Factor Graph Based Incremental Smoothing in Inertial Navigation Systems

 ${\bf Vadim\ Indelman}^1, {\rm Stephen\ Williams}^1, {\rm Michael\ Kaess}^2$ and ${\rm Frank\ Dellaert}^1$

1) College of Computing, Georgia Institute of Technology

2) CSAIL, Massachusetts Institute of Technology (MIT)

July 2012

Introduction

- Modern navigation systems rely on different sensors:
 - IMU, GPS, Vision, step sensor, etc.

Sting [Georgia Tech]

Big Dog [Boston Dynamics]

AR Drone [Parrot]

Introduction

- Modern navigation systems rely on different sensors
 - IMU, GPS, Vision, step sensor, etc.
- These sensors can potentially be asynchronous and operating at multiple frequencies
- Common approach for information fusion in navigation systems: extended Kalman filter (EKF)
- Incorporating measurements from different sources: typically involves maintaining an augmented state vector
 - The whole augmented state vector is updated each time
 - Expensive!
 - In practice, only part of the variables are affected
 - Handling delayed measurements is not trivial [Zhang and Bar-Shalom, 2011]

Introduction (Cont.)

In this work: An adaptive fixed-lag smoother is proposed

- A non-linear optimization over <u>all</u> states (current and past) using all the available measurements
 - Maximum a posteriori (MAP) estimate
 - Often referred to as full SLAM and bundle adjustment in robotics
- Efficient incremental optimization is possible using a factor graph formulation:
 - Exploit sparsity
 - Only part of the variables are updated variables that are expected to benefit from the new measurement
- Based on incremental smoothing technique developed in SLAM community:
 - [Dellaert and Kaess, 2006], [Kaess, et al., 2012]

Related Work

- Bundle Adjustment (BA) [Thrun, 2005]
 - Commonly used in robotics to solve the full SLAM problem
 - Real time?
- BA was recently suggested for information fusion in inertial navigation systems:
 - [Mourikis and Roumeliotis 2008]:
 - Augmented-state EKF for incorporating IMU and vision measurements
 - Batch BA for loop closures
 - [Bryson, et al. 2009]:
 - Batch non-linear optimization formulation for fusing IMU, GPS and visual measurements
 - Designed for off-line terrain reconstruction
- Incremental Smoothing and Mapping [Dellaert and Kaess, 2006], [Kaess, et al., 2012]

- Real time - using factor graph, Bayes net and Bayes tree representations

Factor Graph Formulation

The maximum a posteriori (MAP) estimate is given by

$$\hat{\mathcal{X}} = \arg \max_{\mathcal{X}} \left(p(\mathcal{X}) \right)$$

- $-\mathcal{X}$: all the navigation states over time
- $p(\mathcal{X})$: joint probability given all measurements up to current time
- $p(\mathcal{X})$ can be explicitly written in terms of individual probabilities representing process and measurement models

- For example:
$$p(\mathcal{X}) = p(x_0) \prod_j p(x_j | x_{j-1}) \prod_k p(z_k | x_{j_k})$$

Factor graph formulation

$$p(\mathcal{X}) \propto \prod_{i} f_i(\mathcal{X}_i)$$

- \mathcal{X}_i is a subset of states related by the *i*th measurement\process model

Factor Graph Formulation (Cont.)

$$p(\mathcal{X}) \propto \prod_{i} f_i(\mathcal{X}_i)$$

- Factor graph $G = (\mathcal{F}, \mathcal{X}, \mathcal{E})$
 - Two type of nodes:
 - Variable nodes $x_j \in \mathcal{X}_i \subset \mathcal{X}$ are associated with system states
 - Factor nodes $f_i \in \mathcal{F}$ are associated with measurements

- Edges always connect between variable and factor nodes

- For example:
 - A small factor graph with IMU and GPS measurements and basic navigation states

Factor Graph Formulation (Cont.)

