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Abstract

Fast and reliable bundle adjustment is essential in many applications such as mobile
vision, augmented reality, and robotics. Two recent ideas to reduce the associated com-
putational cost are structure-less SFM (structure from motion) and incremental smooth-
ing. The former formulates the cost function in terms of multi-view constraints instead
of re-projection error, thereby eliminating the 3D structure from the optimization. The
latter was developed in the SLAM (simultaneous localization and mapping) community
and allows one to perform efficient incremental optimization, adaptively identifying the
variables that need to be recomputed at each step.

In this paper we combine these two key ideas into a computationally efficient bundle
adjustment method, and additionally introduce the use of three-view constraints to rem-
edy commonly encountered degenerate camera motions. We formulate the problem in
terms of a factor graph, and incrementally update a directed junction tree which keeps
track of the current best solution. Typically, only a small fraction of the camera poses
are recalculated in each optimization step, leading to a significant computational gain. If
desired, all or some of the observed 3D points can be reconstructed based on the opti-
mized camera poses. To deal with degenerate motions, we use both two and three-view
constraints between camera poses, which allows us to maintain a consistent scale dur-
ing straight-line trajectories. We validate our approach using synthetic and real-imagery
datasets and compare it to standard bundle adjustment, in terms of performance, robust-
ness and computational cost.

1 Introduction

In recent years several methods have been proposed for reducing the computational cost of
bundle adjustment (BA) when processing a large number of images. Among these, methods
that optimize the re-projection error cost function include [9], which proposes utilizing the
sparse secondary structure of the Hessian, [18] which constructs a skeletal graph of a small
subset of images and then incorporates the remaining images using pose estimation, and
[13], where the authors propose to decouple the BA problem into several submaps that can
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be efficiently optimized in parallel. A thorough review of different aspects in BA can be
found in [20].

This paper builds upon the recently introduced “structure-less” BA [6, 15, 16, 19], in
which the camera poses are optimized without including structure in the iterative optimiza-
tion procedure. In structure-less BA, the optimized cost function is based on multi-view
constraints, instead of the conventional approach of minimizing re-projection errors. If re-
quired, the entire observed scene structure, or any part of it, can be reconstructed based on
the optimized camera poses.

Early approaches suggested applying multi-view constraints for solving the SfM prob-
lem in a given sequence of images [3, 14]. The concept of avoiding structure estimation as
an intermediate step has been proposed in several works. [1] used trifocal tensors to con-
catenate sequential fundamental matrices in a consistent manner, while [22] proposed local
BA applied on a sliding window of triplets of images and correcting the image observations
instead of estimating the 3D points that they represent. In [21], SfM is solved using a con-
strained least squares optimization, with the overall re-projection errors minimized subject
to all independent two-view constraints.

While neither of the above methods have proposed a global optimization that is solely
based on multi-view constraints, they paved the way to structure-less bundle adjustment [6,
15, 16, 19]. In [6, 19], the magnitude of corrections to the image observations is minimized,
subject to satisfying the trifocal tensor and three-view constraints respectively. Rodríguez et
al. [15, 16] obtained a significant improvement in the computational complexity by avoiding
correcting the observations altogether.

This paper introduces an efficient and incremental structure-less bundle adjustment that
is applicable both to SfM and robotics in large-scale environments. The first key component
of the proposed method is a factor graph formulation for SfM problems, that allows applying
a recently-developed approach for incremental smoothing [7, 8]. Using that approach, incre-
mental optimization adaptively identifies which camera poses should be optimized. There-
fore, in contrast to previously proposed incremental SfM and BA methods [15, 22], only a
small portion of the camera poses is typically recalculated in each optimization step.

In addition, in this paper special attention is paid to degenerate camera configurations
such as co-linear camera centers. To that end, we use the recently-developed formulation
of three-view constraints [5], which represents all the independent equations stemming from
observing some unknown 3D point by three distinct views. Alternatively, one can apply
trifocal constraints [4, 12] within the same framework. In contrast to using only epipolar ge-
ometry constraints for structure-less bundle adjustment [15, 16], the three-view and trifocal
constraints allow consistent motion estimation even in a straight-line camera motion. Also,
as opposed to conventional BA, previous approaches for structure-less BA are prone to fail
due to degeneracies. In our approach, degeneracies are avoided by checking the condition of
the essential matrix which is used to obtain camera rotation and translation initialization.

