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Abstract—One of the hard issues that arises in dis-
tributed navigation is keeping an up-to-date and consis-
tent estimation of the dependency between the solutions
computed by each one of the involved agents. This issue is
critical for the consistent information fusion in distributed
cooperative navigation and was recently tackled using a
graph-based approach for the on-demand calculation of
cross-covariance terms. In particular, the approach was
applied to a method for visual aided, distributed coopera-
tive navigation based on three-view geometry constraints,
in which a measurement is formulated whenever the same
scene is observed by several robots, not necessarily at the
same time.

The purpose of this paper is twofold. First, the claim that
on-demand calculation of cross-covariance terms in three-
view-based cooperative navigation is further substantiated,
and the difficulties with other existing techniques are
emphasized. Second, the efficiency of using the on-demand
calculations is validated by comparing the results to those
obtained by assuming the three-view multi-robot measure-
ments schedule is known a priori. In this latter method,
the required cross-covariance terms are calculated using
a fixed-lag centralized smoother. The comparison clearly
shows the advantages of using the on-demand scheme.

I. INTRODUCTION

The widespread availability of inexpensive inertial
and other navigation sensors, cameras and computational
power, and communication channels has awaken the
interest in investigating cooperative navigation during
the last decade. Indeed, suppose that a collection of
robots must perform a coordinate task or simply share
the same working area. Suppose further that these robots
can compute an estimate of their pose with respect to
the environment, can acquire images of their working
area and can share information with other robots. It
is then of interest to investigate ways of computing
solutions for the cooperative navigation (CN) problem,

namely, ways of improving the navigation solution of
each one of the agents involved based on sharing the
information acquired by all of them. Clearly, information
sharing requires keeping track of the correlation between
the navigation solutions of each robots, and doing this
efficiently is critical for solving the CN problem.

Regardless of the method applied for CN [18], [11],
[14], [19], [2], [13], [15], [17], [10], the navigation data
involved in the measurement is obtained from different
robots. In the general case, these sources of information
may be statistically dependent. Ignoring this correlation
may result in inconsistent and over-confident estimations
[1].

Several approaches have been proposed for coping
with the correlation terms in multi-robot (MR) sys-
tems, assuming relative pose measurements. In [18], an
augmented covariance matrix, composed of covariance
and cross-covariance matrices relating all the robots in
the group, was maintained in a distributed manner. In
[3], this approach was applied to cooperative mapping
and localization. In this case, the augmented covariance
matrix also contains parameters that represent the land-
marks observed by each robot in the group. Howard et
al. [5] suggested a method that allows to avoid correlated
updates in certain situations. Similarly, in [1], the cross-
covariance terms were not explicitly estimated. Instead,
the authors proposed to maintain a bank of filters,
tracking the origins of measurements and preventing a
measurement to be used more than once. References [16]
and [12] studied the filter inconsistency when correlated
measurement sequences are used.

The current paper considers a recently-proposed ap-
proach [6], [8] for an explicit, on-demand, computation
of correlation terms, that are required for a consistent
information fusion. A general MR measurement model
for CN is assumed. This model relates between the



navigation data from any number of robots and the actual
readings of the onboard sensors of these robots, which
are not necessarily taken at the same time. In the general
case, all the involved sources of information may be
correlated. Assuming this MR measurement model, in
addition to the a priori unknown identities of the robots
that generate an MR measurement, the time instances
that appear in the measurement equation are unknown as
well. Hence, any method that is based on maintaining the
correlation terms impractical. Instead, using graph-based
technique, the method developed in [6], [8] explicitly
calculates the required correlation terms based on the
history of all MR measurements performed thus far.

This paper aims to validate the above method for
a specific MR measurement model that is based on
the recently-developed three-view geometry constraints
[6]. These constraints were applied for vision-aided
navigation of a single vehicle [9], and were extended
for cooperative navigation [10].

Consequently, the purpose of this paper is twofold.
First, the claim that on-demand calculation of cross-
covariance terms in three-view-based cooperative nav-
igation is further substantiated, and the difficulties with
other existing techniques are emphasized. Second, the ef-
ficiency of using the on-demand calculations is validated
by comparing the results to those obtained by assum-
ing the three-view multi-robot measurements schedule
is known a priori. In this latter method, the required
cross-covariance terms are calculated using a fixed-lag
centralized smoother. The comparison clearly shows the
advantages of using the on-demand scheme.

