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Abstract

Cooperative navigation (CN) enables a group of cooperative robots to reduce
their individual navigation errors. For a general multi-robot (MR) measurement
model that involves both inertial navigation data and other onboard sensor read-
ings, taken at different time instances, the various sources of information become
correlated. Thus, this correlation should be solved for in the process of information
fusion to obtain consistent state estimation. The common approach for obtaining
the correlation terms is to maintain an augmented covariance matrix. This method
would work for relative pose measurements, but is impractical for a general MR
measurement model, because the identities of the robots involved in generating the
measurements, as well as the measurement time instances, are unknown a priori.
In the current work, a new consistent information fusion method for a general MR
measurement model is developed. The proposed approach relies on graph theory. It
enables explicit on-demand calculation of the required correlation terms. The graph
is locally maintained by every robot in the group, representing all the MR measure-
ment updates. The developed method calculates the correlation terms in the most
general scenarios of MR measurements while properly handling the involved process
and measurement noise. A theoretical example and a statistical study are provided,
demonstrating the performance of the method for vision-aided navigation based on
a three-view measurement model. The method is compared, in a simulated environ-
ment, to a fixed-lag centralized smoothing approach. The method is also validated
in an experiment that involved real imagery and navigation data. Computational
complexity estimates show that the newly-developed method is computationally
efficient.

1 Introduction

Autonomous navigation of a group of cooperative robots has attracted much attention
in the recent decade. The ability of a group of cooperative robots to autonomously
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carry out various tasks strongly depends on the navigation capabilities of each individual
in the group. While each robot may be capable of calculating its own whereabouts,
cooperative navigation is expected to be beneficial to all of the robots in the group.
This is true particularly when operating in environments in which the global positioning
system signals are unavailable or unreliable, such as indoors, underwater, or on other
planets. In such cases, the robots must apply alternative techniques for correcting the
evolving dead-reckoning or inertial navigation errors.

In cooperative navigation (CN), the robots provide navigation aids to each other during
their respective missions, thereby allowing to correct their respective navigation solutions.
Over the years, much attention has been devoted to distributed CN, in which each robot
in the group has the same local strategy. Most of the proposed methods for CN rely on
relative pose measurements between pairs of robots [Kurazume et al., 1994, Roumeliotis
and Bekey, 2002, Fenwick et al., 2002, Smaili et al., 2008, Knuth and Barooah, 2009,
Sharma and Taylor, 2009], allowing to perform a navigation update whenever one robot
observes another robot. Another approach for CN is to identify a common scene observed
by different robots, and to feed the resulting constraints as measurements to the navigation
filter. Such an approach was recently suggested in [Merino et al., 2006, Kim et al., 2010],
considering measurements that combine pairs of robots. In [Indelman et al., 2011], it
was suggested to apply a vision-aided navigation technique based on three-view geometry
[Indelman et al., 2012] to distributed CN. A measurement is formulated whenever the
same scene is observed from three different views, which may be captured by different
robots, possibly at different time instances.

Regardless of the method applied for CN, the navigation data involved in the measure-
ment is obtained from different robots. In the general case, these sources of information
may be statistically dependent. For instance, the navigation data of any two robots be-
come correlated after the first update is carried out. Ignoring this correlation may result
in inconsistent and over-confident estimations [Bahr et al., 2009].

Several approaches have been proposed for coping with the correlation terms in multi-
robot (MR) systems, assuming relative pose measurements. In [Roumeliotis and Bekey,
2002], an augmented covariance matrix, composed of covariance and cross-covariance
matrices relating all the robots in the group, was maintained in a distributed manner. In
[Fenwick et al., 2002], this approach was applied to cooperative mapping and localization.
In this case, the augmented covariance matrix also contains parameters that represent
the landmarks observed by each robot in the group. Howard et al. [Howard et al., 2003]
suggested a method that allows to avoid correlated updates in certain situations. Similarly,
in [Bahr et al., 2009], the cross-covariance terms were not explicitly estimated. Instead,
the authors proposed to maintain a bank of filters, tracking the origins of measurements
and preventing a measurement to be used more than once. References [Mourikis et al.,
2007] and [Lazaro and Castellanos, 2010] studied the filter inconsistency when correlated
measurement sequences are used.

In this paper, we consider a general MR measurement model for CN. This model
relates between the navigation data from any number of robots and the actual readings
of the onboard sensors of these robots, which are not necessarily taken at the same time.
In the general case, all the involved sources of information may be correlated. In addition
to the a priori unknown identities of the robots that generate an MR measurement, our
general MR model yields a manifold of a priori unknown parameters – the time instances
that appear in the measurement equation. These additional unknown parameters render
any method that is based on maintaining the correlation terms impractical.
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An alternative approach to solve this problem is to avoid explicit calculation of the cor-
relation terms by applying the covariance intersection (CI) method [Julier and Uhlmann,
1997], or its generalization [Xu and Negahdaripour, 2001]. The method of CI allows
consistent fusion of different, possibly correlated, sources of information while the actual
correlation is unknown. However, as reported in [Bahr et al., 2009, Arambel et al., 2001],
CI is incapable of handling partial updates, i. e., cases in which the measurement matrix
contains only a partial representation of the state vector. Thus, although CI was used in
specific applications [Julier and Uhlmann, 2007, Lazarus et al., 2008], it cannot be applied
to the general MR measurement model considered in this paper.

In this work, it is proposed to explicitly calculate the required correlation terms based
on the history of all the thus-far performed MR measurements. As common in many
CN methods, including [Roumeliotis and Bekey, 2002, Fenwick et al., 2002, Sharma and
Taylor, 2009, Bahr et al., 2009], an extended Kalman filter is used for data fusion. Our
method is capable of handling different MR measurement models regardless of the thus-
far performed MR measurements. The developed method utilizes a graph representation
of the history of all the executed MR measurement updates for calculating the correlation
terms. This graph is maintained locally by every robot in the group, and hence the
developed CN method is distributed.

The proposed approach is closely related to computing the inference in general prob-
abilistic models represented by a graph structure, and in particular to belief propagation
and loopy belief propagation algorithms [Jordan et al., 1999, Jordan, 2004, Malioutov
et al., 2006]. Another related work is [Kim et al., 2010], that can be considered as a par-
ticular instantiation to CN of the inference computation based on graphical models. The
authors of [Kim et al., 2010] consider relative pose and two-view measurements between
pairs of robots and formulate an optimization problem that involves the history of the
performed measurements between pairs of robots and measurements of the proprioceptive
sensors of each robot. This problem is solved each time a new measurement of any kind
is received, yielding an updated pose history of all the cooperative robots, which is equiv-
alent to computing the inference of all the random variables represented in the graphical
model [Jordan et al., 1999, Jordan, 2004]. In contrast to [Kim et al., 2010], in the current
paper a general MR measurement model is used, and a method for explicit calculation of
correlation terms, required in the update step of the fusion filter, is suggested. The newly-
developed method allows navigation updates without applying smoothing over the past
navigation history of the cooperative robots, and is therefore computationally efficient.

Consequently, the main contributions of this paper are twofold. First, a graph-based
method for an explicit calculation of cross-covariance terms, required for consistent CN, is
developed. The method assumes a general MR measurement model, relating any number
of robots that may contribute information from different time instances. The identities
of these robots and the time instances are a priori unknown. Second, the effect of process
and measurement noise on the calculated cross covariances is analyzed and a method for
incorporating these noise terms into the calculated cross-covariance terms is developed.

2 Problem Description

Consider a group of N cooperative robots capable of intercommunication. Each robot
is equipped with inertial navigation sensors and hence is capable of calculating its own
navigation solution, comprising position, velocity and angular orientation. Denote by
xi and xt

i the calculated and the (unknown) true navigation solutions of the ith robot,
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respectively, and let ui represent the measurements of the robot’s inertial navigation
sensors. The errors in ui are modeled by an unknown vector of parameters αt

i. Denote
by α the calculated model of inertial sensor errors, used for correcting the measurements
u. For instance, the vector α includes a collection of accelerometer and gyro biases.

Let

ζi(tk)
.
=

[
xi(tk)
αi(tk)

]
, ζt

i(tk)
.
=

[
xt
i(tk)

αt
i(tk)

]
(1)

and N .
= {1, . . . , N}. Then

ζi(tk+1) = f(ζi(tk),ui(tk)) , i ∈ N (2)

The following navigation error state vector is defined

Xi(t)
.
=

[
xi(t)− xt

i(t)
αi(t)−αt

i(t)

]
≡ ζi(t)− ζt

i(t) (3)

It is well known (see, e. g., [Farrel and Barth, 1998]) that linearization of Eq. (2) yields
the following linear time-varying stochastic model for the evolution of the state vector Xi:

Ẋi(t) = Φi(t)Xi(t) + ωi(t) , i ∈ N (4)

where Φi is the continuous system matrix and ωi is the process noise, which is assumed
to be white and zero-mean Gaussian. This continuous time model can be replaced by a
discrete model

Xi(tb) = Φi
ta→tb

Xi(ta) + ωi
ta→tb

, i ∈ N (5)

where Φi
ta→tb

is the discrete system matrix relating the state between any two time in-
stances ta and tb, tb > ta, and ωi

ta→tb
is the equivalent discrete process noise.

In addition to the inertial sensors, each robot is equipped with its own set of onboard
exogenous sensors1. The readings of the exogenous sensors of the jth robot at some time
instant ta are denoted by yj(ta). These measurements are corrupted by a Gaussian white
noise vj(ta). Let y

t
j(ta)

.
= yj(ta)− vj(ta).

Consider a general measurement model that relates the navigation data and onboard
sensor measurements of several robots, possibly taken at different time instances. Let j
denote the identities of the robots involved in this measurement model, j ∈ N .

The considered measurement model can be formulated in an implicit form as

z(t) = h({ζj(ti),yj(ti)}ri=1) , j ∈ N (6)

where z is the residual measurement, which is a function of ζj(ti), representing the nav-
igation solution xj(ti) and parametrization of the inertial sensors errors αj(ti), and the
onboard sensor readings yj(ti) of the jth robot at time ti, with ti ≤ t and t being the
current time. Note that any explicit measurement model can be expressed in an implicit
form, while the opposite is incorrect. The parameter r in Eq. (6) denotes the overall num-
ber of information sets (ζj(ti),yj(ti)) constituting z. If each of the participating robots
contributes only a single information set, r represents the number of robots involved in the
residual measurement z. However, in the general case, each robot may contribute infor-
mation from several time instances. For example, if some robot j contributes information

1In this paper, inertial sensors refer to the sensors used for dead reckoning or inertial navigation, while
exogenous sensors are all the other sensors of the robot. For example, accelerometers and gyroscopes are
inertial sensors, while an onboard camera is an exogenous sensor.
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from two time instances t1j
.
= t1 and t2j

.
= t2, then z will be a function of (ζj(t

1
j),yj(t

1
j))

and (ζj(t
2
j),yj(t

2
j)).

To simplify the notation, it is assumed from this point onward that the identity of the
robots forming z is given by 1, . . . , r; cases in which a robot contributes information from
several time instances are treated as if this information was provided by different robots.
Thus, the residual measurement z can be written as:

z(t) = h({ζi(ti),yi(ti)}ri=1) (7)

Linearizing Eq. (7) about ζt
i(tk) and yt

i(ti) gives

z(t) ≈
r∑

i=1

Hi(ti)Xi(ti) +Di(ti)vi(ti) (8)

where
Hi(ti) = ∇ζt

i(ti)
h , Di(ti) = ∇yt

i(ti)
h (9)

since ζt
i(tk) and yt

i(ti) are unknown, the Jacobian matrices are approximated by

Hi(ti) = ∇ζi(ti)h , Di(ti) = ∇yi(ti)h (10)

The update step of the Kalman filter involves cross-covariance terms relating the different
state vectors that appear in the measurement model (8). Denoting by X̃ the estimation

error of X, the required cross-covariance terms are E[X̃i(ti)X̃
T

j (tj)] with i, j = 1 . . . r, i ̸=
j. If these terms are known, a consistent measurement update can be employed.