2 Structure-Less BA and Incremental Smoothing

2.1 Structure-Less Bundle Adjustment

We adopt the structure-less bundle adjustment formulation in [6, 19], where the cost function
is written in terms of corrections made to the image observations, subject to satisfying ap-
plicable multi-view constraints. We consider a sequence of M views observing N 3D points,
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and denote the ith camera pose by xi and the measured and “fitted” image observations of the
jth observed 3D point by p j

i and p̂ j
i , respectively. The cost function is then

JSLB(x̂, p̂)
.
=

N

∑
i=1

M

∑
j=1

∥∥∥p j
i − p̂ j

i

∥∥∥2

Σ

−2λ
T h(x̂, p̂) (1)

with x̂ the estimated poses for all cameras, p̂ all observations across all views, Σ the measure-
ment covariance, and where ‖a‖

Σ

.
= aT Σ−1a denotes the squared Mahalanobis distance. In

Eq. (1), h .
=
[

hT
1 . . . hT

Nh

]
represents all multi-view constraints derived from the feature

correspondences in the given sequence of views. The notation SLB stands for structure-less
bundle adjustment. Each constraint hi is a function of several camera poses and the im-
age observations in the corresponding images. For simplicity, we assume a calibrated case,
although the uncalibrated scenario can be handled as well.

To substantially reduce the computational complexity we follow the technique intro-
duced in [15, 16], in that we avoid actually making corrections to the observations during
optimization. Hence, instead of (1) we minimize the following algebraic cost function,

JLBA(x̂,p)
.
=

Nh

∑
i=1
‖hi(x̂,p)‖2

Σi
(2)

where Nh is the number of constraints, and p are the uncorrected observations. The co-
variance matrices Σi in (2) are calculated as Σi = AT

i ΣAi, where Ai is the Jacobian of the
constraint hi with respect to corrections to the involved observations. The notation LBA
stands for light bundle adjustment.

The objective functions above are typically minimized using a Levenberg-Marquardt
non-linear optimization scheme, which necessitates linearizing the functions hi above as
well as re-computing the covariance matrices Σi. However, one can further reduce the com-
putational complexity by calculating the covariances Σi only once and keeping them fixed
throughout the entire optimization, which produces nearly-identical results.

2.2 Factor Graph Formulation and Incremental Smoothing
The second element of our approach is an incremental optimization scheme, borrowed from
recent work in SLAM [7, 8]. This can be best explained within a graphical model framework,
in particular using factor graphs [10], which we now review.

A factor graph is a bipartite graph G = (F ,X ,E) with two types of nodes: factor nodes
fα ∈ F and variable nodes, xi ∈ X . Edges eαi ∈ E between factor nodes and variable nodes
are present if and only if the factor fα involves the variable xi. In a non-linear least-squares
context, each factor fα represents a term in the objective function derived from the observa-
tions. Optimizing a cost function J thus corresponds to adjusting all the variables Xα so that
the error of the entire factor graph is minimized:

X̂ = argmin
X

( f (X )) = argmin
X ∏

α

fα(Xα)

As discussed in Section 3.2, in structure-less BA the variables xi are the camera poses
(X ≡ x) while the factors represent the multi-view constraints. Each new image contributes
factors that represent the added multi-view constraints between that image and the previously-
processed images. The factor graph therefore encodes multi-view constraints that have been
added for all these images.
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Representing the system to be optimized in terms of factor graphs does not alter the na-
ture of the underlying objective function. Indeed, linearizing the objective function can be
done by linearizing each factor (non-linear least-squares term) separately, yielding a factor
graph with linear Gaussian factors. Solving the resulting linear system can be seen as infer-
ence in a Gaussian factor graph. It can further be shown that the traditional QR or Cholesky
solvers correspond to variable elimination in the resulting factor graph [2].

However, in an incremental setting the graphical framework yields distinct advantages.
To be specific, performing a full batch optimization as each new view is processed is need-
lessly expensive. Typically, short-track feature matches encode valuable information for
camera poses of only the recent past images. On the other hand, observing feature points
seen previously by several views or re-observing a scene will typically involve optimizing
many more camera poses.

In order to perform these updates efficiently without duplicating computation, we use the
incremental smoothing algorithm introduced by Kaess et al. [8], which maintains a directed
junction tree, called a Bayes tree, encoding the posterior density for the entire structure-less
BA problem constructed so far. The key idea is to efficiently update only the subset of nodes
of the Bayes tree affected by newly-added factors or by relinearization of a subset of the
variables. This subset of variables is selected based on the magnitude of the update for each
variable, and back-substitution is stopped from traversing the Bayes tree after updates drop
below a threshold to improve efficiency. In order to enable efficient tree-based algorithms
to perform these computations, and to reduce computational overhead, this method groups
fully-connected variables into cliques that make up the nodes of the Bayes tree.

