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Introduction

= Modern navigation systems rely on different sensors:

— IMU, GPS, Vision, step sensor, etc.
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Introduction

= Modern navigation systems rely on different sensors
— IMU, GPS, Vision, step sensor, etc.

» These sensors can potentially be asynchronous and operating at multiple frequencies

= Common approach for information fusion in navigation systems: extended Kalman filter (EkF)

= |[ncorporating measurements from different sources: typically involves maintaining an
augmented state vector

— The whole augmented state vector is updated each time
Expensive!

In practice, only part of the variables are affected

— Handling delayed measurements is not trivial [Zhang and Bar-Shalom, 2011]



Introduction (Cont.)

In this work: An adaptive fixed-lag smoother is proposed

= A non-linear optimization over all states (current and past) using all the available
measurements

— Maximum a posteriori (MAP) estimate
— Often referred to as full SLAM and bundle adjustment in robotics

= Efficient incremental optimization is possible using a factor graph formulation:
— Exploit sparsity

— Only part of the variables are updated — variables that are expected to benefit from
the new measurement

= Based on incremental smoothing technique developed in SLAM community:

— [Dellaert and Kaess, 2006], [Kaess, et al., 2012]
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Related Work

= Bundle Adjustment (BA) [Thrun, 2005]
— Commonly used in robotics to solve the full SLAM problem

— Real time?

= BA was recently suggested for information fusion in inertial navigation systems:

— [Mourikis and Roumeliotis 2008]:
Augmented-state EKF for incorporating IMU and vision measurements
Batch BA for loop closures

— [Bryson, et al. 2009]:

Batch non-linear optimization formulation for fusing IMU, GPS and visual
measurements

Designed for off-line terrain reconstruction

= Incremental Smoothing and Mapping [Dellaert and Kaess, 2006], [Kaess, et al., 2012]

— Real time - using factor graph, Bayes net and Bayes tree representations



Factor Graph Formulation

= The maximum a posteriori (MAP) estimate is given by
X = argmax (p(¥))
— X’: all the navigation states over time

— p(X) : joint probability given all measurements up to current time

= p(X) can be explicitly written in terms of individual probabilities representing process and
measurement models

— For example: p()() — p(xo) Hp(;cj \xj_l) Hp (Zk |x9k)
j k

= Factor graph formulation

p() o< [ £ (%)

— X is a subset of states related by the ith measurement\process model



Factor Graph Formulation (Cont.)

p(X) Hfz‘ (X3)

= Factor graph G = (F, X, &)
— Two type of nodes:

Variable nodes z; € &A; C A are associated with system states

Factor nodes f; € F are associated with measurements

— Edges always connect between variable and factor nodes

= For example:

— A small factor graph with IMU and GPS measurements and basic navigation states

fGPS fG’PS

fIMU /L fIMU fIMU fIMU /I\ IMU




Factor Graph Formulation (Cont.)

p(X) Hfz‘ (X3)

= Factor graph G = (F, X, &)
— Two type of nodes:

Variable nodes z; € &A; C A are associated with system states

Factor nodes f; € F are associated with measurements

— Edges always connect between variable and factor nodes

= Assuming a Gaussian distribution, MAP estimate corresponds to a non-linear least-squares
optimization

— For example: zi = hi(X;) +n fi (X;) = exp (th (i) — Zz”%)

argmﬁa{uxl.l fi () argn%ng]( )
with the cost function:

J(X) =) | (X)) =zl

1



Factor Graph Formulation (Cont.)

= Factor graph framework
— Allows handling different possibly asynchronous sensors at varying frequencies
— Provides plug and play capability:
New sensors are additional sources of factors that get added to the graph

If a sensor becomes unavailable: do not add any factors from this sensor

— No special procedure or coordination is required

fGPS fstereo fGPS

Basic navigation states:

IMU errors parameterization:
(to be discussed next)




Inertial Navigation - Factor Graph Formulation

= |nertial navigation process model: Trr1 = h (xg, ak, 2k)
—  Tk:navigation state at time 1y,

- T T 1T,
- Rk = [ Ay Wiy ] : IMU measurements (acc and gyro)

— (g calculated model of IMU errors - used for correcting IMU measurements
In this work - we will refer to & as “bias” vector (can be general model in practice)

= Time propagation of ay: apr1 = g (ag)

= Factor formulations:

fIMU ($k+1,xl~c7 Oék) = exp (H:I}k_|_1 —h (xkaOéka Zk)H%x)

fb’iCLS (ak}-l-l? ak:) — exp <||ak—}-1 - g (Oﬁk;)H;a)

o o Qo ° o3




Factor Graph Formulation for Additional Sensors

= GPS:
— Can be treated as unary factor

— Time delayed-measurements are easily accommodated

xl) + nagps tr > 1

—— fGPS (xl) = exp (HZEPS . hGPS (xl)H;GPS>

fGPS fGPS

fIMU /L fIMU fIMU IMU J\ IMU
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Factor Graph Formulation for Additional Sensors (Cont.)

