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Introduction 

  Modern navigation systems rely on different sensors: 

–  IMU, GPS, Vision, step sensor, etc. 

Big Dog [Boston Dynamics] AR Drone [Parrot] Sting [Georgia Tech] 
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Introduction 

  Modern navigation systems rely on different sensors 

–  IMU, GPS, Vision, step sensor, etc. 

  These sensors can potentially be asynchronous and operating at multiple frequencies 

  Common approach for information fusion in navigation systems: extended Kalman filter (EKF) 

  Incorporating measurements from different sources: typically involves maintaining an 
augmented state vector 

–  The whole augmented state vector is updated each time 

•  Expensive! 

•  In practice, only part of the variables are affected 

– Handling delayed measurements is not trivial [Zhang and Bar-Shalom, 2011] 
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Introduction (Cont.) 

In this work: An adaptive fixed-lag smoother is proposed 

  A non-linear optimization over all states (current and past) using all the available 
measurements 

– Maximum a posteriori (MAP) estimate 

– Often referred to as full SLAM and bundle adjustment in robotics 

  Efficient incremental optimization is possible using a factor graph formulation: 

– Exploit sparsity  

– Only part of the variables are updated – variables that are expected to benefit from 
the new measurement 

  Based on incremental smoothing technique developed in SLAM community: 

–  [Dellaert and Kaess, 2006], [Kaess, et al., 2012] 
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Related Work 

  Bundle Adjustment (BA) [Thrun, 2005] 

– Commonly used in robotics to solve the full SLAM problem 

– Real time? 

  BA was recently suggested for information fusion in inertial navigation systems: 

–  [Mourikis and Roumeliotis 2008]: 

•  Augmented-state EKF for incorporating IMU and vision measurements  

•  Batch BA for loop closures   

–  [Bryson, et al. 2009]: 

•  Batch non-linear optimization formulation for fusing IMU, GPS and visual 
measurements   

•  Designed for off-line terrain reconstruction 

  Incremental Smoothing and Mapping [Dellaert and Kaess, 2006], [Kaess, et al., 2012] 

– Real time - using factor graph, Bayes net and Bayes tree representations 
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Factor Graph Formulation 

  The maximum a posteriori (MAP) estimate is given by 

–    : all the navigation states over time 

–          : joint probability given all measurements up to current time 

           can be explicitly written in terms of individual probabilities representing process and 
measurement models 

–  For example: 

  Factor graph formulation 

–      is a subset of states related by the ith measurement\process model 
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Factor Graph Formulation (Cont.) 

  Factor graph 

–  Two type of nodes: 

•  Variable nodes                        are associated with system states 

•  Factor nodes               are associated with measurements 

– Edges always connect between variable and factor nodes 

  For example: 

– A small factor graph with IMU and GPS measurements and basic navigation states 
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Factor Graph Formulation (Cont.) 

  Factor graph 

–  Two type of nodes: 

•  Variable nodes                        are associated with system states 

•  Factor nodes               are associated with measurements 

– Edges always connect between variable and factor nodes 

  Assuming a Gaussian distribution, MAP estimate corresponds to a non-linear least-squares 
optimization 

–  For example: 

•  with the cost function: 
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Factor Graph Formulation (Cont.) 

  Factor graph framework 

– Allows handling different possibly asynchronous sensors at varying frequencies 

– Provides plug and play capability: 

•  New sensors are additional sources of factors that get added to the graph 

•  If a sensor becomes unavailable: do not add any factors from this sensor 

–  No special procedure or coordination is required 

Basic navigation states: 

IMU errors parameterization: 
(to be discussed next) 
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Inertial Navigation - Factor Graph Formulation 

  Inertial navigation process model:  

–          : navigation state at time 

–                   : IMU measurements (acc and gyro) 

–           : calculated model of IMU errors - used for correcting IMU measurements  
        In this work - we will refer to       as “bias” vector (can be general model in practice) 

  Time propagation of      : 

10 

  Factor formulations: 



11 

Factor Graph Formulation for Additional Sensors 

  GPS: 

– Can be treated as unary factor 

–  Time delayed-measurements are easily accommodated 
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Factor Graph Formulation for Additional Sensors (Cont.) 