In the context of a general probabilistic approach, the terms E[X̃i(ti)X̃
T

j (tj)] are re-
lated to the joint probability density function (pdf) of ζi(ti) for all the robots in the group
and all the time instances ti ∈ {t0, · · · , t}, given the measurements ui(ti) and yi(ti) from
all the robots. The reader is referred to [Kim et al., 2010] for a formal definition of the
joint pdf for the case of two-robot measurements (r = 2).

The purpose of this paper is to present an efficient method to compute the cross-
covariance matrices on-demand while the identity of the involved robots, i. e. the indices
i and j, and the time instances ti and tj are unknown a priori. It is tempting to apply the
common approach, used when considering relative pose measurements for CN [Roumeliotis
and Bekey, 2002], wherein an augmented covariance matrix is maintained, consisting of the
covariance matrices of all the robots in the group and of cross-covariance matrices relating
any pair of robots. However, this approach can be only applied when the measurement
model involves concurrent information from different robots, as indeed is the case with
relative pose measurements.

In the case of a general measurement model (8), in addition to the a priori unknown
identity of the r robots contributing to the multi-robot (MR) measurement, the involved
time instances are also unknown a priori. Therefore, maintaining all the possible cross-
covariance terms is not a practical solution in terms of both computational load and
storage requirements. Instead, we suggest calculating the required cross-covariance terms
on-demand for a general MR measurement model.

3 Concept of Explicit Cross-Covariance Calculation

Before presenting the general concept behind the proposed approach, it is convinient to
illustrate the calculation of cross-covariance terms in a basic example. Throughout the
paper the notations ã− and ã+ are used for a priori and a posteriori estimation error of
a, respectively.
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3.1 A Basic Example

In this example we consider a measurement composed of information obtained from three
different robots, i. e. r = 3. The residual measurement z may therefore be written as

z ≈ H3(t3)X3(t3) +H2(t2)X2(t2) +H1(t1)X1(t1) +Dv (11)

with D
.
=

[
D3(t3) D2(t2) D1(t1)

]
and v

.
=

[
vT
3 (t3) vT

2 (t2) vT
1 (t1)

]T
.

Figure 1 shows a scenario wherein information transmitted by Robots I and II, with
the current information of Robot III, is used for updating Robot III. Circles denote a
priori information, while squares denote update events. Two update events are shown in
the figure. While a1, a2 and a3 represent information used in the first update, b1, b2 and
b3 represent information used in the second update. Let tai and tbi represent the time
instances corresponding to ai and bi, respectively, with i = 1, 2, 3.

Assume that the first update was carried out and that the a priori covariance matrices
of the 3 robots and all the cross-covariance matrices between these robots, at the time
instances ta1 , ta2 and ta3 , were stored. Assume also that the required information for the
second update is available. The key question is how to calculate the cross-covariance terms

required for computing the second update, i. e. E[X̃
−
III(tb3)X̃

−
II(tb2)], E[X̃

−
III(tb3)X̃

−
I (tb1)]

and E[X̃
−
II(tb2)X̃

−
I (tb1)].

II

III

I

a1

a2

b3

b1

b2

a3

Figure 1: Measurement schedule example based on a measurement model that involves 3
robots. Robot III is updated based on information transmitted by Robots I and II. The
circles denote information included in the measurement, squares indicate update events.

In particular, consider the calculation of E[X̃
−
III(tb3)X̃

−
II(tb2)]. Since no updates of any

kind were performed between a2 and b2:

X̃
−
II(tb2) = ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2
(12)

In a similar manner, it is possible to write a transition relation between the a posteriori
estimation error at a3 and the a priori estimation error at b3:

X̃
−
III(tb3) = ΦIII

a3→b3
X̃

+

III(ta3) + ωIII
a3→b3

(13)

Thus,

E[X̃
−
III(tb3)X̃

−
II(tb2)] = E

[(
ΦIII

a3→b3
X̃

+

III(ta3) + ωIII
a3→b3

)(
ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2

)T
]
(14)

while the a posteriori estimation error at a3 is given by

X̃
+

III(ta3) = (I −Ka3Ha3) X̃
−
III(ta3)−Ka3Ha2X̃

−
II(ta2)

− Ka3Ha1X̃
−
I (ta1)−Ka3Dava (15)
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where Ka3 is the Kalman gain matrix, calculated by robot III at the first measurement
update.

Since ωII
a2→b2

is statistically independent of X̃
−
III(ta3), X̃

−
II(ta2), X̃

−
I (ta1), and since

ωIII
a3→b3

is statistically independent of X̃
−
II(ta2) and ωII

a2→b2
(cf. Figure 1):

E
[
X̃

+

III(ta3)(ω
II
a2→b2

)T
]
= 0 (16)

E

[
ωIII

a3→b3

(
ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2

)T
]
= 0 (17)

In addition,

E

[
va

(
ΦII

a2→b2
X̃

−
II(ta2) + ωII

a2→b2

)T
]
= 0 (18)

Let X̃
−
i (tai) be represented by X̃ai and denote Pab

.
= E[(X̃a)(X̃b)

T ]. Incorporating
Eqs. (15)-(18) into Eq. (14) yields

P−
b3b2

= ΦIII
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
(ΦII

a2→b2
)T (19)

Thus, P−
b3b2

is expressed via the filter gain matrix, the measurement matrices, covariance
and cross-covariance matrices from the past MR updates, which therefore need to be
stored. The other two required cross-covariance terms in this example can be calculated
using the same process, yielding an equivalent expression for P−

b3b1
, while P−

b2b1
= 0.

3.2 Overview of the Approach for a General Scenario

The approach discussed above can be generalized to any number of MR measurement
updates based on the general measurement model formulated in Eq. (8).

The general cross-covariance term E[X̃i(ti)X̃
T

j (tj)] can be found by expressing each

of the two state vectors X̃i(ti) and X̃j(tj) according to the history of the MR measure-

ment updates, and then calculating E[X̃i(ti)X̃
T

j (tj)] based on the resulting expressions,
while judiciously handling the involved noise terms. In contrast to the example from the
previous section, in the general case the process and measurement noise terms are not
necessarily statistically independent of the involved state vectors.

Clearly, sustaining the aforementioned approach requires storing the information in-
volved in all the past MR measurement updates, including the filter gain, measurement,
covariance and cross-covariance matrices. If this information is available for a specific
sequence of MR measurement updates, the required cross-covariance terms can be calcu-
lated based on the process demonstrated in the previous section. In the following sections,
however, a method for on-demand calculation of the cross-covariance terms for a general
case is developed. The method uses a graph representation, which allows a systematical
calculation of the required cross-covariance terms. The graph, locally maintained by every
robot in the group, contains the information from all the past MR measurement updates.

The proposed graph topology relies upon a directed acyclic graph (DAG). Each time
a new MR measurement is obtained, the graph is used for calculating the cross-covariance
terms between all the r robots that participate in the measurement. These terms are then
used for calculating the filter’s gain and for updating the relevant robots (as explained
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below). Next, each robot updates its own copy of the graph with the executed measure-
ment. The communication protocol and the actual transmitted information between the
different robots in each MR update are discussed in Section 6.

While in theory every robot participating in a given MR measurement can be updated,
in order to sustain the DAG assumption, only some of the robots are actually updated in
the proposed approach. Before getting into further details (cf. Section 3.2.2 and Appendix
A), it is important to understand the motivation for enforcing a DAG. The main reason
is to avoid recursive updates, which will typically require an intensive smoothing process
involving all the robots in the group [Kim et al., 2010] (and therefore extensive commu-
nication among the robots and high computational complexity). Another question that
arises in such case is whether this process will eventually converge, since it is known that
applying loopy belief propagation (LBP) for solving an inference problem in a graph with
cycles, which is a related problem to the problem considered herein, is not guaranteed to
converge [Malioutov et al., 2006]. Consequently, in this paper an acyclic graph is assumed
and the identities of the updated robots are chosen so that the graph will remain as such.

At this point, it is useful to state the actual approximations of the proposed approach.
Apart from the obvious approximations involved in the linearization of the process and
measurement equations (Eqs. (5) and (8)), the only additional approximation is in the
calculation of the Kalman gain, as discussed in Section 3.2.2 and Appendix A. The later
becomes exact in scenarios in which all the r robots, involved in the MR measurement,
can be updated while sustaining an acyclic graph. In all the other scenarios, updating
all the r involved robots, while applying the method proposed herein for cross-covariance
terms calculation, is not possible since the graph is no longer acyclic.

Before formally defining the graph structure and presenting the actual algorithm for
cross-covariance calculation, we briefly overview the concept of the proposed approach
and explain how to choose the robots to be updated.

3.2.1 Overview

In order to calculate a general cross-covariance term E[X̃i(ti)X̃
T

j (tj)], the nodes repre-

senting X̃i(ti) and X̃j(tj) are located in the graph. The next step is to identify all the
possible paths in the graph that lead to these two nodes. This is performed by going
over the graph and constructing a tree for each of these nodes; these trees contain all the

relevant information in the graph that will be later used in calculation of E[X̃i(ti)X̃
T

j (tj)].
The constructed two trees are actually inverse-trees, since each of them have only one leaf
(representing X̃i(ti) or X̃j(tj)) and possibly several root nodes. These trees are closely
related to the computational trees used in the LBP algorithm [Malioutov et al., 2006].

Given these two trees, expressing X̃i(ti) and X̃j(tj) using the past MR measurements is
equivalent to expanding the leaf node in each of the two trees by proceeding to connected
nodes from upper levels2. Referring to the example from Section 3.1, the equivalent graph

and the constructed two trees for X̃i(ti) ≡ X̃
−
III(tb3) and X̃j(tj) ≡ X̃

−
II(tb2) are shown in

Figure 2. For instance, going up one level from the leaf nodes in each tree represents, up
to the noise terms, Eqs. (12) and (13) (as explained in the sequel, the noise terms are
represented in terms of noise covariance matrices).

As higher levels are processed, a check is performed whether the cross-covariance terms
between the expressions obtained so far for X̃i(ti) and the expressions obtained so far for

2This step represents the triangulation algorithm in graphical models [Jordan et al., 1999, Jordan,
2004].
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X̃j(tj) have been stored in the graph as the result of executing some MR measurement
update in the past. Those cross-covariance terms that have indeed been stored in the
graph, can be retrieved and used as part of the ingredients from which the required

cross-covariance term E[X̃i(ti)X̃
T

j (tj)] will be eventually computed.
This brief sketch of the method’s concept is further elaborated in Section 4.1, after

the graph structure is formally defined.

3.2.2 Choosing What Robots to Update

Since only some of the r robots participating in the MR measurement (6) are updated,
the actual filter equations need to be accordingly adjusted. Appendix A provides further
details, including an approach for calculating the filter’s gain matrix using the cross-
covariance terms calculated by the method presented herein. In this section, we discuss
what robots, among the r robots, can be updated.

Denote by tMR
i the most recent time instant in which the ith robot was updated by

any MR measurement. In a general MR system, the DAG topology is representative
if each MR measurement is utilized for updating only the robots i ∈ {1, . . . , r}, which
contributed their navigation data from the time instant ti > tMR

i and assuming these
robots contributed a single information set (ζi(ti),yi(ti)) (cf. Section 2). In particular,
the graph remains acyclic when only robots that contributed their current navigation
information, i. e. ti = t, are updated.

It is worth noting that if some robot i contributed l > 1 information sets (ζi(t
1
i ),

yi(t
1
i )), (ζi(t

2
i ), yi(t

2
i )), . . . , (ζi(t

l
i),yi(t

l
i)), with t1i < t2i < · · · < tli, to the MR measurement

(6), this robot can be updated, while sustaining an acyclic graph, at the time instant tli,
provided that tli > tMR

i .
While in the discussion thus far several robots of the r robots were updated, for

simplicity, throughout this paper we consider that only one robot is actually updated.
Denoting by q the identity of the updated robot, its a posteriori estimation error in a
general MR measurement model, formulated in Eq. (8), can be expressed as

X̃
+

q (tq) = (I −KqHq) X̃
−
q (tq)−Kq

r∑
i=1 , i ̸=q

HiX̃
−
i (ti)−Kq

r∑
i=1

Divi(ti) (20)

where Kq is the Kalman gain matrix computed for the qth robot. The a priori estimation
error of some robot i, based on Eq. (5), is given by

X̃
−
i (tb) = Φi

ta→tb
X̃

−
i (ta) + ωi

ta→tb
(21)

3.3 Graph Representation

Every robot in the group locally maintains its own copy of the DAG G = (V,E), where
V is the set of nodes and E is the set of directed weighted arcs. The weight of each arc
reflects the information flow between the two connected nodes.