$$p(\mathcal{X}) \propto \prod_{i} f_i(\mathcal{X}_i)$$

- Factor graph $G = (\mathcal{F}, \mathcal{X}, \mathcal{E})$
 - Two type of nodes:
 - Variable nodes $x_j \in \mathcal{X}_i \subset \mathcal{X}$ are associated with system states
 - Factor nodes $f_i \in \mathcal{F}$ are associated with measurements
 - Edges always connect between variable and factor nodes
- Assuming a Gaussian distribution, MAP estimate corresponds to a non-linear least-squares optimization
 - For example: $z_i = h_i(\mathcal{X}_i) + n$ $f_i(\mathcal{X}_i) \doteq \exp\left(\|h_i(\mathcal{X}_i) z_i\|_{\Sigma}^2\right)$

$$\arg\max_{\mathcal{X}}\prod_{i}f_{i}(\mathcal{X}_{i}) = \arg\min_{\mathcal{X}}J\left(\mathcal{X}\right)$$

• with the cost function:

$$J(\mathcal{X}) \doteq \sum_{i} \left\| h_{i}\left(\mathcal{X}_{i}\right) - z_{i} \right\|_{\Sigma}^{2}$$
⁸

Factor Graph Formulation (Cont.)

- Factor graph framework
 - Allows handling different possibly asynchronous sensors at varying frequencies
 - Provides plug and play capability:
 - New sensors are additional sources of factors that get added to the graph
 - If a sensor becomes unavailable: do not add any factors from this sensor
 - No special procedure or coordination is required

(to be discussed next)

Inertial Navigation - Factor Graph Formulation

- Inertial navigation process model: $x_{k+1} = h(x_k, \alpha_k, z_k)$
- x_k : navigation state at time t_k
- $z_k \doteq \begin{bmatrix} a_m^T & \omega_m^T \end{bmatrix}^T$: IMU measurements (acc and gyro)
- α_k : calculated model of IMU errors used for correcting IMU measurements In this work - we will refer to α_k as "bias" vector (can be general model in practice)
- Time propagation of α_k : $\alpha_{k+1} = g(\alpha_k)$

• Factor formulations:
$$f^{IMU}(x_{k+1}, x_k, \alpha_k) \doteq \exp\left(\|x_{k+1} - h(x_k, \alpha_k, z_k)\|_{\Sigma_x}^2\right)$$
$$f^{bias}(\alpha_{k+1}, \alpha_k) \doteq \exp\left(\|\alpha_{k+1} - g(\alpha_k)\|_{\Sigma_\alpha}^2\right)$$

Factor Graph Formulation for Additional Sensors

• GPS:

- Can be treated as unary factor
- Time delayed-measurements are easily accommodated

$$z_{k}^{GPS} = h^{GPS}(x_{l}) + n_{GPS} \qquad t_{k} > t_{l}$$

$$f^{GPS}(x_{l}) \doteq \exp\left(\left\|z_{k}^{GPS} - h^{GPS}(x_{l})\right\|_{\Sigma_{GPS}}^{2}\right)$$

Factor Graph Formulation for Additional Sensors (Cont.)

- Monocular camera measurements
 - Assuming known landmarks and camera calibration define unary factors
 - Unknown landmarks (SLAM):
 - Landmarks are added as variable nodes to the factor graph
 - Binary factor connecting between appropriate navigation and landmark nodes
- Stereo vision measurements
 - The relative transformation T_{Δ} between two stereo frames T_{k_1}, T_{k_2} can be estimated (assuming a known baseline)
 - Binary factor:

$$f^{stereo}(x_{k_1}, x_{k_2}) \doteq \exp\left(\|T_{\Delta} - (T_{k_1} - T_{k_2})\|_{\Sigma_{T_{\Delta}}}^2\right)$$

Incremental Batch Optimization

- Goal: $\hat{\mathcal{X}} = \arg \min_{\mathcal{X}} J(\mathcal{X})$
- The optimization involves repeated linearization within a standard non-linear optimizer
- Assuming some linearization point \mathcal{X}_0 , look for an update Δ such that:

$$\arg\min_{\boldsymbol{\Delta}} \left(\|A(\mathcal{X}_0)\boldsymbol{\Delta} - \mathbf{b}(\mathcal{X}_0)\|_{\Sigma}^2 \right)$$

 $-A(\mathcal{X}_0)$: (sparse) Jacobian matrix

 $-\mathbf{b}(\mathcal{X}_0)$: right-hand-side (rhs, residual)

- The linearization point is then updated ($\mathcal{X}_0 + \mathbf{\Delta}$)

Can we do an efficient incremental optimization?

