# **Incremental Light Bundle Adjustment**

Vadim Indelman, Richard Roberts, Chris Beall, Frank Dellaert

College of Computing, Georgia Institute of Technology

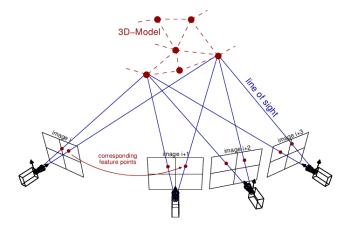




September 2012

#### Introduction

Bundle Adjustment: reconstruct camera poses and structure



Applied in a variety of applications:



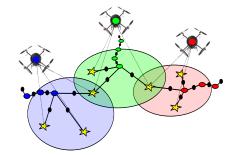


Structure from motion [Snavely et al., 2006]

Augmented Reality [Klein et al., 2007]



Full SLAM Map of Intel Labs



Distributed SAM [Cunningham et al., 2010]

Top image from: http://www.tnt.uni-hannover.de/project/motionestimation





#### **Bundle Adjustment (BA)**

- A large sparse optimization problem
  - Minimization of re-projection errors between all views and observed 3D points
  - Efficient solvers exist that exploit the sparse nature of typical SfM\SLAM problems
    - SBA [Lourakis et al., 2009]
    - SSBA [Konolige, 2010]
    - iSAM2 [Kaess et al., 2012]

$$J_{BA}\left(\hat{\mathbf{x}},\hat{\mathbf{L}}
ight)\doteq\sum_{i=1}^{N}\sum_{j=1}^{M}\left\|\mathbf{p}_{i}^{j}-\mathbf{Proj}\left(\hat{\mathbf{x}}_{i},\hat{\mathbf{L}}_{j}
ight)
ight\|_{\Sigma}^{2}$$

- Assuming N cameras\images observing M 3D points
  - Number of variables to optimize: 6N + 3M
  - Need to initialize both camera poses and 3D points (structure)





#### "Structure-Less" BA

- Camera poses are optimized without iterative structure estimation
- Cost function is based on multi-view constraints
  - Instead of minimizing re-projections errors as in conventional BA
  - 3D points are algebraically eliminated
  - Much less variables to optimize over [Rodríguez et al., 2011] !
- If required, all or some of the 3D points can be reconstructed
  - Based on the optimized camera poses
- Several structure-less BA methods have been recently developed
  - [Steffen et al., 2010], [Rodríguez et al., 2011], [Indelman, 2012]
- All methods perform batch optimization





## Incremental Light Bundle Adjustment (iLBA)

#### In this work:

- We combine two key-ideas
  - Structure-less BA:
    - Significantly less variables to optimize over than in BA
    - Three-view constraints are used to allow consistent estimates also when camera centers are co-linear
  - Incremental inference over graphical models:
    - Only part of the camera poses are re-calculated
      - These cameras are systematically identified
      - Calculations from previous steps are re-used
    - Sparsity is fully exploited
    - Developed in robotics community [Kaess et al., 2012]





### **Structure-Less BA (SLB)**

- Re-projection errors are approximated by the difference between measured and "fitted" image observations [Steffen et al., 2010], [Indelman, 2012]
  - Subject to satisfying applicable multi-view constraints

$$J_{SLB}(\hat{\mathbf{x}}, \hat{\mathbf{p}}) \doteq \sum_{i=1}^{N} \sum_{j=1}^{M} \left\| \mathbf{p}_{i}^{j} - \hat{\mathbf{p}}_{i}^{j} \right\|_{\Sigma}^{2} - 2\boldsymbol{\lambda}^{T} \mathbf{h}(\hat{\mathbf{x}}, \hat{\mathbf{p}})$$

- All multi-view constraints for a given sequence of view:

$$\mathbf{h} \doteq \begin{bmatrix} h_1 & \dots & h_{N_h} \end{bmatrix}^T$$

$$\mathbf{x}_i$$
 - i-th camera pose  
 $\mathbf{x}_i$  - all camera poses  
 $\mathbf{p}_i^j$  - observation of j-th 3D point in i-th image  
 $\mathbf{p}_i$  - all image observations

- $h_k$ : k-th multi-view constraint
- $-N_h$ : Number of all applicable multi-view constraints for a given sequence
- Number of actual optimized variables is larger than in BA!





