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Introduction 
 Bundle Adjustment: reconstruct camera poses and structure 

Structure from motion 
[Snavely et al., 2006] 

Augmented Reality 
[Klein et al., 2007] 

Full SLAM 
Map of Intel Labs 

 Applied in a variety of applications: 

Indelman et al., Incremental Light Bundle Adjustment 

Top image from: http://www.tnt.uni-hannover.de/project/motionestimation 

Distributed SAM 
[Cunningham et al., 2010] 
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Bundle Adjustment (BA) 

 A large sparse optimization problem 
–  Minimization of re-projection errors between all views and observed 3D points 

–  Efficient solvers exist that exploit the sparse nature of typical SfM\SLAM 
problems 
•  SBA [Lourakis et al., 2009] 

•  SSBA [Konolige, 2010] 
•  iSAM2 [Kaess et al., 2012] 
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 Assuming N cameras\images observing M 3D points 
–  Number of variables to optimize: 6N + 3M 
–  Need to initialize both camera poses and 3D points (structure) 
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“Structure-Less” BA 

 Camera poses are optimized without iterative structure estimation 

 Cost function is based on multi-view constraints 
–  Instead of minimizing re-projections errors as in conventional BA 

–  3D points are algebraically eliminated 

–  Much less variables to optimize over [Rodríguez et al., 2011] ! 

  If required, all or some of the 3D points can be reconstructed 
–  Based on the optimized camera poses 

 Several structure-less BA methods have been recently developed 
–  [Steffen et al., 2010], [Rodríguez et al., 2011], [Indelman, 2012] 

 All methods perform batch optimization 
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Incremental Light Bundle Adjustment (iLBA) 

In this work: 

 We combine two key-ideas 
–  Structure-less BA:  

•  Significantly less variables to optimize over than in BA 

•  Three-view constraints are used to allow consistent estimates also when 
camera centers are co-linear 

–  Incremental inference over graphical models:  
•  Only part of the camera poses are re-calculated 

–  These cameras are systematically identified 

–  Calculations from previous steps are re-used 

•  Sparsity is fully exploited 

•  Developed in robotics community [Kaess et al., 2012] 
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Structure-Less BA (SLB) 

 Re-projection errors are approximated by the difference between 
measured and “fitted” image observations [Steffen et al., 2010], [Indelman, 2012] 

–  Subject to satisfying applicable multi-view constraints 

–  All multi-view constraints for a given sequence of view: 

–       : k-th multi-view constraint 

–       : Number of all applicable multi-view constraints for a given sequence 

 Number of actual optimized variables is larger than in BA! 
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- i-th camera pose 

- all camera poses 

- observation of j-th 3D point in i-th image 

- all image observations 
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Light Bundle Adjustment (LBA) 

 To substantially reduce computational complexity: 
–  Do not make corrections to the image observations [Rodríguez et al., 2011] 

 Assuming a Gaussian distribution of multi-view constraints    :  
–  MAP estimate is equivalent to a non-linear least-squares optimization 

 Cost function: 

–       : An equivalent covariance 

–       : Jacobian with respect to the image observations (re-calculated each re-
linearization) 

–  In practice: Calculate      only once 
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Number of optimized variables:  6N
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LBA Using Three-View Constraints 
 Algebraic elimination of a 3D point that is observed by 3 views k,l and m leads to 

[Indelman et al., 2012]: 
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Epipolar 
constraints 

Scale 
consistency 

g3v (xk, xl, xm) = (ql ⇥ qk) · (qm ⇥ tl!m)� (qk ⇥ tk!l) · (qm ⇥ ql)

g2v (xl, xm) = ql · (tl!m ⇥ qm)

g2v (xk, xl) = qk · (tk!l ⇥ ql)

 Necessary and sufficient conditions 

 Consistent motion estimation also when camera centers are co-linear 

–  In contrast to using only epipolar constraints [Rodríguez et al., 2011] 

–  In robotics: reduce position errors along motion heading in straight trajectories 
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Incremental LBA (iLBA) 

 Previous structure-less BA approaches: batch optimization 
–  [Steffen et al., 2010], [Rodríguez et al., 2011], [Indelman, 2012] 

–  Involves updating all camera poses each time a new image is added 
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 However: 
–  Short-track features: encode valuable information for camera poses of only the 

recent past images 
–  Observing feature points for many frames and loop closures: will typically 

involve optimizing more camera poses 

Indelman et al., Incremental Light Bundle 
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iLBA - Concept 

 Each time a new image is received: 
–  Adaptively identify which camera poses should be updated 

–  Only part of the previous camera poses are recalculated 

–  Calculations from previous steps are re-used 

–  Exact solution 

  Incremental inference [Kaess et al., 2012] 

–  Formulate the optimization problem using a factor graph [Kschischang et al., 2001] 

–  Incremental optimization by converting to Bayes net and a directed junction tree 
(Bayes tree) 

Indelman et al., Incremental Light Bundle Adjustment 
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iLBA - Factor Graph Formulation 

  MAP estimate is given by: 

  Factorization of the joint probability function 

–  Each factor    represents a single term in the cost function 

–      is a subset of variables related by the ith measurement\process model 

Indelman et al., Incremental Light Bundle Adjustment 
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x1 x2 x3 x4
2-view
factor

