ψ
 [d

eg
]

Time [sec]

µ σ Sqrt cov. Inertial

(c)Euler angles errors.

0 50 100 150
−5

0
5

10
15

d x [d
eg

/h
r]

0 50 100 150
0

5

10

15

d y [d
eg

/h
r]

0 50 100 150
−5

0
5

10
15

Time [sec]

d z [d
eg

/h
r]

0 50 100 150
−5

0
5

10
15

b x [m
g]

0 50 100 150
−5

0
5

10
15

b y [m
g]

0 50 100 150
0

5

10

15

b z [m
g]

Time [sec]

µ σ Sqrt cov.

(d)Drift and bias estimation errors.

Figure 8. Formation flying scenario - Monte Carlo (1000 runs) results; Follower navigation errors compared to
inertial navigation: Reduced position and velocity errors in all axes. Bias estimation to the leader platform’s bias
levels (see also Fig. 9).

camera8 and MTi-G Xsens IMU/INS9. The vehicle was
manually commanded using a joystick, while the cam-
era captured images perpendicular to the motion head-
ing. As in [19], the IMU and imagery data was recored
for post-processing at 100 Hz and 15 Hz, respectively.
These two sources of data were synchronized [19].

8http://www.axis.com/products/cam 207mw/index.htm.
9http://www.xsens.com/en/general/mti-g.

The vehicle performed two different trajectories. The
IMU and the camera were turned off between these two
trajectories, thereby legitimating to treat each trajectory
as if it was performed by a different vehicle, equipped
with a similar hardware (IMU and camera), as opposed
to Section 7, where one of the vehicles was assumed
to be equipped with a better navigation system. Thus,
we have two ground vehicles, each performing its own
trajectory and recording its own IMU and imagery data.

15

0 50 100 150
0

100
200
300

N
or

th
 [m

]

0 50 100 150
0

100
200
300

E
as

t [
m

]

0 50 100 150

0

100

200

A
lt

[m
]

Time [sec]

µ σ Sqrt cov. σ Leader

(a)Position errors.

0 50 100 150
−2

0

2

4

V
N

 [m
/s

]

0 50 100 150
−2

0

2

4

V
E
 [m

/s
]

0 50 100 150
−2

0

2

4

V
D

 [m
/s

]

Time [sec]

µ σ Sqrt cov. σ Leader

(b)Velocity errors.

0 50 100 150
−0.1

0
0.1
0.2

Φ
 [d

eg
]

0 50 100 150

0

0.2

0.4

Θ
 [d

eg
]

0 50 100 150

0

0.2

0.4

Ψ
 [d

eg
]

Time [sec]

µ σ Sqrt cov. σ Leader

(c)Euler angles errors.

0 50 100 150
−5

0
5

10
15

b x [m
g]

0 50 100 150
−5

0
5

10
15

b y [m
g]

0 50 100 150
0

5

10

15

b z [m
g]

Time [sec]

µ σ Sqrt cov. σ Leader

(d)Bias estimation errors.

Figure 9. Formation flying scenario - Monte Carlo (1000 runs) results; Follower navigation errors compared to
navigation errors of the leader: Position and velocity errors are reduced below the leader level of errors. Bias
estimation to the leader’s bias levels (1 mg). Euler angles are also reduced, however do not reach the leader’s levels
due to poor estimation of the drift state (cf. Fig. 8(d)).

0 50 100 150
−400
−200

0
200
400

N
or

th
 [m

]

0 50 100 150

0

200

400

E
as

t [
m

]

0 50 100 150

0

200

400

A
lt

[m
]

Time [sec]

µ σ Sqrt cov.

(a)Position errors.

0 50 100 150
−5

0

5

10

V
N

 [m
/s

]

0 50 100 150
−5

0

5

10

V
E
 [m

/s
]

0 50 100 150
−5

0

5

10

V
D

 [m
/s

]

Time [sec]

µ σ Sqrt cov.

(b)Velocity errors.

Figure 10. Formation flying scenario - Monte Carlo (1000 runs) results; Follower navigation errors when cross-
covariance terms are neglected: Biased estimation along the motion heading.