  Monocular camera measurements 

– Assuming known landmarks and camera calibration – define unary factors 

– Unknown landmarks (SLAM): 

•  Landmarks are added as variable nodes to the factor graph 

•  Binary factor connecting between appropriate navigation and landmark nodes 

  Stereo vision measurements 

–  The relative transformation       between two stereo frames                can be 
estimated (assuming a known baseline) 

– Binary factor: 
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Incremental Batch Optimization 

 Goal: 

  The optimization involves repeated linearization within a standard non-linear 
optimizer 

 Assuming some linearization point      , look for an update     such that: 

–           : (sparse) Jacobian matrix 

–           : right-hand-side (rhs, residual) 

  The linearization point is then updated (               ) 

Can we do an efficient incremental optimization? 
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Inference Using Factor Graphs 

  Solving for      typically requires factoring the Jacobian A into a triangular form (e.g., QR) 

–  For example: 

Jacobian matrix Factorized Jacobian matrix 

Factor graph 

? 
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Inference Using Factor Graphs (Cont.) 

  This is equivalent to converting the factor graph into a Bayes net: 

–  A variable ordering is selected (e.g.                        ) 

–  Each node in the factor graph is eliminated from the graph, forming a node in a Bayes net 

–  The Bayes net is equivalent to the matrix R  

•  Used to obtain the update by back-substitution 

–  Elimination order affects the structure of the Bayes net and the corresponding amount of 
computation 

Jacobian matrix Factorized Jacobian matrix 

Factor graph Bayes net 

Elimination order 
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Incremental Inference Using Factor Graphs 

  Adding new measurements 

–  Each new measurement will generate a new factor in the graph 

–  Equivalent to adding a new block-row to the Jacobian matrix A 

  Optimization can proceed incrementally 

–  Many of the calculations are the same as in the previous step - can be reused 

–  Only part of the Bayes net is modified   

  For example: 

Jacobian matrix Jacobian matrix 

new 

New 
measurements 
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Incremental Inference Using Factor Graphs (Cont.) 

  Adding new measurements 

Jacobian matrix 

Factorized 
Jacobian matrix 

Jacobian matrix 

new 

Modified or 
new 

New 
measurements 

Factor graph 

Bayes net Factorized 
Jacobian matrix 
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Incremental Inference Using Factor Graphs 

  Back-substitution - Solving for     given a Bayes net: 

–  Bayes net is an efficient representation of the (sparse) triangular matrix R 

–      can be recovered fast [Kaess, et al., 2012]  

•  Calculated only for some of the variables 

•  Variables with a negligible     are identified and skipped 

  Adaptive fixed-lag smoother 

–  Processing IMU measurements:  

•  Involves updating only a small (~4) number of nodes in Bayes net 

–  Other (lower-frequency) measurements – appropriate parts of the Bayes net are modified 
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Results 

  Simulated flight of an aerial vehicle  

–  Velocity: 40  m/s velocity 

–  Constant height: 200 m above mean ground level 

–  Ground elevation:     50 m 

  Synthetic measurements of different sensors 

–  Stereo camera produces relative pose measurements @ 0.5 Hz 

–  Observations of short-track known landmarks @ 0.1 Hz:  

•  Each landmark is observed for 3-4 frames 

•  Each landmark is known within 10 m accuracy (    )  

Sensor Accuracy (    ) Frequency 
IMU Acc. bias    : 10 mg  

Gyro. bias  : 10 deg/hr 
100 Hz 

GPS Accuracy    : 10 m  1 Hz 

Stereo Camera Image noise : 0.5 pix  0.5 / 0.1 Hz 
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Results 
  Incremental Smoothing vs. EKF 

–  IMU @ 100 Hz 

–  GPS @ 1 Hz: 10 m accuracy  (     values)  

  Smoother timing performance: 4 ms (mean) with a standard deviation of  2.7 ms 

Position estimation errors 



21 

Results 
  Incremental Smoothing vs. EKF 

–  IMU @ 100 Hz 

–  Visual observations of short-track known landmarks @ 0.5 Hz 

Position estimation errors Accelerometer bias estimation errors 
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Results 

Position estimation errors 

  Incremental Smoothing in a Multi-Sensor Scenario 

–  IMU @ 100 Hz 

–  Relative pose measurements (from stereo camera) @ 0.5 Hz 

–  Visual observations of short-track known landmarks @ 0.1 Hz 

Accelerometer bias estimation errors 
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Conclusions 

  We presented an incremental smoothing approach for inertial navigation 

–  Flexible: 

•  Allows to incorporate multi-rate and delayed measurements 

•  Plug-and-play capabilities 

–  Adaptive fixed-lag smoother:  

•  Only a small number of variables are updated 

•  Capable of operating at high frequency 

  Loop closure measurements can also be incorporated in a factor graph framework: 

“Concurrent	
  Filtering	
  and	
  Smoothing”	
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