Two type of nodes exist in V . Nodes of the first type represent a priori information
obtained from different robots in the group, constituting the MR measurements. These
nodes are called a priori nodes. A single such node represents, therefore, ζi(ti) and yi(ti)
– navigation data and readings of onboard sensors of the ith robot from time instant ti,
respectively. This information is transmitted by the ith robot to the updated robot q at
the current time t (cf. Eq. (7)). In the general case, ti ≤ t. Nodes of the second type
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represent update events, i. e. the a posteriori information of the updated robot. Such
nodes are called a posteriori nodes. Thus, each MR measurement update is represented by
r+ 1 nodes. Figure 2(a) shows the graph obtained for the 3-robot measurement example
considered in Section 3.1. A priori nodes are indicated in the graph by circles, while a
posteriori nodes are designated by squares.

3b+

3b−

2a−
1a−

1b−

2b−

3a−

3a+

I IIIII

(a)

3a+

3b−

3a−
2a−

1a−

3 1a aK H− 3 2a aK H−
3 3a aI K H−

3 3a bφ →

1b−

2a−

2 1a bφ →

(b)

Figure 2: (a) Graph representation for the scenario shown in Figure 1. (b) The trees Tb−3

and Tb−1
required for calculating P−

b3b1
.

We proceed by presenting the following definitions.

Definition 1. A thread of the ith robot is a sub-graph of G, containing all the nodes in V
that represent information of the ith robot and arcs in E connecting between these nodes.

Each robot in the group has its own thread in G.

Definition 2. The transition relation is given by

X̃b = Φi
ta→tb

X̃a + ωi
ta→tb

(22)

where a, b ∈ V are any two adjacent a priori nodes in the ith thread, representing X̃
−
i (ta)

and X̃
−
i (tb), respectively.

The transition relation connects between the a priori estimation errors of the ith robot
at two different time instances ta and tb, as expressed by Eq. (21). The nodes a and b,
both located in thread i, are connected by an arc, weighted by the transition matrix
w(a, b) = Φi

ta→tb
. The noise process covariance matrix Qi

ta→tb

.
= E[ωi

ta→tb
(ωi

ta→tb
)T ] is

associated to this arc as well. For example, the nodes a−1 and b−1 in Figure 2(a) are
connected by an arc representing a transition relation.

Each thread in G can also contain a posteriori nodes. In such a case, G will contain
r a priori nodes that are connected to an a posteriori node, located in the thread of the
updated robot q, by an update relation, defined as follows (cf. also Eq. (20)).
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Definition 3. Denote by α the a posteriori node, representing X̃
+

q (tα), and by βi the a

priori nodes, representing X̃
−
i (tβi

), with i = 1, . . . , r. The update relation is given by:

X̃α =
(
I −KαHβq

)
X̃βq −Kα

r∑
i=1 , i ̸=q

Hβi
X̃βi
−Kα

r∑
i=1

Dβi
vβi

(23)

where Kα is the Kalman gain computed by the updated robot.

The transition and update relations are illustrated in Figures 3(a) and 3(b), respectively.

a

b

M

M

i

(a)

α

M M

L

M

qβ1β rβ

M

L

M

M

1 q r
LL

(b)

Figure 3: (a) The node a is connected to the node b via a transition relation. (b) The
nodes βi, with i = 1, . . . , r, are connected to the node α via an update relation.

The arc weight w(βi, α), connecting the a priori node βi with the a posteriori node α
is

w(βi, α) =

{
I −KαHβq if i = q
−KαHβi

else
(24)

In addition, each arc is associated with a measurement noise covariance matrixKαDβi
Rβi

(KαDβi
)T ,

with i = 1, . . . , r and Rβi

.
= E[vβi

vT
βi
].

For instance, in Figure 2(a), the a priori information stored in the nodes a−1 , a
−
2 and

a−3 is connected to the node a+3 that represents a posteriori information.
As mentioned in Section 3.2, the a priori and a posteriori covariance and cross-

covariance terms between the nodes, which participated in the same MR update in the
past, are known (this information can be stored in the nodes themselves). The construc-
tion process of the graph and the communication protocol among the robots is discussed
in [Indelman et al., 2011].

4 Graph-based Calculation of Cross-Covariance Terms

For a given DAG G, we wish to calculate E[X̃i(ti)X̃
T

j (tj)], the cross-covariance between

the ith robot at ti and the jth robot at tj. In this section we use the notation X̃a as

11



an alternative to X̃
−
i (ti) or X̃

+

i (ti), where a is an a priori or a posteriori node in G,
respectively. Let the nodes c and d in G represent X̃i(ti) and X̃j(tj), respectively. Thus,

the goal here is to calculate E[X̃cX̃
T

d ], which is equivalent to calculating E[X̃i(ti)X̃
T

j (tj)].

4.1 Rationale

As mentioned in Section 3.2.1, the first step is to construct two inverse-trees Tc =
(VTc , ETc) and Td = (VTd

, ETd
), containing all the possible paths in G to each of the

nodes c and d. This can be performed as follows. The first tree, Tc, is initialized with the
node c. Each next level is composed of the parents of the nodes that reside in the previous
level, as determined from G. For example, the second level of Tc contains all the nodes in
G that are directly connected to c. The same process is executed for constructing a tree
Td for the node d. Note that every node in Tc and Td has only one child but may have one
or r parents. In the latter case, the node represents an MR update event. Figure 2(b)
shows an example of such trees, constructed based on the graph shown in Figure 2(a) for

calculating the cross-covariance E[X̃b−3
X̃

T

b−1
], i. e. c ≡ b−3 and d ≡ b−1 .

The convention used here is that if some node ai has several parents, the jth parent
is denoted as aji+1. Also, a ≡ a1, as shown in Figure 4.

Given the two trees Tc and Td, the cross-covariance term E[X̃cX̃
T

d ] can be computed
by expressing X̃c and X̃d using information stored in the nodes from upper levels in the
two trees. We start with the first level in the two trees, which is composed of the node c

in Tc, and the node d in Td. Since the cross-covariance E[X̃cX̃
T

d ] is unknown, we proceed
to the parents of these nodes, i. e. to the next level in the trees, according to the relation
type represented by the arc weights.

Having reached the second level, the term E[X̃cX̃
T

d ] can be expressed using information
stored in nodes from the current (second) level and lower levels. For example, assuming

a transition relation (22) connecting the first two levels in the two trees, E[X̃cX̃
T

d ] can be
written, according to Eq. (22), in three different forms:

E

[
X̃c

(
Φd2→dX̃d2 + ωd2→d

)T
]

E
[(

Φc2→cX̃c2 + ωc2→c

)
X̃

T

d

]
E

[(
Φc2→cX̃c2 + ωc2→c

)(
Φd2→dX̃d2 + ωd2→d

)T
] (25)

where c2 and d2 are the parents of c and d, respectively.
Since the expression from the previous (first) level was already checked, it is now

required to examine whether any of the expressions involving nodes from the current level

are known. In other words, the question is whether any of the pairs E[X̃cX̃
T

d2
], E[X̃c2X̃

T

d ]

and E[X̃c2X̃
T

d2
] are known. In addition, it is also required to know the correlation between

the noise terms and the state vectors.
Since, in general, these pairs are unknown, we proceed to the next (third) level in the

trees according to the relation type represented by the arc weights. Now, each of the

expressions for E[X̃cX̃
T

d ] obtained while processing the previous (second) level, may be
further expanded using information stored in the nodes of the current (third) level.

Continuing the previous example, assume the second and third levels are connected
by a transition relation (22) in Tc and an update relation (23) in Td, and assume the third

12



robot is updated (q = 3). Then one of the possible expressions for E[X̃cX̃
T

d ] would be
obtained from X̃c = Φc2→cX̃c2 + ωc2→c and

X̃d = Φd2→d

[(
I −Kd2Hd33

)
X̃d33
−Kd2

r∑
i=1 , i ̸=3

Hdi3
X̃di3
−Kd2

r∑
i=1

Ddi3
vdi3

]
+ ωd2→d (26)

Note that, compared to Eq. (23), α ≡ d2 and βi = di3.
Once again, the question is whether the different cross-covariance terms that appear

in the new expressions involving current and lower levels are known (had been stored in
G in the past). All the expressions from the previous level (the second level) were already
analyzed. Ignoring for the moment terms that involve noise, it is obvious that less terms
are to be analyzed when nodes closer to c or d are considered. Therefore, it is preferred
to start analyzing from the lower level upward.

If, for example, E[X̃c3X̃
T

d13
], is known, then the nodes c3 ∈ VTc and d13 ∈ VTd

are

either identical (c3 ≡ d13) or represent state vectors that had been used in the same MR

measurement. Otherwise, E[X̃c3X̃
T

d13
] would not have been stored in G. In any case, the

known term E[X̃c3X̃
T

d13
], properly weighted, is part of E[X̃cX̃

T

d ]. Having a known term
also means that there is no need to proceed to nodes of higher levels related to this term.

The procedure continues to higher levels in the two trees until either all the terms

required for calculating the cross-covariance E[X̃cX̃
T

d ] are known, or the top level in both
trees has been reached. In the latter case, the unknown terms of the cross-covariance are
zero.

The process noise terms are assumed to be statistically independent, E[ωi1→i2ω
T
j1→j2

] =
0, if ωi1→i2 and ωj1→j2 belong to different robots, or, if ωi1→i2 and ωj1→j2 belong to the
same robot at non-coinciding time instances, i. e., (ti1 , ti2) ∩ (tj1 , tj2) = ϕ. The mea-
surement noise is assumed to be statistically independent of the state vectors involved in
the measurement. On the other hand, the process and measurement noise terms may be
statistically dependent on the involved state vectors (see Section 4.2.3).

In the following sections, the above rationale is transformed into an algorithm for

calculating the cross-covariance E[X̃cX̃
T

d ] in a general scenario.

4.2 Algorithm for Explicit Cross-Covariance Calculation

Let Tb = (VTb
, ETb

) be a tree containing all the paths in G = (V,E) to some node b ∈ V ,
and let a ∈ VTb

and α, β ∈ V . The following notations are used in the remainder of this
paper:

πb(a) Parents of node a in tree Tb

Ab(a) Ancestors of node a in tree Tb

Db(a) Descendants of node a in tree Tb

ak
Tb=⇒ a Path ak → · · · → a2 → a in tree Tb

{ak
Tb=⇒ a} Group of nodes in the path ak

Tb=⇒ a

Definition 4. A pair of nodes (α, β) is said to be known, if E[X̃αX̃
T

β ] is known, i. e., if
it can be retrieved from the data stored in G. A known pair (α, β) is denoted by ⊙(α, β).

Definition 5. Given the location of node a in the tree Tb, (Tb)
a is defined as the sub-tree

of Tb, containing all the ancestors of a in Tb and the node a itself.
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Let Tc = (VTc , ETc) and Td = (VTd
, ETd

) be two trees constructed from G, and let
cδ, cρ ∈ VTc and dη, dζ ∈ VTd

, where the indices δ, ρ, η, ζ indicate the level in which each
node is located.

Definition 6. The pair (cδ, dη) is said to be younger than the pair (cρ, dζ) if

min(δ, η) < min(ρ, ζ) (27)

The algorithm for calculating cross covariance terms gradually processes pair permu-
tations between nodes in Tc = (VTc , ETc) and nodes in Td = (VTd

, ETd
) at different levels,

starting from the first level. The permutation set of the kth level is denoted byMk, with

M1
.
= {(c, d)}. The next sections describe an algorithm for calculating E[X̃cX̃

T

d ] based

onMk from different levels. The value of E[X̃cX̃
T

d ] is initialized to zero.