## Light Bundle Adjustment (LBA)

- To substantially reduce computational complexity:
  - Do not make corrections to the image observations [Rodríguez et al., 2011]
- Assuming a Gaussian distribution of multi-view constraints  $h_i$ :
  - MAP estimate is equivalent to a non-linear least-squares optimization

• Cost function: 
$$J_{LBA}(\hat{\mathbf{x}}) \doteq \sum_{i=1}^{N_h} \|h_i(\hat{\mathbf{x}}, \mathbf{p})\|_{\Sigma_i}^2$$

- $\Sigma_i$ : An equivalent covariance  $\Sigma_i = A_i \Sigma A_i^T$
- $A_i$ : Jacobian with respect to the image observations (re-calculated each relinearization)
- In practice: Calculate  $\Sigma_i$  only once







#### LBA Using Three-View Constraints

 Algebraic elimination of a 3D point that is observed by 3 views k, l and m leads to [Indelman et al., 2012]:

$$g_{2v}(x_k, x_l) = \mathbf{q}_k \cdot (\mathbf{t}_{k \to l} \times \mathbf{q}_l)$$

$$g_{2v}(x_l, x_m) = \mathbf{q}_l \cdot (\mathbf{t}_{l \to m} \times \mathbf{q}_m)$$

$$g_{3v}(x_k, x_l, x_m) = (\mathbf{q}_l \times \mathbf{q}_k) \cdot (\mathbf{q}_m \times \mathbf{t}_{l \to m}) - (\mathbf{q}_k \times \mathbf{t}_{k \to l}) \cdot (\mathbf{q}_m \times \mathbf{q}_l)$$

$$g_{3v}(x_k, x_l, x_m) = (\mathbf{q}_l \times \mathbf{q}_k) \cdot (\mathbf{q}_m \times \mathbf{t}_{l \to m}) - (\mathbf{q}_k \times \mathbf{t}_{k \to l}) \cdot (\mathbf{q}_m \times \mathbf{q}_l)$$

$$\mathbf{g}_{3v}(x_k, x_l, x_m) = (\mathbf{q}_l \times \mathbf{q}_k) \cdot (\mathbf{q}_m \times \mathbf{t}_{l \to m}) - (\mathbf{q}_k \times \mathbf{t}_{k \to l}) \cdot (\mathbf{q}_m \times \mathbf{q}_l)$$

- Necessary and sufficient conditions
- Consistent motion estimation also when camera centers are co-linear
  - In contrast to using only epipolar constraints [Rodríguez et al., 2011]
  - In robotics: reduce position errors along motion heading in straight trajectories
- LBA cost function with three-view constraints:

$$J_{LBA}(\hat{\mathbf{x}}) \doteq \sum_{i=1}^{N_h} \|h_i(\hat{\mathbf{x}}, \mathbf{p})\|_{\Sigma_i}^2$$
$$h_i \in \{g_{2v}, g_{3v}\}$$





#### **Incremental LBA (iLBA)**

- Previous structure-less BA approaches: batch optimization
  - [Steffen et al., 2010], [Rodríguez et al., 2011], [Indelman, 2012]
  - Involves updating **all** camera poses each time a new image is added

$$J_{LBA}(\hat{\mathbf{x}}) \doteq \sum_{i=1}^{N_h} \|h_i(\hat{\mathbf{x}}, \mathbf{p})\|_{\Sigma_i}^2$$
$$J_{SLB}(\hat{\mathbf{x}}, \hat{\mathbf{p}}) \doteq \sum_{i=1}^N \sum_{j=1}^M \left\|\mathbf{p}_i^j - \hat{\mathbf{p}}_i^j\right\|_{\Sigma}^2 - 2\boldsymbol{\lambda}^T \mathbf{h}(\hat{\mathbf{x}}, \hat{\mathbf{p}})$$

- However:
  - Short-track features: encode valuable information for camera poses of only the recent past images
  - Observing feature points for many frames and loop closures: will typically involve optimizing more camera poses





### iLBA - Concept

- Each time a new image is received:
  - Adaptively identify which camera poses should be updated
  - Only part of the previous camera poses are recalculated
  - Calculations from previous steps are re-used
  - Exact solution
- Incremental inference [Kaess et al., 2012]
  - Formulate the optimization problem using a factor graph [Kschischang et al., 2001]
  - Incremental optimization by converting to Bayes net and a directed junction tree (Bayes tree)





#### **iLBA - Factor Graph Formulation**

- MAP estimate is given by:  $\hat{\mathcal{X}} = \arg \max_{\mathcal{X}} p\left(\mathcal{X}|Z\right)$
- Factorization of the joint probability function  $p\left(\mathcal{X}|Z\right)$

$$p\left(\mathcal{X}|Z\right) \propto \prod_{i} f_{i}\left(\mathcal{X}_{i}\right)$$