3 Incremental Light Bundle Adjustment (iLBA)
In this section we combine the two key ideas presented in this paper, namely structure-less
BA based on three-view constraints and incremental inference, into a single framework:
incremental light bundle adjustment (iLBA).

3.1 Three-View Constraints
We use three-view constraints that were already proposed for structure-less bundle adjust-
ment in [6], and allow consistent motion estimation even in straight trajectories, as opposed
to only using two-view constraints [15]. The three-view constraints between some three
views k, l, and m that observe the jth 3D point are given by [5]:

g1 = q j
k · (tk→l×q j

l ) (3a)

g2 = q j
l · (tl→m×q j

m) (3b)

g3 = (q j
l ×q j

k) · (q
j
m× tl→m)− (q j

k× tk→l) · (q j
m×q j

l ) (3c)

where qi
.
= RT

i K−1
i p for any view i and observation p, Ki is the calibration matrix of this

view, Ri represents the rotation matrix from some arbitrary global frame to the ith view’s
frame, and ti→ j denotes the translation vector from view i to view j, expressed in the global
frame. As seen, Eqs. (3a) and (3b) are the well-known epipolar geometry constraints, while
Eq. (3c) facilitates maintaining a consistent scale for the translation vectors tl→m and tk→l .
These constraints were shown to be necessary and sufficient conditions for observing the
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Figure 1: (a) Distribution of the residual error in a three-view constraint. The Gaussian-like
nature of the distribution legitimates the usage of the cost function JLBA over JSLB. (b) A
factor graph representation for a simple example of 4 cameras observing 2 landmarks. Two-
view and three-view factors are added instead of projection factors. Landmark observations
are denoted by dashed lines.

same 3D point by these three views [5]. The appendix provides further details regarding the
relation of the three-view constraints to the standard trifocal tensor.

3.2 iLBA using Three-View Constraints
While the explicit measurement model assumed in Section 2.2 is appropriate for the projec-
tion equations used in conventional BA , the three-view constraints (3) represent an implicit
measurement model of the form g(X i,zi). In our case, the variables X i are the appropriate
camera poses and the measurements zi are the matching observations in these images.

The equivalent factor for optimizing the cost function JLBA (2) using an implicit mea-
surement model and assuming a Gaussian distribution of the residual error (cf. Section 2.1)
is defined as

fi(Xi)
.
= exp

(
−1

2
‖g(Xi,zi)‖2

Σ

)
with a measurement covariance matrix Σ. Figure 1a presents the distribution of this error
for a three-view constraint (3c), obtained by introducing zero-mean Gaussian perturbations
on ideal synthetic observations and camera poses. It can be seen that the Gaussian distri-
bution assumption is indeed valid. A similar distribution is also obtained for the two-view
constraint.

In practice, each of the constraints in (3) is added as a separate factor for each (unknown)
3D point that is observed by some three views. For each additional view k that observes the
same 3D point, we only add two of these constraints between that view and some two earlier
views l and m: a two-view constraint between view k and either view l or view m, and a
three-view constraint (3c) between these three views. The reason for not adding the second
two-view constraint (between views l and m) is that this constraint was actually already used
when processing these past views. We add a standard two-view constraint in case a 3D point
is observed by only two views.

Next we explicitly write factor formulations for the two-view and three-view constraints
(3) for optimizing the cost function (2). Figure 1b illustrates a factor graph using two- and
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(a) (b)

Figure 2: (a) Optimized camera poses and reconstructed structure in the cubicle dataset. (b)
One of the images in a cubicle dataset.

three-view constraints in a basic example.
A two-view constraint between some two views k and l with an observation correspon-

dence pk,pl is given by g2−view (xk,xl ,pk,pl)
.
= qk · (tk→l×ql)≡ g1. Since we only optimze

over camera poses, the equivalent factor is

f2−view (xk,xl)
.
= exp

(
−1

2
‖g2−view (xk,xl ,pk,pl)‖

2
Σ2−view

)
where covariance Σ2−view

.
=
(
∇pk,pl g2−view

)T
Σ
(
∇pk,pl g2−view

)
is used to calculate the Ma-

halonobis distance.
The three-view constraint (3c) for some three views k, l and m, can be similarly writ-

ten as g3−view (xk,xl ,xm,pk,pl ,pm) ≡ g3 and therefore the equivalent factor representation

is f3−view (xk,xl ,xm)
.
= exp

(
− 1

2 ‖g3−view (.)‖2
Σ3−view

)
with the appropriate covariance matrix

Σ3−view.
Processing a new incoming image involves constructing the above two-view and three-

view factors from the appropriate constraints and performing an incremental inference (in-
stead of a full optimization) as discussed in Section 2.2.