4.2.1 Processing a single member of Mk

In the general case, when processing the permutation setMk from level k, all the nodes
on the path to the leaf (which is c ∈ VTc and d ∈ VTd

) should be considered, starting
from the leaf and going up until reaching the current level k. For example, assume that

for some member (ck, dk) ∈ Mk, the paths to the leaf nodes are ck
Tc=⇒ c and dk

Td=⇒ d.

Figure 4(a) schematically illustrates a general path ck
Tc=⇒ c. Start by checking whether

(ck, d) or (c, dk) are known in the sense of Definition 4, i. e., whether ⊙(ck, d) or ⊙(c, dk).
If not, then check whether ⊙(ck, d2) or ⊙(c2, dk), and so on. The procedure ends when a
known pair of nodes is found, or when reaching and analyzing the pair (ck, dk). When a

known couple of nodes is discovered, its contribution to the cross-covariance E[X̃cX̃
T

d ] is
calculated.

Denote the overall weight of the paths ck
Tc=⇒ c and dk

Td=⇒ d by Wc(ck) and Wd(dk),

respectively. If ⊙(cj, dk), with 1 ≤ j ≤ k, then E[X̃cX̃
T

d ] is updated according to:

E[X̃cX̃
T

d ]← E[X̃cX̃
T

d ] +Wc(cj)E[X̃cjX̃
T

dk
]W T

d (dk) +Qcjdk (28)

Similarly, if ⊙(ck, dj), with 1 ≤ j ≤ k, then E[X̃cX̃
T

d ] is updated according to:

E[X̃cX̃
T

d ]← E[X̃cX̃
T

d ] +Wc(ck)E[X̃ckX̃
T

dj
]W T

d (dj) +Qckdj (29)

The noise covariances Qckdj and Qcjdk are analyzed in Section 4.2.3. If w(a, b) is the arc
weight connecting the node a to node b in G, then

Wc(ck) = Πk
i=2w(ci, ci−1) (30)

Wd(dk) = Πk
i=2w(di, di−1) (31)

After finishing analyzing the member (ck, dk) ∈ Mk, the permutation set Mk is up-
dated as follows.

Mk ←Mk�
{
{(c′, dk) | c′ ∈ πc(cj) , (c′, dk) ∈Mk} if ⊙(cj, dk)
{(ck, d′) | d′ ∈ πd(dj) , (ck, d

′) ∈Mk} if ⊙(ck, dj)
(32)
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4.2.2 Calculation of Mk+1

Having described how each level in the trees Tc and Td is handled, the next step is to
address the mechanism for advancing to the next level. After finishing processing all the
members inMk, as discussed in Section 4.2.1, the only members left inMk are those for
whom the procedure did not find any known pair. IfMk = ϕ, the algorithm terminates.

The set of permutations in the next level,Mk+1, is constructed based on the parents
of each of the nodes that appear inMk: For each member (a, b) ∈Mk, the groups πc(a)
and πd(b) are obtained. Then, a set of all the possible pair permutations between πc(a)
and πd(b) is constructed and added toMk+1:

Mk+1 =
{
(csk+1, d

t
k+1) | csk+1 ∈ πc(a) , d

t
k+1 ∈ πd(b) , ∀(a, b) ∈Mk

}
(33)

where s and t distinguish between several parents.

c
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(a) The tree Tc

d
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(b) The tree Td

Figure 4: The node cj in Tc has descendants that appear as ancestors of dk in the sub-tree

(Td)
dk , therefore contributing noise terms to the calculated E[X̃cX̃

T

d ]. Update-nodes are
not explicitly marked.

4.2.3 Effect of Noise Terms

In this section, we discuss the effect of process and measurement noise terms on the

cross-covariance E[X̃cX̃
T

d ], when expressing E[X̃cX̃
T

d ] via X̃ck and X̃dk .
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Let Ta = (VTa , ETa) be a tree constructed for some node a ∈ V , and let al, al−1 ∈ VTa

be some nodes from levels l and l−1, respectively. These nodes are connected either by a
transition relation (22) or an update relation (23). In the first case, the two nodes belong
to the same thread, while in the second case, the nodes may be from different threads.

Denote by ηal:al−1
the noise related to expressing X̃al−1

via X̃al . Then ηal:al−1
can be

either process or measurement noise, depending on the relation type:

ηal:al−1
=

{
ωal→al−1

transition relation
−Kal−1

Dalval update relation
(34)

Let cm and dp be some nodes in the trees Tc and Td, respectively, and recall Definition 5.

Lemma 1. If (Td)
dp does not contain any nodes from the path cm → · · · → cr → · · · → c

in Tc, then ηcγ :cγ−1
and X̃dp are statistically independent for any γ ∈ {1, . . . ,m}.

The proof of this and other Lemmas to follow, can be found in Appendix B.

Corollary 1. If Td does not contain any nodes from the path cm
Tc=⇒ c, then ηcγ :cγ−1

and

X̃d are statistically independent for any γ ∈ {1, . . . ,m}.

Lemma 1 and Corollary 1 are also valid, with the proper adjustments, when considering
(Tc)

cm and Tc, respectively.
At this point assume, without loss of generality, that in the process of analyzing the

member (ck, dk), described in Section 4.2.1, the pair (cj, dk) was discovered as known in
the sense of Definition 4. Since nodes from lower levels are analyzed first, no other known
pair (cr, dk) or (ck, dr) exists with r < j.

Lemma 2. The path dk
Td=⇒ d does not contain any node cr from the path cj → · · · →

cr → · · · → c in Tc for any 1 ≤ r < j. If r = j, the node cr = cj can only appear in the

path dk
Td=⇒ d as dk.

Lemmas 1 and 2 lead to the following corollary.

Corollary 2. If (Td)
dk does not contain any nodes from the path cj

Tc=⇒ c, then ηcγ :cγ−1
,

for any γ ∈ {1, . . . ,m}, is statistically independent of all the states represented by the

nodes {dk
Td=⇒ d} ∪ (Td)

dk .

Note that ηcγ :cγ−1
may still be statistically dependent, for at least a single value of

γ ∈ {1, . . . ,m}, on states represented by the nodes in Td�{dk
Td=⇒ d}�(Td)

dk , if among

these nodes there is at least one node from the path cj
Tc=⇒ c. This leads to the following

corollary.

Corollary 3. If for all the discovered pairs ⊙(a, b) with a ∈ VTc and b ∈ VTd

Dc(a) ∩ Ad(b) = ϕ (35)

then all the noise terms from Tc, involved in the calculation of E[X̃cX̃
T

d ], are statistically-
independent of X̃d, and all the involved noise terms from Td are statistically-independent
of X̃c.
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In other words, when the conditions of Corollary 3 are satisfied for all members in

Mk, for all considered k, the calculated cross-covariance E[X̃cX̃
T

d ] will not contain any

noise terms. However, when the conditions of Corollary 3 are not satisfied, E[X̃cX̃
T

d ]
will contain noise covariances from different time instances and robots. Returning to
the discovered pair ⊙(cj, dk), we now assume that there are descendants of cj in Tc that
appear as ancestors of dk in Td: Dc(cj) ∩Ad(dk) ̸= ϕ. Consequently, Qcjdk ̸= 0 and, thus,
the objective in the remainder of this section is to calculate Qcjdk (cf. Eq. (28)).

Among the nodes in Dc(cj) ∩ Ad(dk) , denote by ci, 1 < i < j, the descendant of cj
that is closest to c, as illustrated in Figure 4. The child of ci in Td is denoted by dn.

Lemma 3. The path cj
Tc=⇒ ci appears in (Td)

dk .

Observe that Lemma 3 is also valid for any sub-path cj
Tc=⇒ ci′ of the path cj

Tc=⇒ ci,
with i ≤ i′ < j. Furthermore, (Td)

dk might contain several appearances of the sub-paths

cj
Tc=⇒ ci′ .
Now we analyze the correlation between the noise term ηcl:cl−1

, related to any two

adjacent nodes cl and cl−1 in the path cj → · · · → cl → cl−1 → · · · → ci, and X̃dk . The

term E[ηcl:cl−1
X̃

T

dk
], with i+ 1 ≤ l ≤ j, may be calculated as follows.

Assume for the moment that (Td)
dk contains only a single appearance of cl → cl−1.

Then X̃dk is given by (cf. Figure 4)

X̃dk = Wdk(cl)X̃cl +
n−1∑
r=k

Wdk(dr)ηdr+1:dr +

+ Wdk(dn)ηci:dn
+

l−1∑
r=i

Wdk(cr)ηcr+1:cr + νd (36)

where νd is composed of state vectors and noise terms represented by nodes in (Td)
dk�{cl →

cl−1 → · · · → dk}. Here, Wdk(a) is the overall weight of the path a→ . . .→ dk in (Td)
dk .

Since it was assumed that cl → cl−1 appears only once in (Td)
dk , (Td)

dk�{cl → cl−1 →
· · · → dk} does not contain cl → cl−1. Therefore, according to Lemma 1, ηcl:cl−1

and νd

are statistically independent and thus, from Eq. (36),

E[ηcl:cl−1
X̃

T

dk
] = E[ηcl:cl−1

ηT
cl:cl−1

]W T
dk
(cl−1) (37)

The term E[ηcl:cl−1
ηT
cl:cl−1

] is equal to the process or measurement noise covariances,

depending on the relation type between X̃cl−1
and X̃cl (cf. Eq. (34)):

E[ηcl:cl−1
ηT
cl:cl−1

] =

{
Qcl:cl−1

transition relation
Kcl−1

DclRcl:cl−1
(Kcl−1

Dcl)
T update relation

(38)

Recall that the matrices in Eq. (38) were stored as part of the arc weights (cf. Section 3).
In the general case, (Td)

dk may contain several appearances of cl → cl−1, each ap-
pearance with its own path cl → cl−1 → · · · → dk. Letting u distinguish between these
different appearances of cl → cl−1 in (Td)

dk , and denoting by W u
b (a) the overall weight of

the uth path a
Tb=⇒ b, Eq. (37) becomes:

E[ηcl:cl−1
X̃

T

dk
] = E[ηcl:cl−1

ηT
cl:cl−1

]
∑
u

(
W u

dk
(cl−1)

)T
(39)
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Furthermore, when considering the whole tree Td, cl → cl−1 may appear not only

in (Td)
dk . According to Lemma 2, cl → cl−1 ̸⊂ dk

Td=⇒ d. Thus, in addition to (Td)
dk ,

cl → cl−1 may be also found only in Td�(Td)
dk�{dk

Td=⇒ d}. However, the contribu-
tion of the correlation between ηcl:cl−1

and the state vectors represented by nodes in

Td�(Td)
dk�{dk

Td=⇒ d} will be calculated when processing other members inMk.
In a similar manner to Eq. (36), X̃c can be expressed as (cf. Figure 4)

X̃c = Wc(cj)X̃cj +
l−1∑
r=i

Wc(cr)ηcr+1:cr + νc (40)

where νc is composed of state vectors and noise terms outside the path cj
Tc=⇒ ci

Tc=⇒ c.

Therefore, the contribution of the noise term ηcl:cl−1
to E[X̃cX̃

T

d ], due to the nodes in
Dc(cj) ∩ Ad(dk), is:

Q̄1(l)
.
= Wc(cl−1)E[ηcl:cl−1

ηT
cl:cl−1

]
∑
u

(W u
d (cl−1))

T (41)

for each i+ 1 ≤ l ≤ j.
Yet, in addition to the above, the nodes Dd(dk) ∩ Ac(cj) also appear in expressions

that constitute Qcjdk . This situation may be handled in a similar manner. Among all the
nodes in Dd(dk) ∩ Ac(cj), denote by ds, 1 < s < k, the node that is closest to d. Thus,

the contribution of noise terms to E[X̃cX̃
T

d ], due to the nodes Dd(dk) ∩ Ac(cj), is:

Q̄2(m)
.
=

∑
u

W u
c (dm−1)E[ηdm:dm−1

ηT
dm:dm−1

]W T
d (dm−1) (42)

for each s+ 1 ≤ m ≤ k.
In conclusion, the noise covariance Qcjdk for a discovered ⊙(cj, dk) is:

Qcjdk
.
=

j∑
l=i+1

Q̄1(l) +
k∑

m=s+1

Q̄2(m) (43)

In practice, the calculation of Qcjdk requires processing all the nodes in (Td)
dk , checking

if they appear in cj
Tc=⇒ c, and processing all the nodes in (Tc)

cj , checking if these nodes

appear in dk
Td=⇒ d. If such nodes were found, the contribution of the involved noise terms

is computed using Eq. (43). A similar process should be carried out for calculating Qckdj

in case ⊙(ck, dj) is discovered (cf. Eq. (29)).
The above calculations are required only upon discovering a known pair. A formal

algorithm for calculating Qc∗d∗ for some discovered pair ⊙(c∗, d∗) is given in the next
section.