- Each factor  $f_i$  represents a single term in the cost function
- $\mathcal{X}_i$  is a subset of variables related by the *i*th measurement\process model
- Example:

$$p(\mathcal{X}) = p(x_0) \prod_j p(x_j | x_{j-1}) \prod_k p(z_k | x_{j_k})$$





#### **iLBA - Factor Graph Formulation**

- MAP estimate is given by:  $\hat{\mathcal{X}} = \arg \max_{\mathcal{X}} p\left(\mathcal{X}|Z\right)$
- Factorization of the joint probability function  $p\left(\mathcal{X}|Z\right)$

$$p\left(\mathcal{X}|Z\right) \propto \prod_{i} f_{i}\left(\mathcal{X}_{i}\right)$$

- Each factor  $f_i$  represents a single term in the cost function
- $\mathcal{X}_i$  is a subset of variables related by the *i*th measurement\process model
- In our case:

f**Tech**nolo

- The variables are the camera poses:  $\mathcal{X} \equiv \mathbf{x}$
- The factors represent two- and three-view constraints

$$f_{i}(\mathcal{X}_{i}) \doteq \exp\left(-\frac{1}{2} \|h_{i}(\mathbf{x}, \mathbf{p})\|_{\Sigma_{i}}^{2}\right)$$

$$h_{i} \in \{g_{2v}, g_{3v}\}$$
Views: Views:  $x_{1}$ 

$$x_{2}$$
Views:  $x_{2}$ 

$$x_{2}$$
Views:  $x_{2}$ 
Views:  $x_{2}$ 
Views:  $x_{2}$ 
Views:  $x_{3}$ 
Views:  $x_{4}$ 
Factor fact



3-view factor

view factor

#### **Incremental Inference in iLBA**

Consider the non-linear optimization problem:

Non-linear optimization involves repeated linearization

$$\mathbf{\Delta}^* = \arg\min_{\mathbf{A}} \left( A\mathbf{\Delta} - \mathbf{b} \right)$$

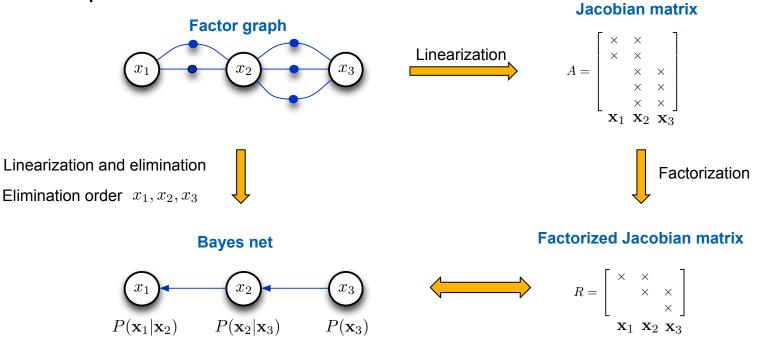
- A **sparse** Jacobian matrix **b** right hand side vector  $\Delta$  delta vector
- When adding a new camera pose calculations can be re-used
  - Factorization can be updated (and not re-calculated)
  - Only some of the variables should be re-linearized and solved for
- The above is realized by converting the factor graph into a Bayes net (and then to a directed junction tree)





### **Incremental Inference in iLBA (Cont.)**

• Example:



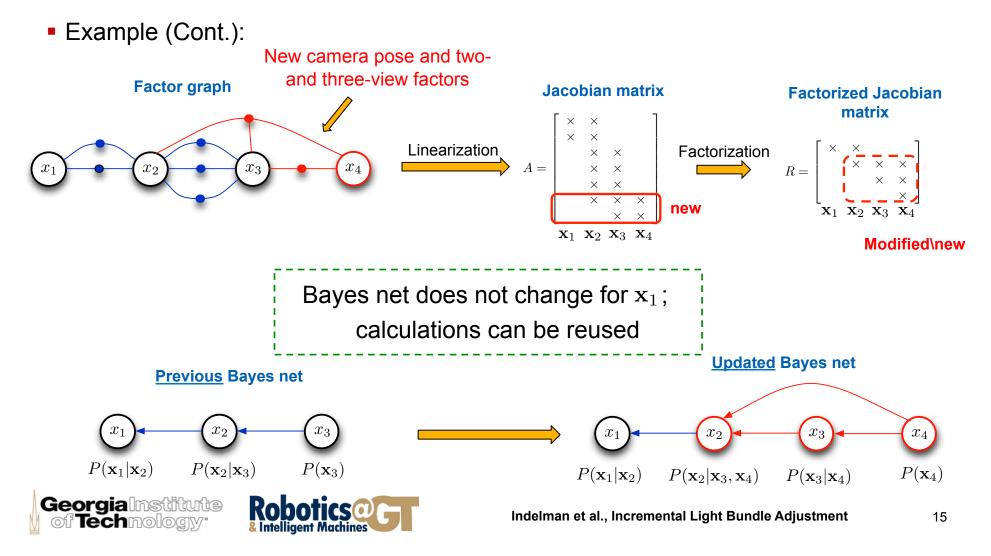
 Linearization and factorization of the Jacobian A is equivalent to converting the factor graph into a Bayes net using a chosen elimination order [Pearl, 1998]