The only available ground-truth data is the manually
measured trajectories, since the experiment was carried
out indoors and GPS was therefore unavailable [19]. The
two trajectories represent a holding pattern scenario.
Each platform performs the same basic trajectory: vehi-
cle I performs this basic trajectory twice, while vehicle II
performs the basic trajectory once, starting from a differ-
ent point along the trajectory, and reaching the starting
point of vehicle I after about 26 seconds. The reference
trajectories of vehicle I and II are shown in Fig. 11. The
diamond and square marks denote the manual mea-
surements of the vehicles position. Each two adjacent
marks of the same platform are connected using a linear
interpolation.

The proposed method for multi-platform (MP) three-
view based updates was applied several times in the
experiment. In addition, the method was executed in
a self-update mode, in which all the images are cap-
tured by the same vehicle [19]. The cross-covariance
terms in this case were computed exactly as in the case
of multi-platform updates. A schematic sketch of the
measurements schedule is given in Fig. 12. Table 2 pro-
vides further information, including the time instances
of each participating triplet of images in the applied
measurements.

As seen, vehicle I is updated twice using data obtained
from vehicle II (measurements c and e), and four times
based on its own images (measurements f,g,h and i).
Vehicle II is updated three times utilizing the informa-
tion received from vehicle I (measurements a,b and d).
The vehicles performed inertial navigation elsewhere,
by processing the recorded IMU data.

II

I
f1 f2

b3a3c1 c2

c3a1 a2 b1 b2g1 g2

d3

d1 d2

e1 e2

h1 h2

II

I

f3 g3e3 h3 i3i1 i2

Figure 12. Schematic sketch of the measurement sched-
ule in the experiment. Further information regarding
each measurement is given in Table 2.

The images participating in each three-view update
were manually identified and chosen. Fig. 13 shows, for
example, the three images of measurement a: images
13(a) and 13(b) were captured by vehicle I, while im-
age 13(c) was captured by vehicle II. Features that were
found common to all the three images (triplets) are also
shown in the figure. Note that two objects (a bottle, and
a bag) that appear in images 13(a) and 13(b) are missing
in image 13(c). These two objects were removed be-

tween the two trajectories. Therefore, as seen in Fig. 13,
these two objects are not represented by matched triplets
of features (but can be represented by matched pairs of
features between the first two views). Additional details
regarding the image processing phase in the experiment
can be found in [20].

The experiment results are given in Fig. 14: Figs. 14(a)
and 14(b) show the position errors for vehicle I and
II, while Figs. 14(c) and 14(d) show the velocity errors.
Each figure consists of three curves: navigation error,
square root covariance of the filter, and navigation er-
ror in an inertial scenario (given for reference). The
measurement type (MP-update or self-update) is also
denoted in the appropriate locations.

The position error was calculated by subtracting the
navigation solution from the true trajectories (cf.
Fig. 11). In a similar manner, the velocity error was
computed by subtracting the navigation solution from
the true velocity profiles. However, since velocity was
not measured in the experiment, it was only possible to
obtain an approximation of it. The approximated ve-
locity was calculated assuming that the vehicles moved
with a constant velocity in each phase10.

As seen from Fig. 14(a), the position error of vehicle
I was nearly nullified in all axes as the result of the
first update, which was of MP type. The next update
(also MP) caused to another reduction in the north po-
sition error. After completing a loop in the trajectory,
it became possible to apply the three-view updates in a
Self-update mode for vehicle I, i. e. all the three images
were captured by vehicle I. In the overall, due to the ap-
plied 6 three-view updates, the position error of vehicle
I has been confined to around 50 meters in north and
east directions, and 10 meters in altitude. As a compari-
son, the position error of vehicle I in an inertial scenario
reaches, after 150 seconds of operation, 900, 200 and 50
meters in north, east and down directions, respectively.
The position error of vehicle II (cf. Fig. 14(b)) has been
also dramatically reduced as the result of the three-view
multi-platform updates. For example, after the third
update (t ≈ 60 seconds), the position error was nearly
nullified in north direction and reduced from 50 to 20
meters in east direction. One can observe that the veloc-
ity errors are also considerably reduced in all axes (cf.
Figs. 14(c) and 14(d)).