4.3 Formal Algorithms

Algorithm 1 summarizes the developed approach for calculating the cross covariance

E[X̃cX̃
T

d ] given the trees Tc and Td. The notation card(A) denotes the cardinality of
the set A.

The process of analyzing a single permutation (ck, dk) fromMk, discussed in Section
4.2.1, is presented in Algorithm 2, while Algorithm 3 implements the technique, developed
in Section 4.2.3, for calculating the effect of the noise terms on the calculated cross

covariance E[X̃cX̃
T

d ].
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Algorithm 1 Calculation of E[(X̃c)(X̃d)
T ]

1: Input: Trees Tc, Td. hc
.
= height(Tc), hd

.
= height(Td)

2: Initialization: k = 1, E[(X̃c)(X̃d)
T ] = 0,M1 = {(c, d)}.

3: while k ≤ max(hc, hd) do
4: for r = 1 to card(Mk) do
5: Let (ck, dk)

.
= M(r). Execute Algorithm 2 on (ck, dk). Let the output be

c∗, d∗,Wc∗d∗ , flag.
6: if flag then
7: E[(X̃c)(X̃d)

T ] = E[(X̃c)(X̃d)
T ] +Wc∗d∗

8: UpdateMk according to Eq. (32)
9: end if
10: end for
11: if Mk is empty then
12: return E[(X̃c)(X̃d)

T ]
13: else
14: ConstructMk+1 based on Eq. (33)
15: k = k + 1
16: end if
17: end while
18: return E[(X̃c)(X̃d)

T ]

Algorithm 2 Processing a single member (ck, dk) fromMk

1: Input: Trees Tc, Td, node ck in Tc and node dk in Td

2: Initialization: l = 1, c∗ = d∗ = Wc∗d∗ = {}, flag = 0
3: while l ≤ k do

4: if E[X̃ckX̃
T

dl
] is known, i. e., ⊙(ck, dl) then

5: c∗
.
= ck, d

∗ .
= dl, flag = 1

6: break
7: end if
8: if E[X̃clX̃

T

dk
] is known, i. e., ⊙(cl, dk) then

9: c∗
.
= cl, d

∗ .
= dk, flag = 1

10: break
11: end if
12: l = l + 1
13: end while
14: if flag then
15: Calculate Qc∗d∗ by executing Algorithm 3

16: Wc∗d∗ = Wc(c
∗)E[X̃c∗X̃

T

d∗ ]W
T
d (d

∗) +Qc∗d∗

17: end if
18: return c∗, d∗,Wc∗d∗ , flag
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Algorithm 3 Calculation of Qc∗d∗ .

1: Input: Tc, Td, c
∗, d∗, s.t. E[X̃c∗X̃

T

d∗ ] is known.
2: Initialization: Ud∗

.
= (Td)

d∗ , Uc∗
.
= (Tc)

c∗ , Qc∗d∗ = 0.
3: while Ud∗ is not empty do
4: Ud∗ = Ud∗�{li}, where {li} are the leafs of Ud∗ .

5: Check if any leafs of Ud∗ appear in c∗
Tc=⇒ c.

6: for each such leaf β of Ud∗ do
7: Denote c∗ → · · · → β as us → · · · → u1, then E[ηc∗→βη

T
c∗→β] =∑s

ζ=2Wβ(uζ−1)E[ηζ→ζ−1η
T
ζ→ζ−1] (Wβ(uζ−1))

T

8: Qc∗d∗ = Qc∗d∗ +Wc(β)E[ηc∗→βη
T
c∗→β]W

T
d (β)

9: Ud∗ = Ud∗�(Td)
β

10: end for
11: end while
12: Repeat Steps 3-11, replacing: Ud∗ by Uc∗ ; c

∗ by d∗; c by d; Tc by Td; instead of Step
8 perform Qc∗d∗ = Qc∗d∗ +Wc(β)E[ηd∗→βη

T
d∗→β]W

T
d (β).

13: return Qc∗d∗

5 Computational Complexity

As seen in Section 3, the computational complexity depends on the particular scenario
being considered. In this section, an analysis of the computational complexity is provided.
It is shown that the worst-case computational complexity is bounded by O (n2log(rn)),
where n is the number of the performed MR measurement updates, represented in G.
Section 5.2 suggests an efficient implementation method, which allows to considerably
reduce the actual computational complexity.

If a robot has limited computational resources, it is possible to approximate the true
cross-covariance terms by maintaining a limited history of the MR measurement updates.
In this case, the graph G may be treated as a constant-size buffer, where upon reaching
a maximum size, the nodes representing information contained in old MR measurement
updates3 are removed from the graph G, thereby neglecting the contribution of those
updates on the cross-covariance terms to be computed in the future.

5.1 Computational Complexity Analysis

Assume that n−1 MR update events have been carried out and currently the nth update
event should be performed. Since each MR measurement is represented in the graph G
by r + 1 nodes, prior to the nth update event the graph G will contain (r + 1)(n− 1) =
(r + 1)n − r − 1 nodes. These nodes are scattered among the robot threads in G. Since
each node in the two trees may have one or r parents, the number of nodes in the ith
level is bounded by ri−1.

A tighter bound can be obtained by noting that at least one level should separate
between two update-event nodes. Therefore, if a node has r parents, each of these parents
nodes will have only one parent. Consequently, the number of nodes in the ith level is
bounded by r⌊0.5(i−1)⌋.

The analyzed worst case is composed of the following assumptions: (i) The number

3Different logic may be applied for choosing the nodes to be removed from the graph.
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of nodes in each level i in the two trees is ri−1; (ii) known pairs of nodes, in the sense of
Definition 4, are found only upon reaching the top level in both trees, thereby ensuring
maximum-size permutation setsMk and that all the levels are processed by Algorithm 1;

(iii) the computational cost of checking whether ⊙(a, b), i. e. whether E[X̃aX̃
T

b ] is known,
is O(1).

Following these assumptions, the height h of each of the two trees can be calculated
from

(r + 1)n− r − 1 =
h∑

i=1

ri−1 = rh − 1 (44)

which implies
h ≈ logr(rn+ n) (45)

In addition,
card(Mk) ≤ r2(k−1) (46)

The complexity of processing a single member from Mk is bounded by 2i. Thus,
without taking into account the involved complexity of Algorithm 3 for calculating the
contribution of noise terms, the overall computational complexity is bounded by

h∑
i=1

r2(i−1) · 2i = r−2

h∑
i=1

r2i · 2i (47)

Letting j
.
= 2i,

r−2

h∑
i=1

r2i · 2i = r−2

2h∑
j=1

jrj − r−1 (48)

Now, using the relation

m∑
i=1

iri =
r

(r − 1)2
(
1− rm −mrm +mr1+m

)
≈ 1

r
[mrm(r − 1)− (rm − 1)] (49)

and recalling that h = logr(rn+ n) gives

r−2

2h∑
j=1

jrj − r−1 < r−2

2h∑
j=1

jrj

= r−3
[
logr(rn+ n)2 · (rn+ n)2(r − 1)− ((rn+ n)2 − 1)

]
≈ r−3(r + 1)2(r − 1)n2logr(rn+ n)2 ∼ O

(
n2log(rn)

)
(50)

The computational complexity cost of calculating the contribution of the noise terms
to the cross-covariance (Algorithm 3) can be bounded as follows. It is assumed that
Algorithm 3 is carried out each time a pair fromMk is processed. Note that in practice,
Algorithm 3 should be executed only upon finding a known pair of nodes. A single
execution of this algorithm for a pair of nodes (ci, di) from the ith level requires checking
for each a ∈ Dc(ci) whether a ∈ Ad(di), and for each b ∈ Dd(di) whether b ∈ Dc(ci).
This procedure is therefore bounded by 2irh−i. Thus, processing a single member from
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Mi is now bounded by 2i + 2irh−i instead of 2i. The overall computational complexity,
including the complexity of Algorithm 3, is therefore bounded by

h∑
i=1

r2(i−1) · (2i+ 2irh−i) ∼ O
(
n2log(rn)

)
(51)

In conclusion, the worst-case complexity of calculating a cross-covariance term in a
general scenario is bounded by O (n2log(rn)).

5.2 Efficient Implementation

The computational load can be significantly reduced by efficient implementation methods.
One possible implementation is described next.

A meta-structure H is created and maintained when constructing the two trees Tc

and Td. This structure is composed of a header containing the details of all the nodes
participating in either of the two trees. Each cell in the header, representing some node
b, has also a flag indicating whether b appears in both of the trees. In addition, each
cell points towards a structure that contains the following fields: The name of the tree
in which b appears; height of the node b; link to the location of b in the tree. The
structure contains also pointers to nodes u1, . . . ur−1, if such nodes exist, such that b
and the nodes u1, . . . ur−1 belong to the same MR measurement update (and therefore,

E[X̃bX̃
T

ui ], i = 1, . . . , r − 1, are known). If b appears in the trees several times, a linked
list is used in which each cell is a structure representing a single appearance of b in the
trees. Figure 5 shows schematically such a structure for r = 3.

This implementation allows processing each member (ck, dk) ∈ Mk more efficiently,
although the worst-case computational complexity does not change. Instead of looking for

⊙(ck, dj) or ⊙(cj, dk), by going over the nodes in ck
Tc=⇒ c and dk

Td=⇒ d, the following may
be performed: Check in the meta-structure H whether ck is linked to any other nodes,
which were part of the same MR update. For each such node u (there are only r− 1 such
nodes), check if u ∈ VTd

by going over the linked list of u in H. For each appearance
u ∈ VTd

, check if hd(u) < k, and then check if dk ∈ Ad(u). Choose the node u with the
smallest height. Repeat the process for dk with the proper adjustments.

Assume that ⊙(cj, dk). When computing the contribution of the noise terms (cf.
Section 4.2.3), instead of processing all the nodes4 in (Td)

dk and (Tc)
cj , checking whether

they appear in cj
Tc=⇒ c and dk

Td=⇒ d, respectively, the following may be performed. For

each node cr ∈ cj
Tc=⇒ c, check in H whether it appears in Td (indicated by flag = 1).

If it does, go over the linked list of cr in H and choose only the appearances of cr in Td

which are higher than k. For each chosen appearance of cr, verify that dk is a descendant.

Repeat the process for dk
Td=⇒ d (with respect to Tc).

6 Communication Protocol and Communication Cost

This section describes the communication protocol required for carrying out a single MR
measurement update, given a graph G representing all the MR measurements executed in
the past. An upper bound on the communication cost is given as well. It is assumed that

4The number of nodes in (Ta)
b is bounded by rh−hb , where h is the height of the tree Ta, and hb is

the height of node b in Ta.
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Figure 5: Schematic illustration of a possible implementation of H for the scenario shown
in Figure 2. Only the structure for the node a−2 is shown. Note that flag’s value is 1 since
a−2 appears in both trees.

prior to executing the current MR measurement update, all the local graphs maintained
by the robots in the group are identical. The communication protocol assumes all the
robots are capable of communicating with each other. Scenarios in which some of the
robots can not communicate with other robots are not currently handled and are left for
future research. Recall that the identity of the updated robot was denoted by q.