Inference Using Factor Graphs

$$rgmin_{\boldsymbol{\Delta}} \left(\|A(\mathcal{X}_0)\boldsymbol{\Delta} - \mathbf{b}(\mathcal{X}_0)\|_{\Sigma}^2 \right)$$

- Solving for Δ typically requires factoring the Jacobian A into a triangular form (e.g., QR)
 - For example:

Inference Using Factor Graphs (Cont.)

- This is equivalent to converting the factor graph into a Bayes net:
 - A variable ordering is selected (e.g. $x_1, \alpha_1, x_2, \alpha_2$)
 - Each node in the factor graph is eliminated from the graph, forming a node in a Bayes net
 - The Bayes net is equivalent to the matrix R
 - Used to obtain the update by back-substitution
 - Elimination order affects the structure of the Bayes net and the corresponding amount of computation

Incremental Inference Using Factor Graphs

- Adding new measurements
 - Each new measurement will generate a new factor in the graph
 - Equivalent to adding a new block-row to the Jacobian matrix A
- Optimization can proceed incrementally
 - Many of the calculations are the same as in the previous step can be reused
 - Only part of the Bayes net is modified
- For example:

Incremental Inference Using Factor Graphs (Cont.)

Adding new measurements

Incremental Inference Using Factor Graphs

- Back-substitution Solving for ∆ given a Bayes net:
 - Bayes net is an efficient representation of the (sparse) triangular matrix R
 - Δ can be recovered fast [Kaess, et al., 2012]
 - Calculated only for some of the variables
 - Variables with a negligible Δ are identified and skipped
- Adaptive fixed-lag smoother
 - Processing IMU measurements:
 - Involves updating only a small (~4) number of nodes in Bayes net
 - Other (lower-frequency) measurements appropriate parts of the Bayes net are modified

- Simulated flight of an aerial vehicle
 - Velocity: 40 m/s velocity
 - Constant height: 200 m above mean ground level
 - Ground elevation: \pm 50 m
- Synthetic measurements of different sensors

Sensor	Accuracy (1 σ)	Frequency
IMU	Acc. bias : 10 mg Gyro. bias : 10 deg/hr	100 Hz
GPS	Accuracy : 10 m	1 Hz
Stereo Camera	Image noise : 0.5 pix	0.5 / 0.1 Hz

- Stereo camera produces relative pose measurements @ 0.5 Hz
- Observations of short-track known landmarks @ 0.1 Hz:
 - Each landmark is observed for 3-4 frames
 - Each landmark is known within 10 m accuracy (1σ)

- Incremental Smoothing vs. EKF
 - IMU @ 100 Hz
 - GPS @ 1 Hz: 10 m accuracy (1σ values)

Smoother timing performance: 4 ms (mean) with a standard deviation of 2.7 ms

5

-5

-10└─ 0

10

-5 ` 0

10

-10

-20 ____0

East [m]

Down [m]

North [m]

- Incremental Smoothing vs. EKF
 - IMU @ 100 Hz
 - Visual observations of short-track known landmarks @ 0.5 Hz

Smoothing

Sqrt. Cov. EKF

EKF

100

100

Time [sec]

Sqrt. Cov. Smoother

150

150

150

Position estimation errors

50

50

50

- Incremental Smoothing in a Multi-Sensor Scenario
 - IMU @ 100 Hz
 - Relative pose measurements (from stereo camera) @ 0.5 Hz
 - Visual observations of short-track known landmarks @ 0.1 Hz

Conclusions

- We presented an incremental smoothing approach for inertial navigation
 - Flexible:
 - Allows to incorporate multi-rate and delayed measurements
 - Plug-and-play capabilities
 - Adaptive fixed-lag smoother:
 - Only a small number of variables are updated
 - Capable of operating at high frequency
- Loop closure measurements can also be incorporated in a factor graph framework:

"Concurrent Filtering and Smoothing"

M. Kaess, S. Williams, V. Indelman, R. Roberts, J. Leonard, F Dellaert

Fusion 2012