2-view
factor

2-view
factor

3-view factor3-view factor

Views:

Landmarks:

iLBA - Factor Graph Formulation 

  MAP estimate is given by: 

  Factorization of the joint probability function 

–  Each factor    represents a single term in the cost function 

–      is a subset of variables related by the ith measurement\process model 
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  In our case: 

–  The variables are the camera poses:  

–  The factors represent two- and three-view constraints 
X ⌘ x
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Incremental Inference in iLBA 

 Non-linear optimization involves repeated linearization 

 Solution involves factorization of    (e.g. QR) 

�⇤ = argmin
�

(A�� b)    - sparse Jacobian matrix 
   - right hand side vector 
   - delta vector �A
b
A

 When adding a new camera pose, calculations can be re-used 
–  Factorization can be updated (and not re-calculated) 

–  Only some of the variables should be re-linearized and solved for 

 The above is realized by converting the factor graph into a Bayes net (and 
then to a directed junction tree) 

 Consider the non-linear optimization problem: 
JLBA(x̂)
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ˆX = argmax
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In our case -      contains corrections to camera poses �
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Incremental Inference in iLBA (Cont.) 
 Example: 

x1 x2 x3

Factor graph 

A =

2

66664
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x1 x2 x3

Factorized Jacobian matrix 

Linearization 

Factorization 

? x1 x2 x3

P (x3)P (x2|x3)P (x1|x2)

Bayes net 

Elimination order x1, x2, x3

Linearization and elimination 

 Linearization and factorization of the Jacobian A is equivalent to converting 
the factor graph into a Bayes net using a chosen elimination order [Pearl, 1998] 

Indelman et al., Incremental Light Bundle Adjustment 
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Incremental Inference in iLBA (Cont.) 

 Adding new measurements and\or new camera poses involves updating only part of 
the Bayes net 

 Example (Cont.): 

x1 x2 x3 x4

Factor graph 

New camera pose and two- 
and three-view factors 

x1 x2 x3 x4
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x1 x2 x3 x4

Factorized Jacobian 
matrix 

x1 x2 x3 x4

P (x1|x2) P (x4)P (x3|x4)P (x2|x3,x4)

Updated Bayes net 

Modified\new 

Linearization Factorization 

Bayes net does not change for     ; 
calculations can be reused 

x1

Indelman et al., Incremental Light Bundle Adjustment 

x1 x2 x3

P (x3)P (x2|x3)P (x1|x2)

Previous Bayes net 
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Incremental Inference in iLBA (Cont.) 
 How to identify what should be re-calculated? 

–  Bayes net is converted to Bayes tree (a directed junction tree) [Kaess et al., 2012] 

  The “big” picture: 

–  Back-substitution (calculation of    ) is performed only for part of the variables (=camera 
poses) 

–  Re-linearization is performed only when needed and only for part of the variables 

 Overall - Allows an efficient sparse incremental non-linear optimization 

�
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Results 
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Dataset # Images # 3D Points # Observations 
Cubicle 33 11,066 36,277 
Straight 14 4,227 14,019 
Circle 

(Synthetic) 
120 500 58,564 

Cubicle Straight Circle (synthetic) 

  Image correspondences and camera calibration were obtained by first running 
bundler (http://phototour.cs.washington.edu/bundler/) 

 Bundler’s data was not used elsewhere 
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Results (Cont.) 

Indelman et al., Incremental Light Bundle Adjustment 

Notation Method Cost function 

Light bundle adjustment with the 
covariance      calculated once 

Light BA with the covariance      re-
calculated at each linearization 

Structure-less bundle adjustment 
with image observations corrections 

Bundle adjustment 

SLB

LBA

LBA⌃

⌃i

⌃i

BA

  Incremental smoothing vs incremental batch results will be shown for each method 
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Results (Cont.) 
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 Additional results using incremental smoothing (for all methods): 

Re-projection errors 

Computational cost [sec] 

Results (Cont.) 
Notation Method 

Light BA with the covariance      calculated once 

Light BA with the covariance      re-calculated upon each linearization 

Structure-less BA with image observations corrections 

Bundle adjustment BA

SLB

LBA

LBA⌃ ⌃i

⌃i
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Extended Cubicle dataset 

iLBA iSLB iBA 
Run time - Optimization 20 min 76 min 122 

min Run time - Structure rec. 2 min 

# Images 148 
# 3D Points 31,910 
# Observations 164,358 

Indelman et al., Incremental Light Bundle 
Adjustment 
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Outdoor dataset 

Indelman et al., Incremental Light Bundle 
Adjustment 

# Images 308 
# 3D Points 74,070 
# Observations 316,696 

iLBA iSLB iBA 
Run time - Optimization 1:56 hr 6:35 hr 5:40 hr 
Run time - Structure rec. 2 min 
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Summary 

 We presented an incremental structure-less BA method: iLBA 

–  Reduced number of variables: 3D points are algebraically eliminated 

–  Incremental inference: only part of the camera poses are re-calculated each time 
a new image is added 

–  Can handle degenerate configurations (co-linear camera centers) 

–  Structure can be reconstructed, but only if required 

Indelman et al., Incremental Light Bundle Adjustment 