6.1 Communication Protocol

To instantiate an MR measurement, robot q broadcasts its current navigation solution
and its covariance to all the other robots in the group, asking each of these robots to
transmit back information sets (ζi(ti),yi(ti)) (cf. Section 2) that satisfy a certain pre-
defined criteria. One possible criterion is proximity of the position estimation, i. e.:
checking whether the position of the ith robot at the time instant ti is close enough to
the current position of the qth robot. Another alternative is to check if the same scene is
observed by the two robots (robot i at time instant ti and robot q at the current time).
Naturally, the involved uncertainty estimation, compared to the covariance obtained from
robot q should also be taken into account. Note that ti can be some time instant from the
past (ti < t), in which case the transmitting robot i needs to extract the information set
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(ζi(ti),yi(ti)) from a repository, maintained during the mission. It is also possible that
several information sets (from different time instances) are transmitted by the same robot
to robot q.

Before some robot i transmits an information set (ζi(ti),yi(ti)), it locates its position
in the ith thread in the graph, if a node representing this information set was to be added
to the graph. Denote this node by β, and the adjacent nodes in the same thread by α and
γ. Then, robot i calculates the transition and noise covariance matrices Φi

tα→tβ
, Qi

tα→tβ
,

Φi
tβ→tγ , Q

i
tβ→tγ and transmits these matrices, along with the information set (ζi(ti),yi(ti)),

to robot q. In addition, robot i also transmits its covariance matrix E[X̃i(ti)X̃
T

i (ti)] and
the measurement covariance matrix Ri(ti), which is typically associated to the onboard
sensors that produced the measurements yi(ti).

After receiving all the information sets (ζi(ti),yi(ti)) from the rest of the robots in the
group, robot q chooses the best r−1 sets, which together with the current information set
of robot q yields {(ζi(ti),yi(ti))}ri=1. Based on these information sets, robot q calculates
the MR measurement z (cf. Eq. (7)). The decision regarding which sets are better than
others can be taken using different criteria and logic. Next, robot q calculates the Jacobian
matrices Hi(ti) and Di(ti) for i ∈ {1, · · · , r}. Among these matrices are also Hq(t) and
Dq(t), which are computed based on the local information of robot q.

Now, in order to update robot q with the MR measurement z, it is required to calculate

the cross-covariance terms E[X̃i(ti)X̃
T

j (tj)] for all i, j ∈ {1, · · · , r}, i ̸= j. To accomplish
this step, r a priori nodes are added to appropriate threads and locations in the local
graph G (of robot q), representing each of the r information sets. Each such node is
connected to adjacent nodes in the same thread by an arc representing a transition relation
(cf. Definition 2), where the required transition and process noise covariance matrices were
already transmitted (see above). In addition, each node is associated with the transmitted

a priori covariance matrix, i.e. E[X̃i(ti)X̃
T

i (ti)] for a node representing X̃i(ti). After adding
r a priori nodes to the local graph, robot q calculates the required cross-covariance terms
by executing Algorithm 1.

Once all the cross-covariance terms are computed, it is possible to calculate the Kalman
gain matrix Kq and update robot q (cf. Section 3.2), followed by an update of the graph:
The calculated cross-covariance terms are stored in the relevant a priori nodes (e. g.,

the cross-covariance E[X̃i(ti)X̃
T

j (tj)] is stored in the two nodes representing X̃i(ti) and

X̃j(tj)), and a new node is added to the thread of robot q in the graph. This is an update
node, which is connected to r a priori nodes by arcs representing an update relation
(cf. Definition 3).

The final step is to broadcast the update information to the rest of the robots in
the group so they could update their local graphs. Therefore, robot q broadcasts the
information that participated in the MR update: 1) Identities of the involved r − 1
robots and its own identity; 2) Gain matrix Kq, time instances ti, a priori covariance

matrices E[X̃i(ti)X̃
T

i (ti)] and Jacobian matrices Hi(ti), Di(ti) for i ∈ {1, · · · , r}; 3) All

the calculated cross-covariance matrices E[X̃i(ti)X̃
T

j (tj)] with i, j ∈ {1, · · · , r}, i ̸= j; 4)
The appropriate transition matrices and process and measurement noise matrices for each
of the r information sets (see above).

Once this information is obtained by any robot in the group, it follows the same steps
as described above for updating its local copy of the graph (all the required quantities are
available, thus no computations should be performed). Consequently, at the end of this
process all the robots in the group remain with the same graph. The different steps of
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Table 1: Communication Protocol and Cost

# Action What is transmitted Overall Cost

Robot q broadcasts

1. its current ζq(t), E[X̃q(t)X̃
T

q (t)] O(n2
ζ) ≤ O(n2)

navigation solution

(ζi(ti),yi(ti)), E[X̃i(ti)X̃
T

i (ti)], Ri(ti),
2. Reply from other robots Φi

tα→tβ
, Qi

tα→tβ
, Φi

tβ→tγ , Q
i
tβ→tγ N ·O(n2)

for i ∈ {1, · · · , N}, i ̸= q

Identities of the involved robots,
3. Robot q broadcasts Kq, ti, Hi(ti), Di(ti), Ri(ti), r2O(n2

ζ) + rO(n2
y)

update information Φi
tα→tβ

, Qi
tα→tβ

, Φi
tβ→tγ , Q

i
tβ→tγ , ≤ r2O(n2)

E[X̃i(ti)X̃
T

j (tj)]
for i, j ∈ {1, · · · , r}

the described-above communication protocol are summarized in Table 1.

6.2 Communication Cost Analysis

The communication cost is analyzed in this section assuming the cost involved in trans-
mitting an n×m matrix is O(nm). Recall that N represents the number of robots in the
group and denote by nζi and nyi the cardinality of ζi and yi, respectively. Let also,

nζ
.
= max(nζ1 , · · · , nζN ) , ny

.
= max(ny1 , · · · , nyN ) , n

.
= max(nζ , ny)

Table 1 presents the involved communication cost for the different steps of the communi-
cation protocol (cf. Section 6.1) assuming a broadcast involves a single transmission. In
the overall, the communication cost is bounded by (N + r2)O(n2).

In case a broadcast requires a number of transmissions, an upper bound for the com-
munication cost can be obtained by assuming that a broadcast requires a transmission to
each robot in the group. Consequently, steps 1 and 3 in Table 1 should be carried out N
times, and therefore the bound on the communication cost is Nr2O(n2).

7 Results

In this section, the proposed method is demonstrated for vision-based three-view MR
updates [Indelman et al., 2011], [Indelman et al., 2012] in a theoretical example, in a
statistical simulation using synthetic imagery, and in an experiment involving real navi-
gation and imagery data. The statistical simulation environment is also used to compare
the method with a centralized smoothing approach.

The three-view MR measurements are formulated whenever the same scene is observed
by three different views, possibly captured by different robots, i. e., r = 3. A short
description of the three-view MR measurement model is given in Appendix C. In this
case, the residual measurement z is a function of the robots’ navigation solutions and of
the matching line-of-sight vectors, calculated based on the measured feature points from
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the overlapping three images [Indelman et al., 2011]. The residual measurement z is given
by Eq. (11).

7.1 Example

Consider the problem of calculating the term E[X̃
−
c3
(X̃

−
c1
)T ] in the example shown in Figure

6(a). The trees Tc−3
and Tc−1

are shown in Figure 6(b). In this example, E[X̃
−
c3
(X̃

−
c1
)T ] may

be calculated based on the known term E[X̃
−
b2
(X̃

−
b1
)T ], which is analyzed upon reaching the

fourth level in the two trees. As can be seen, a−1 , a
−
2 ∈ Dc−3

(b−2 ) and also a−1 , a
−
2 ∈ Ac−1

(b−1 ).

Thus, according to Section 4.2.3, the noise terms associated with the path b−2 → a−1 → a−2
are not statistically independent of X̃

−
b1
.
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Figure 6: An example assuming three-view measurements.

Applying the proposed algorithm, the term E[X̃
−
c3
(X̃

−
c1
)T ] is calculated as

E[X̃
−
c3
(X̃

−
c1
)T ] = ΦIII

b2→c3
E[X̃

−
b2
(X̃

−
b1
)T ](ΦI

b1→c1
)T + ΦIII

a2→c3
QI

a1→a2
AT

2 (Φ
I
a3→c1

)T +

+ ΦIII
a1→c3

QIII
b2→a1

(A1 + A2Φ
III
a1→a2

)T (ΦI
a3→c1

)T (52)

with A1 = −Ka3Ha1 and A2 = −Ka3Ha2 .

7.2 Statistical Simulation Results

The proposed method is demonstrated in this section in a statistical simulation over the
three-view MR updates. A formation comprising two aerial robots is examined. Each of
the robots is equipped with its own navigation system and onboard camera.

The following two coordinate systems are defined: 1) NED: North-East-Down co-
ordinate system (also known as local-level local-north system). The x, y and z axes are
north, east and down, respectively. 2) Body: Body-fixed reference frame. The x axis
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points towards the robot’s front, y points right when viewed from above and z completes
the setup to yield a Cartesian right hand system.

The navigation solution of each robot is represented by

xi
.
=

[
PT

i VT
i ΨT

i

]T
, i ∈ {1, 2} (53)

with P,V,Ψ representing position, velocity and Euler angles, respectively. A basic model
αi of inertial sensor errors (cf. Section 2) is assumed

αi =
[
dT bT

]T
(54)

where d is the gyro drift and b is the accelerometer bias. Consequently, the navigation
error state vector is composed of (cf. Eq. (3))

Xi =
[
∆xT

i ∆αT
i

]T .
=

[
∆PT

i ∆VT
i ∆ΨT

i ∆dT
i ∆bT

i

]T
, i ∈ {1, 2} (55)

with ∆a denoting the error of a. Thus, ∆P,∆V are the position and velocity errors,
given in the NED system, ∆Ψ are the Euler angle errors, and ∆d,∆b are the residual
drift and bias vectors (i. e., the difference between the true and estimated drift and bias).
The continuous system matrix Φi satisfying Eq. (4) for the above-defined state vector
(Eq. (55)) is given by [Indelman, 2011]

Φi =


03×3 I3×3 03×3 03×3 03×3

03×3 03×3 As 03×3 CBody
NED

03×3 03×3 03×3 −CBody
NED 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 (56)

where the matrix CBody
NED is a directional cosine matrix (DCM) transforming from body

system to NED system and As is a skew-symmetric matrix of the specific force vector

f =
(
fx fy fz

)T
, measured by the accelerometers and expressed in the NED system:

As =

 0 −fD fE
fD 0 −fN
−fE fN 0

 fNfE
fD

 = CBody
NED

fxfy
fz

 (57)

The above model of Φi is valid for short periods of operation [Titterton and Weston,
2004], significantly smaller than the Schuler period (around 84 minutes), which is indeed
the case in the considered scenario herein.

The navigation system of Robot I is of a better quality, compared to the navigation
system of Robot II. Table 2 presents the assumed initial navigation errors and the errors
of the inertial measurement units (IMU) of the two robots.

The two robots performed the same straight and level north-heading trajectory, with
Robot I being 2 seconds ahead of Robot II. In the considered scenario, Robot I transmitted
information (images and navigation data) to Robot II, thereby allowing updating the
navigation system of Robot II using the three-view measurement approach [Indelman
et al., 2011, 2012]. Synthetic imagery was used in the simulation with an image noise
standard deviation of 1 pixel. The navigation system of Robot I is not updated, and it
therefore develops inertial navigation errors over time. Figure 7 summarizes the assumed
measurement schedule.
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Table 2: Initial Navigation Errors and IMU Errors

Parameter Description Robot I Robot II Units

Initial position error (1σ) (10, 10, 10)T (100, 100, 100)T m

Initial velocity error (1σ) (0.1, 0.1, 0.1)T (0.3, 0.3, 0.3)T m/s

Initial attitude error (1σ) (0.1, 0.1, 0.1)T (0.1, 0.1, 0.1)T deg

IMU drift (1σ) (1, 1, 1)T (10, 10, 10)T deg/hr

IMU bias (1σ) (1, 1, 1)T (10, 10, 10)T mg

Even though the considered scenario may seem rather simple, different time instances
are involved in each MR measurement and the time differences between these time in-
stances are not fixed, e. g. ta2 − ta1 ̸= tb2 − tb1 (cf. Figure 7). Consequently, this scenario
cannot be handled by many of the existing techniques, such as [Roumeliotis and Bekey,
2002, Bahr et al., 2009], without assuming that the time instances are a priori known and
the time differences are fixed. It should be noted that, the method by [Bahr et al., 2009]
can be also applied5 in this scenario, however, as mentioned in Section 1, this method
requires refining the whole navigation history for all the robots for each new measurement
(including IMU or odometry measurements).