Calculating an initial pose for the new image given some previously-processed two over-
lapping images involves two steps: we first calculate the relative motion between the new
image and one of these previous images. This can be done by using the two-view constraints,
or by calculating an essential matrix and extracting the motion parameters from it [4]. Since
the translation is known only up to a scale, we apply Eq. (3c) to calculate a consistent mag-
nitude of the translation vector while considering the rest of the motion parameters fixed.

4 Results
We present results demonstrating iLBA on two indoor datasets that were collected in our
lab, cubicle and straight, and on a synthetic dataset, circle. In the cubicle dataset the camera
performed a general motion, while the straight dataset consists of a straight forward motion
of a forward-facing camera. In the synthetic circle dataset the cameras are positioned along a
circle pointing inwards, while the landmarks are scattered in the center area. Table 1 provides
additional information regarding the number of views (N) and landmarks (M), as well as the
number of total observations in each dataset.

Citation
Citation
{Hartley and Zisserman} 2000
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Dataset BA iLBA iLBAΣ SLB N, M, #Obsrv
Cubicle 1.981 (µ) 2.1017 (µ) 2.0253 (µ) 1.9193 (µ) 33, 11066, 36277

1.6301 (σ) 1.8364 (σ) 1.742 (σ) 1.6294 (σ)
Straight 0.519 (µ) 0.5434 (µ) 0.5407 (µ) 0.5232 (µ) 14, 4227, 14019

0.4852 (σ) 0.5127 (σ) 0.5098 (σ) 0.4870 (σ)
Circle 0.6186 (µ) 0.6244 (µ) 0.6235 (µ) 0.6209 (µ) 120, 500, 58564

(synthetic) 0.3220 (σ) 0.3253 (σ) 0.3246 (σ) 0.3235 (σ)

Table 1: Re-projection errors using incremental smoothing in all methods.

Figure 2 shows one of the images in the cubicle dataset and the optimized camera poses
and reconstructed structure using iLBA. The structure was reconstructed based on the opti-
mized camera poses after iLBA has converged.

The proposed method is compared, in terms of computational cost and accuracy, to the
following methods:

• iLBAΣ: iLBA with the covariance Σi re-calculated each time a linearization occurs, as
opposed to iLBA in which it is only calculated once at the beginning (cf. Section 2.1)

• BA: conventional bundle adjustment

• SLB using three-view constraints: similar to the cost function used in [19]

We also present a comparison between an incremental smoothing optimization and a stan-
dard incremental batch optimization. To ensure a fair comparison, convergence criteria and
maximum nonlinear iteration parameters were set to the same values in both methods.

All results were obtained on a 2.2 GHz Core i7 laptop using a single-threaded implemen-
tation. The different structure-less BA methods, including iLBA, were implemented using
custom two-view and three-view factors and optimized using the GTSAM factor graph opti-
mization library1 [2, 8], while conventional BA used projection factors provided by GTSAM.

Image correspondences, as well as the calibration matrices, were obtained by first run-
ning bundler2 [17] on each indoor dataset. In our method the incremental initializations
of the camera poses were calculated by estimating essential matrices between pairs of im-
ages, as described in Section 3.2. Degenerate and ill-conditioned camera configurations were
identified by having either an under-determined or invalid essential matrix. Initial values for
landmarks, required for a conventional BA, were computed using triangulation. The bundler
solution was not used to initialize any camera poses or landmarks. Initial values of camera
poses for the synthetic dataset circle were obtained by corrupting the ground truth with a
Gaussian zero-mean errors with a standard deviation of σ = 10 meters for the position and
σ = 0.5 degrees for rotation terms in each axis.

Table 1 shows re-projection errors (mean µ and standard deviation σ ) for the compared
methods. All the results shown in this table were obtained by performing the described incre-
mental smoothing scheme. For structure-less BA methods, the re-projection errors were cal-
culated after structure reconstruction was performed based on the optimized camera poses.
Overall, similar values of re-projection errors were obtained for all methods. BA produced
the best results, which are slightly degraded for SLB, iLBAΣ and iLBA.

1http://tinyurl.com/gtsam.
2http://phototour.cs.washington.edu/bundler.
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Figure 3: : Comparing incremental smoothing with incremental batch, in terms of average
reprojection error versus processing time. Average reprojection error magnitudes are very
similar, but incremental smoothing significantly reduces processing time.

Although not explicitly shown, structure-less BA with only two-view constraints [15]
is degenerate in the straight dataset, where the camera centers are close to co-linear: the
magnitude of the translation vector cannot be recovered without using three-view or trifo-
cal constraints and thus the problem is under-constrained. In contrast, iLBA continues to
produce consistent results even in this challenging dataset.