#### **Incremental Inference in iLBA (Cont.)**

 Adding new measurements and\or new camera poses involves updating <u>only part</u> of the Bayes net



#### Incremental Inference in iLBA (Cont.)

- How to identify what should be re-calculated?
  - Bayes net is converted to Bayes tree (a directed junction tree) [Kaess et al., 2012]
- The "big" picture:

$$J_{LBA}(\hat{\mathbf{x}}) \doteq \sum_{i=1}^{N_h} \|h_i(\hat{\mathbf{x}}, \mathbf{p})\|_{\Sigma_i}^2 \qquad \Delta^* = \arg\min_{\boldsymbol{\Delta}} \left(A\boldsymbol{\Delta} - \mathbf{b}\right)$$

- Back-substitution (calculation of  $\Delta$ ) is performed only for part of the variables (=camera poses)
- Re-linearization is performed only when needed and only for part of the variables
- Overall Allows an efficient sparse incremental non-linear optimization





#### Results

| Dataset               | # Images | # 3D Points | # Observations |
|-----------------------|----------|-------------|----------------|
| Cubicle               | 33       | 11,066      | 36,277         |
| Straight              | 14       | 4,227       | 14,019         |
| Circle<br>(Synthetic) | 120      | 500         | 58,564         |

- Image correspondences and camera calibration were obtained by first running bundler (<u>http://phototour.cs.washington.edu/bundler/</u>)
- Bundler's data was <u>not</u> used elsewhere



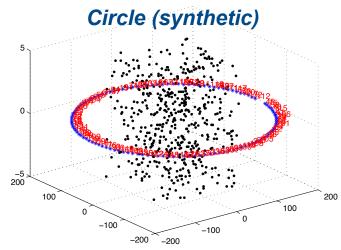


#### Straight









### **Results (Cont.)**

| Notation    | Method                                                                     | Cost function                                                                                                                                                                                                                             |
|-------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LBA         | Light bundle adjustment with the covariance $\Sigma_i$ calculated once     | $J_{LBA}(\hat{\mathbf{x}}) \doteq \sum_{i=1}^{N_h} \ h_i(\hat{\mathbf{x}}, \mathbf{p})\ _{\Sigma_i}^2$                                                                                                                                    |
| $LBA\Sigma$ | Light BA with the covariance $\Sigma_i$ recalculated at each linearization | $\sum_{i=1}^{  i  < i}   i  \leq  i  \leq i$                                                                                                                                                                                              |
| SLB         | Structure-less bundle adjustment with image observations corrections       | $J_{SLB}(\hat{\mathbf{x}}, \hat{\mathbf{p}}) \doteq \sum_{i=1}^{N} \sum_{j=1}^{M} \left\  \mathbf{p}_{i}^{j} - \hat{\mathbf{p}}_{i}^{j} \right\ _{\Sigma}^{2} - 2\boldsymbol{\lambda}^{T} \mathbf{h}(\hat{\mathbf{x}}, \hat{\mathbf{p}})$ |
| BA          | Bundle adjustment                                                          | $J_{BA}\left(\hat{\mathbf{x}}, \hat{\mathbf{L}}\right) \doteq \sum_{i=1}^{N} \sum_{j=1}^{M} \left\  \mathbf{p}_{i}^{j} - \mathbf{Proj}\left(\hat{\mathbf{x}}_{i}, \hat{\mathbf{L}}_{j}\right) \right\ _{\Sigma}^{2}$                      |

