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Introduction 

 Navigation-aiding techniques are essential for reducing dead-reckoning or inertial 
navigation errors 

 Vision-based navigation-aiding methods are commonly used 

–  In particular, when GPS is unavailable 

–  Typical scenarios include: indoor, urban, underwater environments 
 Existing approaches for navigation aiding – typically use filtering techniques 

 Another approach for information fusion: incremental optimization 

 Bundle adjustment is commonly used for solving the full Simultaneous 
Localization and Mapping (SLAM) problem 

–  Can be applied for navigation-aiding, but is computationally expensive! 

  This work – computationally efficient bundle adjustment for fusing all vision 
observations 

–  In other words – focus on the “Localization part” in SLAM 



Introduction 
 Problem Formulation: 

–  Input:  Sequence of incoming images 

    Initial solution for camera poses 

–  Goal\Output:   

   Optimize camera poses in a sequence of images 

 Recover coordinates of observed 3D points (Optional) 

–  Assumptions:  Solved correspondence – matching features between images are known 

   Known camera calibration 

–  Applications:   

–  Autonomous navigation applications (initial solution – dead reckoning) 

–  Multi-agent systems 

–  Simultaneous Localization and Mapping (SLAM) 

–  Structure from motion, augmented reality, … 

3D Points \ Landmarks 

Platform I 

Platform II 



Introduction (cont.) 

 Bundle Adjustment (BA): Minimize overall re-projection errors 

  Light Bundle Adjustment - Main idea: 

–  Reduce computational cost by avoiding optimizing the 3D points 

–  Use multi-view constraints instead of projection equations 

–  Less variables to optimize 

–  Recover landmarks based on optimized camera poses 

 Previous work (in the context of using multi-view constraints for motion estimation) 

–  Sliding window of triplets of images: “Incremental motion estimation through local bundle 
adjustment”, Z. Zhang and Y. Shan, 2001 

–  Avoid structure estimation using trifocal tensors: “Threading fundamental matrices”, S. 
Avidan and A. Shashua, 2001 

–  Trifocal constraints for BA: “Relative Bundle Adjustment based on Trifocal Constraints”, R. 
Steffen et al., 2010 

–  Three-view constraints: “Distributed Vision-Aided Cooperative Localization and Navigation 
Based on Three-View Geometry”, V. Indelman et al., 2012 
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 Optimized cost function – sum of re-projection errors (Mahalanobis distance): 

–       : Measured pixel 

–       : Pose of image j:         , 

 Optimized variables: 
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Bundle Adjustment (BA) 

 Scenario: 
–  N cameras\views, observing M 3D points 

–  Not all cameras necessarily observe all 3D points 

 Projection equation:  
–  Between the i-th 3D point and the j-th camera pose 
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Light Bundle Adjustment (LBA) 

 Use multi-view constraints instead of projection equations 

 Overall multi-view constraints (for all image sequence): 

 Optimized (constrained) cost function: 

 Cost function does not involve structure parameters! 

 Approximation: Optimize only camera poses 

 Optimized variables: 

 As opposed to 
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Three-View Constraints 

 Multi-view constraints – in this work: Three-view constraints 

 Consider three views k, l and m observing the same unknown landmark 
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–       :  Line of sight for pixel p:   

–             : translation from camera i to camera j 

q = K�1pq
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Three-View Constraints 
  Three-view constraints for cameras k, l and m: 

–    : ideal value of some vector 

–    :  Line of sight for pixel p:   

–          : translation from camera i to camera j 

–  All vectors should be expressed in the same coordinate frame 
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  First two equations: epipolar constraints between views k,l and l,m 

  Third equation: Scale consistency 

  Three-view constraints: 
–  Allow (also) to reduce position errors along motion heading in straight trajectories 

–  Have been applied to: navigation aiding (incl. loop closures), cooperative navigation 
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Light Bundle Adjustment (cont.) 

  In practice, due to image noise and errors in camera poses, the 
constraints will not be satisfied 

 Define residual error: 

 Constraints error of views k,l,m observing the i-th 3D point: 

 Non-linear (known) function             : 

              is part of the overall multi-view constraints function 
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Light Bundle Adjustment (cont.) 

–  Views 1,2,3: 

: epipolar constraint between views k=1 and l=2 

: epipolar constraint: between views l=2 and m=3 

: three-view constraint: between views k=1, l=2 and m=3 
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 What happens if a 3D point is observed by more than 3 views? 

 Assume the i-th 3D point is observed by      cameras:  

–  Should use only independent constraints 

–  After the first three views – apply a reduced version of three-view constraints 
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Light Bundle Adjustment (cont.) 

–  After the first three views – apply a reduced version of three-view constraints 

–  Views 2,3,4: 

: epipolar constraint between views k=2 and l=3 is not applied 

: epipolar constraint: between views l=3 and m=4 

: three-view constraint: between views k=2,l=3 and m=4 
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 What happens if a 3D point is observed by more than 3 views? 

 Assume the i-th 3D point is observed by      cameras:  

–  Should use only independent constraints 
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Reduced version 



 Overall constraints for observing the i-th 3D point in images  

 Take into account all M observed 3D points: 

 Optimized cost function 

Light Bundle Adjustment (cont.) 
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Basic Example 

 Scenario 
–  3 landmarks 

–  5 cameras 

 Constraints: 
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Light Bundle Adjustment (cont.) 

 As in BA, optimization is up to a 7-DOF transformation 
–  A proper regularization should be used 

 A relative formulation is used: 
–  Camera poses are expressed relative to the first frame 

–  Fixes 6 of the 7 DOFs 

 Scale constraint – fix the range between the first two views (from initial 
solution) 
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Structure Reconstruction in LBA 

 Structure reconstruction 
–  Performed after convergence of LBA optimization 

–  All or some of the observed 3D points can be recovered 

–  Standard structure reconstruction procedure 

–  Based on the optimized camera poses 

 Observation of the i-th 3D point by the j-th camera: 

 Taking into account all cameras observing the i-th 3D point: 

 Standard estimation\optimization 
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Results 

 Pozzoveggiani dataset (http://profs.sci.univr.it/~fusiello/demo/samantha/): 

–  ~45 images 

–  BA solution for camera poses and landmarks (considered as ground truth)  
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Results (cont.) 

  Initial Conditions for LBA: BA camera pose solution corrupted with errors: 

–  Position: 50 m error (1σ) 

–  Rotation: 0.1 deg error (1σ) 

–  Pixels: 0.5 pixel error (1σ) 

  Illustration of camera poses 
and observed 3D points (only 
part of the data is shown) 
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Results (cont.) 

Position estimation Position estimation errors 
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Results (cont.) 

Structure estimation errors Structure estimation errors - zoom 



Conclusions 

 Light Bundle Adjustment 
–  Optimization of camera poses based on multi-view constraints 

–  Structure estimation is not part of the optimization 

–  Reduced computational cost 

–  Structure reconstruction based on optimized camera poses 

 Applications 
–  Structure from motion 

–  Mobile robotics and autonomous systems 

–  Multi-agent systems 