Figure 8(a) shows the equivalent graph that was used for calculating the cross-covariance
terms in each update event of Robot II, applying Algorithm 1. For example, the two trees
Tb−3

and Tb−1
, constructed for calculating Pb−3 b−1

are given in Figure 8(b). In the considered
scenario, the conditions of Corollary 3 are satisfied, as in particular can be seen in Figure
8(b). Therefore, the computed cross covariances do not involve any noise terms. The
obtained cross-covariance terms in the considered scenario maintain a constant structure
regardless of how many MR updates were performed so far. For example, the cross-
covariance term P−

b3b2
, required for the second MR update, is similar to Eq. (19):

P−
b3b2

= ΦII
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
(ΦI

a2→b2
)T (58)

while the terms P−
b3b1

and P−
b2b1

are given by

P−
b3b1

= ΦII
a3→b3

{
(I −Ka3Ha3)P

−
a3a2
−Ka3Ha2P

−
a2a2
−Ka3Ha1P

−
a1a2

}
(ΦI

a2→b1
)T (59)

P−
b2b1

= ΦI
b1→b2

P−
b1b1

(60)

Robot II

Robot I

a1 a2

b3

b1 b2

a3

c1 c2

Figure 7: Three-view measurements schedule assumed in the simulation runs.

5The method formulation in [Bahr et al., 2009] is given for a general two-robot measurement model.
However, to the best of the authors’ understanding, their method can be generalized to the general MR
measurement model Eq. (6) considered in this paper and in particular to the three-view measurement
model considered in this section.
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Figure 8: (a) Equivalent graph for the scenario shown in Figure 7. (b) The trees Tb−3
and

Tb−1
required for calculating Pb−3 b−1

.

Figures 9 and 10 present Monte-Carlo results (1000 runs) of position and velocity
errors of Robot II, compared to Robot I errors. The notations VN , VE and VD, used
in Figures 10 and 12, represent velocity errors in the north, east and down directions,
respectively. Four curves are shown: mean navigation error (µ), standard deviation (σ),
square-root covariance of the filter and the standard deviation of Robot I.

As seen, the errors are considerably reduced in all axes upon each MR update, while
maintaining a consistent, unbiased performance. The importance of the cross-covariance
terms is clearly evident from Figures 11 and 12. In these figures, the cross-covariance
terms were neglected, leading to a biased and inconsistent estimation along the motion
heading.

Note that although Robot II is equipped with an inferior navigation system, its per-
formance is not inferior to the performance of Robot I. After several updates, Robot II
actually outperforms Robot I. For example, the position errors of Robot II are smaller
than the position errors of Robot I. The reason for this phenomenon is that while the
measurement is based upon three images, which were obtained from two robots, only one
of the robots is actually updated. Updating both robots would yield an improvement
in both robots [Roumeliotis and Bekey, 2002]. Referring to Section 3.2, since Robot I
contributes two sets of information to each MR measurement (e. g., at ta1 and ta2), the
graph will remain acyclic, if Robot I is updated at ta2 and tb2 (and not at ta1 and tb1).
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Figure 9: Position errors of Robot II compared to position errors of Robot I in a formation
scenario. µ,σ and Sqrt. cov. denote mean error, standard deviation of the error and the
square root covariance of the filter, respectively. σ Robot I denotes the standard deviation
of the error obtained by Robot I. Position errors of Robot II are unbiased (µ ≈ 0) and
reduced in all axes.
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Figure 10: Velocity errors of Robot II compared to velocity errors of Robot I in a formation
scenario: Velocity errors of Robot II are unbiased (µ ≈ 0) and reduced in all axes. See
text and caption of Figure 9 for an explanation of the legend notations.
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Figure 11: Position errors of Robot II when cross-covariance terms are neglected: Biased
estimation (µ ̸= 0) is obtained along the motion heading. See text and caption of Figure
9 for an explanation of the legend notations.
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Figure 12: Velocity errors of Robot II when cross-covariance terms are neglected: Biased
estimation (µ ̸= 0) is obtained along the motion heading. See text and caption of Figure
9 for an explanation of the legend notations.
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7.3 Comparison to a Fixed-Lag Centralized Smoothing Approach

In this section the proposed method for cross-covariance calculation is compared to a
centralized approach, in which a single state vector comprising information from all the
robots in the group is maintained (cf., e. g., [Nerurkar et al., 2009]). The considered
scenario consists of two robots that share visual and navigation information and perform
a straight and level trajectory as in Section 7.2.

Since the three-view MR measurement model (11) involves different time instances, a
fixed-lag centralized smoothing was applied with a state vector and a covariance matrix
defined as:

X̆(tk)
.
=

[
X̆

T

I (tk) X̆
T

II(tk)
]T

, P̆ (tk)
.
= E[X̆(tk)X̆

T
(tk)] (61)

with

X̆i(tk)
.
=

[
XT

i (tk) XT
i (tk−1) . . . XT

i (tk−w+1)
]T

i ∈ {I, II} (62)

where Xi(tk) is the state vector of the i-th robot at time tk, as defined in Eq. (55), and
w is the size of the smoothing lag. The smoothing lag should be long enough to contain
the information from all the time instances involved in each MR measurement, which
therefore should be known a priori (as opposed to the proposed graph-based approach).
Thus, since in this section Xi ∈ R15×1 (cf. Eq. (55)) and recalling that M is the number
of robots in the group, the overall dimensions of the centralized smoothing state vector
X̆(tk) and covariance matrix P̆ (tk) are:

X̆(tk) ∈ R15wM×1 , P̆ (tk) ∈ R15wM×15wM (63)

In the specific scenario considered in this section, only 2 robots were involved (M = 2)
and the minimum smoothing window lag to accommodate the measurement schedule
(schematically) shown in Figure 7 is w = 30, corresponding to storing information of
about 30 seconds for each robot in the state vector X̆.

Figures 13-16 present the comparison results obtained from the statistical performance
study (as described in Section 7.2). The results are shown in terms of the standard
deviation error (σ), while the mean error is zero in both cases (cf. Figures 9 and 10). The
results are shown mainly for Robot II, since Robot I develops inertially in the proposed
method as it is not updated by the three-view MRmeasurements in the considered scenario
(cf. Section 7.2). While Robot I is updated in the centralized approach, these updates are
marginal, as shown for example, in Figure 16 for the velocity state: because Robot I has
a better navigation system than Robot II (cf. Table 2), the calculated filter gain matrix
distributes the innovation from the three-view MR measurements mainly to Robot II.

As can be seen from Figures 13-15, the overall performance obtained for Robot II
using the graph-based approach is similar to the performance of the centralized smoothing
approach, although the latter provides better results in some of the components in the
navigation state. In particular, position errors (Figure 13) normal to the motion heading
(north) are very similar, while the errors along the motion heading are smaller in the
centralized approach. This behavior was also obtained in the velocity errors (not shown).
Estimation errors of Euler angles and accelerometer bias are very much alike in the two
methods (Figures 14 and 15), while the drift state is poorly estimated in both cases (not
shown).
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The fact that the graph-based approach is somewhat inferior to the centralized smooth-
ing approach is not surprising, since the centralized smoothing approach essentially rep-
resents the optimal solution (given the linearization assumptions), while the graph-based
approach makes an additional approximation, in the process of calculating the Kalman
gain matrix, as mentioned in Section 3.2 (this approximation is made whenever only part
of the involved robots are updated, as indeed is the case in this section).

However, while the centralized smoothing approach provides up-to-linearization op-
timal solution, it has two significant deficiencies compared to the proposed graph-based
approach. First, the fixed-lag centralized smoothing approach supports only MR mea-
surements that involve time instances within the fixed lag window. Using a large (or
unlimited) smoothing lag is not practical, since the dimensions of the augmented state
vector and the augmented covariance matrix grow rapidly as a function of the smoothing
lag size (cf. Eq. (63)). Therefore, choosing the actual size of the lag window requires a
priori knowledge of the MR measurements to be performed. For example, in the sce-
nario considered herein, it was possible to set the smoothing lag to 30 only because the
three-view MR measurements schedule was assumed to be known. In contrast to this,
the proposed graph-based approach does not require the MR measurement schedule to
be known a priori: even if the graph structure has a limited capacity, it can be used to
process any MR measurement schedule, provided there is enough space to accommodate
the involved information6. Moreover, as mentioned in Section 5, upon reaching full ca-
pacity, it is possible to apply different considerations, such as identifying low-correlation
bonds, when deciding what old information should be removed from the graph. Second,
the augmented state vector and covariance matrix should be constantly propagated and
updated by the filter, resulting in a continuous high computational load, whereas in the
proposed graph-based approach, a basic local state vector is maintained by each robot
and the appropriate cross-covariance terms are calculated only when required.

6As detailed in [Indelman, 2011], additional navigation information in-between the time instances,
participating in the MR measurements schedule, supports construction of the graph. This information is
stored in repositories that are locally maintained by the robots in the group.
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Figure 13: Position errors of Robot II in the two compared methods.
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Figure 14: Euler angles errors of Robot II in the two compared methods.
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Figure 15: Bias estimation errors of Robot II in the two compared methods.
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Figure 16: Velocity errors of Robot I in the two compared methods.
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Table 3: Measurement schedule details in the experiment: Update type, the involved time
instances t1, t2, t3 and the robots identities (I,II) in each three-view measurement update.

Type t1 [sec] t2 [sec] t3 [sec]

MR update 8.4/I 14.2/I 32.6/II

MR update 35.9/I 39.1/I 53.2/II

MR update 2.3/II 5.6/II 60.0/I

MR update 47.9/I 49.2/I 60.6/II

MR update 10.3/II 12.1/II 66.8/I

Self update 0.3/I 1.3/I 81.1/I

Self update 22.8/I 24.3/I 97.0/I

Self update 54.3/I 55.6/I 124.7/I

Self update 70.8/I 72.1/I 142.0/I

7.4 Experiment Results

In this section, the proposed graph-based method for consistent information fusion is
demonstrated, in conjunction with the three-view MR measurements, in an experiment.
A detailed description of the experiment setup, the involved processing and some of the
results have been previously reported in [Indelman et al., 2011] and [Indelman, 2011].
Therefore, this section mainly focuses on analyzing the performance of the graph-based
approach.

The experiment setup consists of a single manually-driven ground robot, attached with
an IMU and a network camera, capturing images normal to the motion heading. The
IMU and imagery data were synchronized and stored for offline processing. Two different
trajectories, representing a holding pattern scenario, were performed by the same robot
as shown in Figure 17. Since the IMU and the camera were turned off in-between the
two trajectories, it is possible to consider a two-robot scenario, i. e. as if the trajectories
were performed by two different robots equipped with a similar hardware. Referring to
Figure 17, Robot I performed the shown trajectory twice, while Robot II performed this
trajectory once, starting from a different location along the shown trajectory. Robot II
reached the starting point of Robot I after about 26 seconds. The only available ground-
truth data in this experiment is the manually measured location, denoted by diamond
and square markings in the figure (the experiment was carried out indoors and thus GPS
was unavailable).

Table 3 shows the schedule of the three-view measurements performed in the experi-
ment in terms of the involved time instances (t1, t2, t3) and robot’s identities (I,II) in each
update. As can be seen, in some cases all the three images in a given three-view mea-
surement were contributed by the same robot, while in other cases the first two images
and the third image were captured by different robots. The former case is denoted as
“Self update”, while the later case is denoted as “MR update”. Examples of captured
imagery in the experiment and further discussion regarding the image processing phase
can be found in [Indelman et al., 2011].

The experiment results are given in Figures 18-19, showing the developing position
errors for each of the two robots, calculated as the difference between the reference and
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Figure 17: Trajectories of the two robots in an experiment. Each robot has started moving
from a different position. Diamond and square markings denote manually-measured robot
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the estimated position. The process of position estimation utilized the appropriate cross-
covariance terms that were calculated according to the proposed graph-based approach.
For a comparison, results are shown when the required cross-covariance terms were ne-
glected.