8. Conclusions

This paper presented a new method for distributed
vision-aided cooperative navigation based on three-
view geometry constraints. Each platform was assumed
to be equipped with an INS and a camera. The plat-

10The phase duration and the translation that each vehicle has under-
gone in each phase are known from analyzing the IMU measurements
and from the true trajectories.

17

0 50 100 150 200
0

2

4

N
or

th
 [m

]

0 50 100 150 200
0

5

10

E
as

t [
m

]

0 50 100 150 200
−2

0

2

H
ei

gh
t [

m
]

Time [sec]

I II

(a)

0
2

4
6

0

2

4
−1

0

1

2

H
ei

gh
t [

m
]

East [m]North [m]

I
II

Starting point of II

Starting point of I

(b)

Figure 11. Trajectories of vehicles I and II in the experiment. Diamond and square marks indicate manually-
measured vehicle locations. Circle and star marks in (b) denote the starting point of each platform.

Table 2. Measurement details in the experiment.

Measurement notation Type Querying vehicle t3 [sec] Replying vehicle t1, t2 [sec]
a MP update II 32.6 I 8.4, 14.2

b MP update II 53.2 I 35.9, 39.1

c MP update I 60.0 II 2.3, 5.6

d MP update II 60.6 I 47.9, 49.2

e MP update I 66.8 II 10.3, 12.1

f Self update I 81.1 I 0.3, 1.3

g Self update I 97.0 I 22.8, 24.3

h Self update I 124.7 I 54.3, 55.6

i Self update I 142.0 I 70.8, 72.1

(a) (b) (c)

Figure 13. Images participating in measurement a and matched triplets of features. Images (a) and (b) were
captured by vehicle I; Image (c) was captued by vehicle II. The images (a),(b) and (c) are represented in Fig. 12 as
a1, a2 and a3.

forms were also assumed to be capable of communicat-
ing between themselves. While traditional approaches
for cooperative localization and navigation utilize rel-
ative pose measurements, in the proposed method a
measurement is formulated whenever the same general
scene is observed by different platforms.

Three images of a common region are required for each
measurement. These images are not necessarily cap-
tured at the same time. All, or some, of the platforms
maintain a local repository of captured images, that are
associated with some navigation parameters. In a typ-
ical scenario, a platform captures an image and broad-
casts it, along with its current navigation solution, to

0 50 100 150
−50

0
50

100
150

N
or

th
 [m

]

0 50 100 150
−50

0
50

100
150

E
as

t [
m

]

0 50 100 150
−10

0
10
20
30

H
ei

gh
t [

m
]

Time [sec]

Nav. error Sqrt. Cov. Inertial MP Self

(a)Position errors - vehicle I

0 20 40 60 80 100
−50

0

50

100

N
or

th
 [m

]

0 20 40 60 80 100

0

100

200

E
as

t [
m

]

0 20 40 60 80 100
−20

0
20
40

H
ei

gh
t [

m
]

Time [sec]

Nav. error Sqrt. Cov. Inertial MP

(b)Position errors - vehicle II

0 50 100 150
−5

0

5

10

V
N

0 50 100 150
−2

0

2

4

V
E

0 50 100 150
−1

0

1

V
D

Time [sec]

Nav. error Sqrt. Cov. Inertial MP Self

(c)Velocity errors - vehicle I

0 20 40 60 80 100
−2

0

2

4

V
N

0 20 40 60 80 100

0

5

10

V
E

0 20 40 60 80 100
−0.5

0

0.5

1

V
D

Time [sec]

Nav. error Sqrt. Cov. Inertial MP

(d)Velocity errors - vehicle II

Figure 14. Position and velocity errors of vehicles I and II in the experiment.

other platforms in the group, inquiring if they have pre-
viously captured images containing the same region.
Upon receiving such a query, each platform performs
a check in its repository looking for appropriate im-
ages. Among these images, only images with a smaller
navigation uncertainty compared to the uncertainty in
the navigation data of the query image, are transmitted
back.