Figure 3 shows the trade-off between the accuracy (re-projection errors) and computa-
tional cost (timing) for the considered different approaches for the cubicle dataset, in particu-
lar demonstrating the computational gain when using incremental smoothing over incremen-
tal optimization. For structure-less BA methods the presented timing results include both the
camera-pose optimization and the structure reconstruction.

As seen, iLBA yields significantly better timing results compared to other methods, while
at the same time the degradation in accuracy is not significant. The incremental smoothing
approach improves timing results of all methods, compared to incremental batch optimiza-
tion, and has only a small effect on the accuracy. The fact that the SLB formulation [19] is
slower than all the other methods, including BA, is not surprising, since in that formulation
the observations are being corrected and therefore each landmark is represented by all its
observations. Therefore, the optimization performed in SLB involves more variables than in
BA.

Additional details for the computational cost are given in Table 2, in which all the meth-
ods use the incremental smoothing scheme and the results for structure-less BA optimization
and the structure reconstruction are shown separately. The cost for structure reconstruction is
very similar in all structure-reconstruction methods. One can observe that the computational
cost in both BA and SLB formulations is much higher than in iLBA in the synthetic circle
dataset. This can be explained by the dense nature of this dataset, where each 3D point is
observed by all cameras.

Further computational gain can be obtained by calculating a reduced measurement matrix
[4] from the applied multi-view constraints, as was already presented in [15] for two-view
constraints and can be applied to three-view constraints as well.
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V. INDELMAN ET AL.: INCREMENTAL LIGHT BUNDLE ADJUSTMENT 9

Dataset BA Structure-less BA
iLBA iLBAΣ SLB structure recon.

Cubicle 99.5 29.1 73.7 147.3 18.4
Straight 12.1 3.0 10.0 10.5 6.9

Circle (synthetic) >2hr 131.8 301.6 >2hr 3.8
Table 2: Computational cost (in seconds): all methods used incremental smoothing; the
structure reconstruction phase is nearly-identical in all structure-less BA methods.

5 Conclusions
This paper described a fast incremental structure-less bundle adjustment technique, advanc-
ing previous work on structure-less bundle adjustment in two main aspects. First, the cost
function was formulated using the recently-developed three-view constraints which allow
for consistent motion estimation even in co-linear camera configurations. Secondly, a factor
graph representation of the optimization problem was introduced, allowing for the appli-
cation of incremental smoothing. As opposed to previous incremental bundle adjustment
methods, in the proposed method only part of the camera poses, that are adaptively identi-
fied, participate in the optimization process, leading to reduced computational complexity.
Degenerate configurations are properly handled, as well. Future work includes the validation
of the proposed approach on much larger-scale datasets, where computational time-savings
should be even more significant.

Appendix
In this appendix we relate between the well-known trifocal constraints and the three-view
constraints (3). Assume some 3D point X is observed by several views. The image projection
of this landmark for each of these views is given by λipi = PiX, where λi is the unknown
scale parameter and Pi = Ki

[
Ri ti

]
is the projection matrix of the ith view.

Choosing the reference frame to be the first view, the projection equations turn into
λ1K−1

1 p1 = X̆ and λiK−1
i pi = RiX̆+ ti for i > 1. Here X̆ denotes inhomogeneous coordi-

nates of the 3D point X. Substituting the former equation into the latter equation eliminates
the 3D point, yielding

λiK−1
i pi = Riλ1K−1

1 p1 + ti , i > 1 (4)

From this point the derivation of three-view and trifocal constraints differs. In the former
case, a matrix is constructed from Eq. (4) for the first view and two other views i and j:[

RiK−1
1 p1 −K−1

i pi 0 ti
R jK−1

1 p1 0 −K−1
j p j tj

][
λ1 λi λ j 1

]T
= 0 (5)

while in the case of trifocal constraints, the additional scale parameter in Eq. (4) is elim-
inated by cross multiplying with K−1

i pi. Representing the resulting equations in a matrix
formulation yields the so-called multi-view matrix [11]:

[
K−1

2 p2
]
×R2K−1

1 p1
[
K−1

2 p2
]
× t2[

K−1
3 p3

]
×R3K−1

1 p1
[
K−1

3 p3
]
× t3

...
...

( λ1
1

)
= 0 (6)
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Enforcing the rank-deficiency condition on the two matrices in Eqs. (5) and (6) yields the
three-view and the trifocal constraints [5, 11]. Although Eq. (6) contains expressions for all
the views, the resulting constraints relate only between triplets of views.
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