= Monocular camera measurements

— Assuming known landmarks and camera calibration — define unary factors

— Unknown landmarks (SLAM):
Landmarks are added as variable nodes to the factor graph

Binary factor connecting between appropriate navigation and landmark nodes

= Stereo vision measurements

— The relative transformation 7'A between two stereo frames 7}, , 7}, can be
estimated (assuming a known baseline)

fGPS fstereo fGPS
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Incremental Batch Optimization

= Goal: X = argm}énJ(X)

= The optimization involves repeated linearization within a standard non-linear
optimizer

= Assuming some linearization point A, look for an update A such that:
arg min (|| (%) A — b(x)][3 )
A by

—A(Xp): (sparse) Jacobian matrix
—b(X,): right-hand-side (rhs, residual)
* The linearization point is then updated ( X, + A )

Can we do an efficient incremental optimization?
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Inference Using Factor Graphs
argmin (|| A(X0) A = ()13,

= Solving for A typically requires factoring the Jacobian A into a triangular form (e.g., QR)

— For example:

Jacobian matrix Factorized Jacobian matrix
X X X X
X X X X
A= e=——) R-=
X X X X X
X X X
T Q1 T2 Q2 Ty Q1 T2 Q2
Factor graph

fIMU
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Inference Using Factor Graphs (Cont.)

Jacobian matrix Factorized Jacobian matrix
X X X X
X X X X
A= ) R =
X X X X X
X X X
r1 Q1 T2 Q2 r1 Q1 T2 Qo

= This is equivalent to converting the factor graph into a Bayes net:
— Avariable ordering is selected (e.g. x1, &1, X2, 2)
— Each node in the factor graph is eliminated from the graph, forming a node in a Bayes net

— The Bayes net is equivalent to the matrix R

Used to obtain the update by back-substitution

— Elimination order affects the structure of the Bayes net and the corresponding amount of
computation

Factor graph Bayes net

Elimination order P(z1|a, zz) @ @ P(z2|az)

L1,01,T2, 2

| D
prior @ P(Oé1|x27042) @ @ P(OQ)
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Incremental Inference Using Factor Graphs

= Adding new measurements

— Each new measurement will generate a new factor in the graph

— Equivalent to adding a new block-row to the Jacobian matrix A

= Optimization can proceed incrementally
— Many of the calculations are the same as in the previous step - can be reused

— Only part of the Bayes net is modified

= For example:

Jacobian matrix Jacobian matrix
[ x
New x
X X X X
Y % measurements A= % %
T x ox x — XXX
X X X X new

T 1 T2 Q2 X

Ty (1 Ty Q2 T3 Q3
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Incremental Inference Using Factor Graphs (Cont.)

= Adding new measurements

Jacobian matrix Jacobian matrix

X X X X
X A= X X
A:
X X X X X X
X X X X new

Tr1 Q1 T2 Q2 T3 Qg

New
measurements

)

Factorized Factorized
Jacobian matrix Jacobian matrix

X X
X X X X

Factor graph  f¢F%

fIMU fIMU
5702

bias bias
f . a2 f C

T

Bayes net

fL‘1|Oé1,SU2) P( $C2|042,$3) 5133|043

X
X X
——
X X X X X
x X "R Modlfled or
X I X
r1 G T2 Q2 \ /

T Q1 T2 Q2 X3 Qj

P(a1|9:2,a2 042|$37043
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Incremental Inference Using Factor Graphs

= Back-substitution - Solving for A given a Bayes net:
— Bayes net is an efficient representation of the (sparse) triangular matrix R

— A can be recovered fast [Kaess, et al., 2012]
Calculated only for some of the variables
Variables with a negligible A are identified and skipped

= Adaptive fixed-lag smoother

— Processing IMU measurements:

Involves updating only a small (~4) number of nodes in Bayes net

— Other (lower-frequency) measurements — appropriate parts of the Bayes net are modified

18



Results

= Simulated flight of an aerial vehicle ool _— ] s e N

Inertial

— Velocity: 40 m/s velocity :Zz | (

400
200

Down [m]

— Constant height: 200 m above mean ground level

— Ground elevation: =50 m

200 5
1500

= Synthetic measurements of different sensors

]- o East [m] North [m]
IMU Acc. bias :10mg 100 Hz
Gyro. bias : 10 deg/hr
GPS Accuracy :10m 1Hz
Stereo Camera Image noise : 0.5 pix 0.5/0.1 Hz

— Stereo camera produces relative pose measurements @ 0.5 Hz

— Observations of short-track known landmarks @ 0.1 Hz:
Each landmark is observed for 3-4 frames

Each landmark is known within 10 m accuracy (10)
19



Results

= |ncremental Smoothing vs. EKF o
— IMU @ 100 Hz o
— GPS @ 1 Hz: 10 m accuracy (1o values)
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= Smoother timing performance: 4 ms (mean) with a standard deviation of 2.7 ms

Position estimation errors
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Results

----- Ground truth
Inertial

= Incremental Smoothing vs. EKF

- IMU @ 100 HZ 202

— Visual observations of short-track known landmarks @ 0.5 Hz
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Results

= Incremental Smoothing in a Multi-Sensor Scenario w = i
- IMU @ 1 00 HZ § 200
— Relative pose measurements (from stereo camera) @ 0.5 Hz
— Visual observations of short-track known landmarks @ 0.1 Hz e .
Position estimation errors Accelerometer bias estimation errors
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Conclusions

= We presented an incremental smoothing approach for inertial navigation

— Flexible:
Allows to incorporate multi-rate and delayed measurements
Plug-and-play capabilities
— Adaptive fixed-lag smoother:
Only a small number of variables are updated
Capable of operating at high frequency

= Loop closure measurements can also be incorporated in a factor graph framework:
“Concurrent Filtering and Smoothing”
M. Kaess, S. Williams, V. Indelman, R. Roberts, J. Leonard, F Dellaert
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