The currently-captured image and two of the transmit-
ted images, along with the attached navigation parame-
ters allow to update the navigation system of the broad-
casting platform. The navigation parameters associated
with the three images participating in the same mea-
surement may be correlated. Since the identity of the
platforms that captured these images and the capture
time of the images is unknown a priori, a graph-based
technique was applied for on-demand calculation of the
required correlation terms. The graph is locally main-
tained by each platform in the group. After carrying out
a multi-platform update, the relevant update informa-
tion is broadcasted to the platforms in the group, which

then independently update their own copy of the graph.

The proposed method was studied in a simulated en-
vironment and in an experiment. Statistical results are
presented, based on simulated navigation and synthetic
imagery data, for a leader-follower scenario, in which
the leader is equipped with a higher quality INS com-
pared to the follower INS. The developed method al-
lowed to reduce the rapidly-developing navigation er-
rors of the follower to the level of errors of the leader.
A holding pattern scenario is demonstrated in an exper-
iment, involving two ground vehicles, equipped with
identical inertial measurement units and cameras. Sig-
nificant reduction in the navigation errors of both of
the vehicles was obtained as a result of activating the
proposed method.

References

[1] Madhavan, R., Fregene, K. and Parker, L.
E.,“Distributed Cooperative Outdoor Multirobot
Localization and Mapping,” Autonomous Robots,

19Vol. 17, 2004, pp. 23–29.

[2] Nettletona, E., Thrun, S., Durrant-Whyte, H. and
Sukkarieh, S.,“Decentralised SLAM with Low-
Bandwidth Communication for Teams of Vehicles,”
Proceedings of the International Conference on Field and
Service Robotics, Lake Yamanaka, Japan, 2003.

[3] Kim, B., Kaess, M., Fletcher, L., Leonard, J.,
Bachrach, A., Roy, N. and Teller, S.,“Multiple Rel-
ative Pose Graphs for Robust Cooperative Map-
ping,” Proceedings of the IEEE International Confer-
ence on Robotics and Automation, Anchorage, Alaska,
May 2010.

[4] Lazaro, M. T. and Castellanos, J. A.,“Localization of
Probabilistic Robot Formations in SLAM,” Proceed-
ings of the IEEE International Conference on Robotics
and Automation, Anchorage, Alaska, May 2010.

[5] Shaferman, V. and Shima, T.,“Unmanned Aerial
Vehicles Cooperative Tracking of Moving Ground
Target in Urban Environments,” Journal of Guidance,
Control and Dynamics, Vol. 31, No. 5, 2008, pp. 1360–
1371.

[6] Smaili, C., Najjar, M. E. E. and Charpillet, F.,“Multi-
sensor Fusion Method Using Bayesian Network for
Precise Multi-vehicle Localization,” Proceedings of
the IEEE International Conference on Intelligent Trans-
portation Systems, Beijing, China, 2008, pp. 906–911.

[7] Roumeliotis, S. I. and Bekey, G. A.,“Distributed
Multirobot Localization,” IEEE Transactions on
Robotics and Automation, Vol. 18, No. 5, 2002,
pp. 781–795.

[8] Kurazume, R., Nagata, S. and Hirose,
S.,“Cooperative Positioning with Multiple
Robots,” Proceedings of the IEEE International
Conference on Robotics and Automation, San Diego,
CA, May 1994, pp. 1250–1257.

[9] Martinelli, A., Pont, F. and Siegwart, R.,“Multi-
Robot Localization Using Relative Observations,”
Proceedings of the IEEE International Conference on In-
telligent Robots and Systems, Barcelona, Spain, 2005,
pp. 2797–2802.

[10] Caglioti, V., Citterio, A. and Fossati,
A.,“Cooperative, Distributed Localization in
Multi-robot Systems: a Minimum-entropy Ap-
proach,” IEEE Workshop on Distributed Intelligent
Systems, 2006, pp. 25–30.

[11] Knuth, J. and Barooah, P.,“Distributed collabora-
tive localization of multiple vehicles from relative
pose measurements,” Forty-Seventh Annual Allerton
Conference, Illinois, USA, 2009, pp. 314–321.