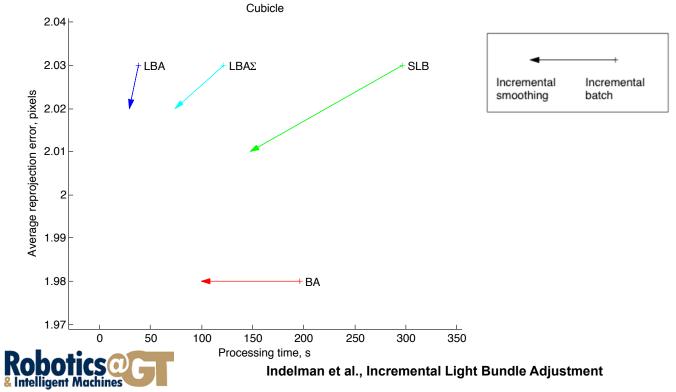
Incremental smoothing vs incremental batch results will be shown for each method





#### **Results (Cont.)**

| Notation    | Method                                                                                     |
|-------------|--------------------------------------------------------------------------------------------|
| LBA         | Light BA with the covariance $\Sigma_i$ calculated once                                    |
| $LBA\Sigma$ | Light BA with the covariance $\boldsymbol{\Sigma}_i$ re-calculated upon each linearization |
| SLB         | Structure-less BA with image observations corrections                                      |
| BA          | Bundle adjustment                                                                          |





#### **Results (Cont.)**

| Notation    | Method                                                                        |
|-------------|-------------------------------------------------------------------------------|
| LBA         | Light BA with the covariance $\Sigma_i$ calculated once                       |
| $LBA\Sigma$ | Light BA with the covariance $\Sigma_i$ re-calculated upon each linearization |
| SLB         | Structure-less BA with image observations corrections                         |
| BA          | Bundle adjustment                                                             |

#### • Additional results using **incremental smoothing** (for all methods):

| Re-projection errors | Dataset     | BA                | iLBA             | iLBAΣ            | SLB              | N, M, #Obsrv     |
|----------------------|-------------|-------------------|------------------|------------------|------------------|------------------|
|                      | Cubicle     | $1.981(\mu)$      | 2.1017 (µ)       | 2.0253 (µ)       | 1.9193 (µ)       | 33, 11066, 36277 |
|                      |             | $1.6301 (\sigma)$ | $1.8364(\sigma)$ | $1.742 (\sigma)$ | $1.6294(\sigma)$ |                  |
|                      | Straight    | $0.519(\mu)$      | $0.5434(\mu)$    | 0.5407 (µ)       | $0.5232(\mu)$    | 14, 4227, 14019  |
|                      |             | $0.4852(\sigma)$  | 0.5127 (σ)       | $0.5098(\sigma)$ | $0.4870(\sigma)$ |                  |
|                      | Circle      | $0.6186(\mu)$     | $0.6244(\mu)$    | 0.6235 (µ)       | $0.6209(\mu)$    | 120, 500, 58564  |
|                      | (synthetic) | $0.3220(\sigma)$  | $0.3253(\sigma)$ | $0.3246(\sigma)$ | $0.3235(\sigma)$ |                  |

| Dataset            | DA   | Structure-less BA |       |       |                  |  |
|--------------------|------|-------------------|-------|-------|------------------|--|
| Dataset            | BA   | iLBA              | iLBAΣ | SLB   | structure recon. |  |
| Cubicle            | 99.5 | 29.1              | 73.7  | 147.3 | 18.4             |  |
| Straight           | 12.1 | 3.0               | 10.0  | 10.5  | 6.9              |  |
| Circle (synthetic) | >2hr | 131.8             | 301.6 | >2hr  | 3.8              |  |

Computational cost [sec]

#### **Extended Cubicle dataset**

| # Images       | 148     |                           | iLBA   | iSLB   | iBA |
|----------------|---------|---------------------------|--------|--------|-----|
| # 3D Points    | 31,910  | Run time - Optimization   | 20 min | 76 min | 122 |
| # Observations | 164,358 | Run time - Structure rec. | 2 min  |        | min |

R

X

#### **Outdoor dataset**

| # Images       | 308     |
|----------------|---------|
| # 3D Points    | 74,070  |
| # Observations | 316,696 |

|                           | iLBA    | iSLB    | iBA     |
|---------------------------|---------|---------|---------|
| Run time - Optimization   | 1:56 hr | 6:35 hr | 5:40 hr |
| Run time - Structure rec. | 2 m     | nin     |         |

### Summary

- We presented an incremental structure-less BA method: iLBA
  - Reduced number of variables: 3D points are algebraically eliminated
  - Incremental inference: only part of the camera poses are re-calculated each time a new image is added
  - Can handle degenerate configurations (co-linear camera centers)
  - Structure can be reconstructed, but only if required