While the overall performance is significantly improved compared to the inertial sce-
nario [Indelman et al., 2011], in this section the focus is on analyzing the difference in
results obtained with and without the cross-covariance terms. As can be seen, the esti-
mation error in the first three-view measurement updates is similar, regardless to whether
the involved cross-covariance terms were calculated or neglected, since during these first
updates the involved correlations are still insignificant7. As more three-view updates are
performed, the results do begin to differ.

At this point it is useful to recall that, conceptually, each three-view measurement
update is capable of reducing the current position errors (at t3) only to the error levels
that were present at t1 and t2, when the first two images were captured [Indelman et al.,
2012]. Since no external or absolute information is involved, the a posteriori position
error cannot reach substantially lower levels (see also statistical results in Section 7.2).
In the general case, the estimation of all navigation states at these two time instances
will have some influence on the a posteriori error at t3, depending on the appropriate
cross-covariance terms. Using this insight and since the involved time instances for each
three-view measurement are known (cf. Table 3), it is possible to evaluate the expected
reduction in the position errors.

As an example, the update of Robot I at t = 124.7 sec is analyzed. From Figure 18
it can be seen that the north position error is smaller when using the calculated cross-

7In particular, it can be shown that since each three-view measurement is used to update only one
robot, at the time of the first update (t = 32.6 sec for Robot I, and t = 60.0 sec for Robot II) the involved
information is statistically independent.
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covariance terms, while the east position error is smaller when neglecting these terms
(e. g., the east position error is around 5 and 20 meters when the cross-covariance terms
are neglected or calculated, respectively). However, the three-view measurement at this
time instant (t3 = 124.7) is based on imagery and navigation data from t1 = 54.3 sec and
t2 = 55.6 sec, obtained from Robot I (cf. Table 3). The (north, east, alt) position errors
at these first two time instances are around (5, 38, 6.5) meters, while the position error
at t3 = 124.7 is updated to (30, 20, 6.5) meters and (45, 5, 5.5) meters when using the
calculated cross-covariance terms or when neglecting these terms, respectively. Having
in mind the above-mentioned insight, one can conclude that the former case, that makes
use of the calculated cross-covariance terms, is the more reasonable result: in particular,
observe the east position error obtained when neglecting the cross-covariance terms, which
drops to around 5 meters, while the a priori error at t1 and t2 is around 38 meters.

The same rational can be used to explain other differences between the two shown
results, leading to the conclusion that the results are more reasonable when using the
graph-based calculated cross-covariance terms over neglecting these terms.
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Figure 18: Position errors of Robot I in an experiment.

8 Conclusions

In this paper, a new method was proposed for on-demand, explicit calculation of correla-
tion terms, required for consistent extended Kalman filter-based data fusion in distributed
cooperative navigation. The method assumed a general multi-robot model, involving nav-
igation information and readings of onboard sensors of any number of robots, possibly
obtained at different time instances.

Each robot in the group maintained a state vector comprised only of its own navigation
parameters, while the required correlation terms with other robots were calculated based
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Figure 19: Position errors of Robot II in an experiment.

on a graph, representing all the multi-robot measurement updates performed thus far.
This graph was locally maintained by every robot in the group. The developed method is
capable of handling the most general scenarios of multi-robot measurements by properly
taking into account the involved process and measurement noise terms.

The proposed method was demonstrated in a synthetic example, in a statistical sim-
ulation and in an experiment based on a three-view vision-based measurement model, in
which a measurement is formulated whenever the same scene is observed by three images.
These images can be captured by different robots at different time instances. The pre-
sented simulation results were generated using a formation involving two robots, wherein
the first robot was equipped with a much better navigation system than the navigation
system of the second robot. Applying the proposed method for calculating the correlation
terms allowed to obtain consistent, unbiased estimation, rendering the performance of the
second robot similar to the performance of the first robot. It was shown that neglecting
the correlation terms yields biased and inconsistent estimations of position and velocity.
A comparison of the proposed method to a fixed-lag centralized smoothing approach was
also presented.

A holding-pattern scenario was demonstrated in the experiment, in which two robots
performed the same basic trajectory several times. Experiment results were presented in
which the three-view measurements were applied while using the cross-covariance terms,
calculated by the proposed method, and while neglecting these terms.

It is our belief that the shown results demonstrate the essential behavior of the pro-
posed method, and thus the performance evaluation in large-scale scenarios is left for
future research.
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Appendix A: Filter Gain Matrix Calculation

This appendix presents an approach for calculating the filter’s gain matrix in case only
some of the r robots participating in the MR measurement (8) are updated. If all of the
involved robots were updated, it was possible to rewrite the MR measurement equation
(8) as

z(t) = Hχ+ ν (64)

with

χ
.
=

[
XT

1 (t1) · · · XT
r (tr)

]T
(65)

H .
=

[
H1(t1) · · · Hr(tr)

]
(66)

ν
.
=

r∑
i=1

Di(ti)vi(ti) (67)

and calculate the Kalman gain matrix K as

K = PHT
(
HPHT +R

)−1
(68)

where R = E
[
ννT

]
and P = E

[
χχT

]
. The matrix P contains cross-covariance terms

between the different r robots. However, since the involved time instances t1, · · · , tr are
a priori unknown, it is impractical to maintain the overall augmented state vector χ
and its covariance matrix P (thereby invalidating a centralized solution to the problem).
While the covariance terms from all the relevant time instances E[Xi(ti)Xi(ti)

T ] (with
i = 1, · · · , r) can be actually stored, the cross-covariance terms E[Xi(ti)Xi(tj)

T ] (with
i ̸= j) should be calculated upon-demand.

The proposed method in this paper calculates these terms assuming an acyclic graph.
This assumption is enforced by updating only part of the involved robots (cf. Section 3.2),
which essentially means that the MR measurement equation (8) cannot be written in the
form of Eq. (64). Assuming that only the first ru ≤ r robots are updated and defining χ̆1

and χ̆2 as

χ̆1
.
=

[
XT

1 (t1) · · · XT
ru(tru)

]T
(69)

χ̆2
.
=

[
XT

ru+1(tru+1) · · · XT
r (tr)

]T
(70)

the measurement equation can be expressed instead as

z(t) = H̆1χ̆1 + ν̆ (71)

with

H̆1
.
=

[
H1(t1) · · · Hru(tru)

]
(72)

H̆2
.
=

[
Hru+1(tru+1) · · · Hr(tr)

]
(73)

ν̆
.
= H̆2χ̆2 +

r∑
i=1

Di(ti)vi(ti) (74)

One may note that, due to the cross-covariance terms between χ̆1 and χ̆2, the equivalent
measurement noise ν̆ is no longer statistically independent with the estimated state vector
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χ̆1. Therefore, the basic assumption of the Kalman filter is contradicted. The actual
Kalman gain for the ru robots,

K̆ ≡
[
KT

1 · · · KT
ru

]T
(75)

can be calculated using an ad-hoc approach [Indelman et al., 2012] as follows.

Ki
.
= PXi(ti)zP

−1
z , i ∈ {1, · · · , ru} (76)

with

PXi(ti)z =
r∑

j=1

PijH
T
j (77)

Pz = H̆1P̆1H̆T
1 + H̆2P̆2H̆T

2 +R (78)

here P̆1
.
= E[χ̆1χ̆

T
1 ], P̆2

.
= E[χ̆2χ̆

T
2 ] and Pij = E

[
Xi(ti)X

T
j (tj)

]
. Note that when ru = r,

i. e. all the involved robots in the MR measurement (8) are updated, the calculated gain
matrix is the exact Kalman gain (K̆ = K). The actual update equations of the ru robots
are the standard equations of the extended Kalman filter.

Appendix B: Proofs

This appendix contains proofs of the Lemmas from Section 4.2.3.

Proof of Lemma 1 Suppose that ηcγ :cγ−1
and X̃dp are statistically dependent for at

least a single value of γ ∈ {1, . . . ,m}. Then there must exist some node cr on the path
cm → · · · → cr → · · · → c in Tc, representing X̃cr , such that X̃dp can be expressed in terms

of X̃cr , and perhaps other state vectors, i. e. X̃dp is a descendant of X̃cr . Thus, cr is an
ancestor of dp, and therefore will appear in (Td)

dp , thereby contradicting the assumption.
“
Proof of Lemma 2 Suppose that the path dk

Td=⇒ d does contain a node cr from the

path cj
Tc=⇒ c, with 1 ≤ r < j. Thus, there is a pair of nodes (a, b), with a = cr ∈ VTc and

b = cr ∈ VTd
such that E[X̃aX̃

T

b ] ≡ E[X̃crX̃
T

cr ] is known.
8

However, since r < j, cr is closer to c than cj. Therefore, the pair (a, b) is younger, in
the sense of Definition 6, than the pair (cj, dk), and thus should have been found while the
algorithm processed the rth level. Consequently, this member would have been removed
from the permutation set of the rth level, Mr (cf. Section 4.2.1). Hence, if such a pair
indeed existed, then upon reaching the kth level, the permutation setMk would not have
contained the member (ck, dk), since ck ∈ Ac(a) ≡ Ac(cr), and dk ∈ Ad(b) ≡ Ad(cr) (cf.
Eq. (33) for calculatingMk). Since it is given that (ck, dk) ∈ Mk, the node cr does not
exist.

Using the same reasoning, when r = j, the node cr = cj cannot appear in the path
dk−1 → · · · → d. However, it is possible that cj = dk, since each node in G may have
two children (and only one child in each of the trees). In this case, one of the children is
located in Tc, while the other is located in Td. “
Proof of Lemma 3 ci ∈ Ad(dk), and therefore ci ∈ (Td)

dk . Since ci may be reached from
any node on the path cj → · · · → ci, and ci leads to dk, any node from cj → · · · → ci also
leads to dk. Therefore, cj → · · · → ci appears in (Td)

dk . “
8Recall that the covariance of each of the nodes in G is stored (cf. Section 3.3).

42



Appendix C: Three-View MR Update

The three-view MR updates are based on constraints stemming from observing a static
scene from three distinct views, which may be captured by different robots, not necessarily
at the same time. These constraints are given by [Indelman et al., 2011]

qT
1 (T12 × q2) = 0 (79a)

qT
2 (T23 × q3) = 0 (79b)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (79c)

where qi is a line-of-sight (LOS) vector of the ith view to a static landmark, observed in
the three views, and Tij is the translation vector from the ith view to the jth view, with
i, j ∈ {1, 2, 3} and i ̸= j. All the vectors appearing in Eqs. (79) are expressed in the same
coordinate system using the appropriate rotation matrices.

In practice, the three views will have more than a single static landmark in common.
LettingNij be the number of common landmarks observed by views i and j, i, j ∈ {1, 2, 3},
i ̸= j, and denoting by N123 the number of landmarks observed by all the three views,
the constraints (79) turn intoUF

0


N×3

T23 =

W0
G


N×3

T12 (80)

where N
.
= N12 +N23 +N123 and

U =
[
u1 . . . uN123

]T
W =

[
w1 . . . wN123

]T
(81)

F =
[
f1 . . . fN23

]T
G =

[
g1 . . . gN12

]T
(82)

while the vectors f ,g,u,w ∈ R3×1 are defined as

fT
.
= (q2 × q3)

T (83)

gT .
= (q1 × q2)

T (84)

uT .
= (q1 × q2)

T [q3]× = gT [q3]× (85)

wT .
= (q2 × q3)

T [q1]× = fT [q1]× (86)

Since navigation and imagery data is imperfect, Eq. (80) will not be satisfied. Therefore,
a residual measurement z is defined as

z
.
=

UF
0


N×3

T23 −

W0
G


N×3

T12 (87)

The residual measurement z is a nonlinear function of the navigation solutions attached
to the three views, and of the LOS vectors. In a similar manner to Eq. (7) we can write:

z(t) = h({ζi(ti),yi(ti)}ri=1) (88)

where, in this case, yi are the LOS vectors of view i, appearing in Eq. (87). Linearizing
Eq. (88) about ζi(ti) and yi(ti) gives an expression similar to Eq. (11):

z ≈ H3(t3)X3(t3) +H2(t2)X2(t2) +H1(t1)X1(t1) +Dv (89)
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