[12] Nerurkar, E. D., Roumeliotis, S. I. and Martinelli,
A.,“Distributed Maximum A Posteriori Estimation
for Multi-robot Cooperative Localization,” Proceed-
ings of the IEEE International Conference on Robotics
and Automation, Kobe, Japan, 2009, pp. 1402–1409.

[13] Nerurkar, E. D. and Roumeliotis, S. I.,“Multi-
Centralized Cooperative Localization under Asyn-
chronous Communication,” Department of Com-
puter Science and Engineering, University of Min-
nesota, Technical Report, March 2010.

[14] Howard, A., Mataric, M. J. and Sukhatme, G.
S.,“Putting the ‘I’ in ‘Team’ - an Ego-Centric Ap-
proach to Cooperative Localization,” Proceedings of
the IEEE International Conference on Robotics and Au-
tomation, Taipei, Taiwan, 2003, pp. 868–874.

[15] Karam, N., Chausse, F., Aufrere, R. and Chapuis,
R.,“Localization of a Group of Communicating Ve-
hicles by State Exchange,” Proceedings of the IEEE
International Conference on Intelligent Robots and Sys-
tems, Beijing, China, 2006, pp. 519–524.

[16] Sharma, R. and Taylor, C.,“Cooperative Navigation
of MAVs In GPS Denied Areas,” Proceedings of the
IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems, Seoul, Korea,
2008, pp. 481–486.

[17] Mariottini, G. L., Pappas, G., Prattichizzo, D.
and Daniilidis, K.,“Vision-based Localization of
Leader-Follower Formations,” Proceedings of the
IEEE International Conference on Decision and Con-
trol, Seville, Spain, 2005, pp. 635–640.

[18] Montesano, L., Gaspar, J., Santos-Victor, J. and
Montano, L.,“Fusing vision-based bearing mea-
surements and motion to localize pairs of robots,”
ICRA Workshop on Cooperative Robotics,, Barcelona,
Spain, 2005.

[19] Indelman, V., Gurfil, P., Rivlin, E. and Rotstein, H.,
“Mosaic Aided Navigation: Tools, Methods and
Results,” IEEE/ION PLANS, CA, USA, May 2010,
pp. 1212–1225.

[20] Indelman, V., “Navigation Performance Enhance-
ment Using Online Mosaicking,” PhD thesis, in
preparation, Technion, Israel.

[21] Merino, L., Wiklund, J., Caballero, F., Moe, A.,
Ramiro, J., Forssen, E., Nordberg, K. and Ollero,
A.,“Vision-Based Multi-UAV Position Estimation,”
IEEE Robotics and Automation Magazine, September
2006, pp. 53–62.

[22] Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H.,
“Real-Time Mosaic-Aided Aircraft Navigation: II.
Sensor Fusion,” Proceedings of the AIAA Guidance,
Navigation and Control Conference, Chicago, IL, USA,
2009.

[23] Pugh, W., “Skip Lists: A Probabilistic Alternative
to Balanced Trees,” Communications of the ACM,
Vol. 33, No. 6, 1990, pp. 668–676.

[24] Indelman, V., Gurfil, P., Rivlin, E. and Rotstein,H.,
“Navigation Aiding Based on Coupled Online Mo-
saicking and Camera Scanning,” Journal of Guid-
ance, Control and Dynamics, accepted.

[25] Lowe, D., “Distinctive Image Features from Scale-
Invariant Keypoints”, International Journal of Com-
puter Vision, Vol. 60, No. 2, November 2004, pp. 91–
110.

[26] Fischler, M. and Bolles, R., “Random Sample Con-
sensus: a Paradigm for Model Fitting with Appli-
cation to Image Analysis and Automated Cartog-
raphy,” Communications of the Association for Com-
puting Machinery, Vol. 24, 1981, pp. 381–395.

[27] Hartley, R. and Zisserman, A., “Multiple View Ge-
ometry,” Cambridge University Press, 2000.

[28] Gurfil, P. and Rotstein, H., “Partial Aircraft State
Estimation from Visual Motion Using the Subspace
Constraints Approach,” Journal of Guidance, Control
and Dynamics, Vol. 24, No. 5, July 2001, pp. 1016–
1028.