II. PROBLEM SETUP

Consider a group of N robots that perform tasks on a
partially or totally shared region. It is assumed that each
robot is equipped with navigation sensors and hence is
capable of calculating its own navigation solution, and
that this information can be shared via a communication
channel with some of the other robots. Specifically,
assume that the robots have an inertial measurement
unit (IMU) so that, after appropriate initialization, a
full navigation solution comprising position, velocity and
angular orientation can be estimated. Denote by xi and
xt
i the calculated and the (unknown) true navigation

solutions of the ith robot, respectively, and let ui repre-
sent the measurements of the robot’s inertial navigation
sensors. The measurements of the inertial sensors are
invariably contaminated by errors; some of these errors
- typically accelerometer bias and gyro drifts - can be
modeled by an unknown vector of parameters αt

i while

other errors are unmodeled and are taken into account
when constructing and tunning the estimation problem.
An estimated vecotr α can be calculated and used for
correcting the vector of measurements u in a typical
compensated inertial navigation mechanization.

Let

ζi(tk)
.
=

[
xi(tk)
αi(tk)

]
, ζti(tk)

.
=

[
xt
i(tk)
αt

i(tk)

]
and N .

= {1, . . . , N}. Then

ζi(tk+1) = f(ζi(tk),ui(tk)) , i ∈ N (1)

Define the navigation error state vector:

Xi(t)
.
=

[
xi(t)− xt

i(t)
αi(t)−αt

i(t)

]
≡ ζi(t)− ζti(t) (2)

The linear approximation of Eq. (1) yields:

Ẋi(t) = Φi(t)Xi(t) + ωi(t) , i ∈ N (3)

where Φi is a process dynamics matrix and ωi is a
vector process noise, assumed to be white and zero-mean
Gaussian. In practice, ωi must be tuned to capture the
effects of under-modeling and linearization. For imple-
mentation, the differential equation above is replaced by
the discrete-time model:

Xi(tb) = Φi
ta→tbXi(ta) + ωi

ta→tb , i ∈ N (4)

where Φi
ta→tb denotes the state transition matrix between

any two time instances ta and tb, tb > ta, and ωi
ta→tb

is an equivalent discrete-time process noise. In addition
to the inertial sensors, each robot is equipped with addi-
tional onboard exogenous navigation sensors. Of partic-
ular interest to this paper, the exogenous sensor will be a
camera that is mounted on the robot and acquires images
of the environment. Generically, the measurements of the
exogenous sensors of the jth robot at some time instant
ta are denoted by yj(ta). These measurements are again
corrupted by errors modeled as a vector of Gaussian
white noise vj(ta). Let yt

j(ta)
.
= yj(ta)− vj(ta).

Collect the navigation solution xj(ti) and a
parametrization of the inertial sensors errors αj(ti) onto
an intrinsic vector of estimated data ζj(ti). Then this
vector together with the onboard sensor readings yj(ti)
of the jth robot at time ti, can be implicitly related by:

z = h({ζj(ti),yj(ti)}ri=1) , j ∈ N (5)

where z, represents the residual measurement. The pa-
rameter r in Eq. (5) denotes the total number of implicit
relationships (ζj(ti),yj(ti)) included in z. See [6] for
further details.



For notation simplicity, it is assumed below that the
robots originating z can be numbered as 1, . . . , r; cases
in which a relationships for more than one time instant
are included in the set are treated as if this information
was provided by different robots. Thus, the residual
measurement z can be written as:

z(t) = h({ζi(ti),yi(ti)}ri=1) (6)

Linearizing Eq. (6) about ζti(tk) and yt
i(ti) gives

z(t) ≈
r∑

i=1

Hi(ti)Xi(ti) +Di(ti)vi(ti) (7)

where

Hi(ti) = ∇ζt
i(ti)

h , Di(ti) = ∇yt
i(ti)

h (8)

since ζti(tk) and yt
i(ti) are unknown, the Jacobian ma-

trices are approximated by

Hi(ti) = ∇ζi(ti)
h , Di(ti) = ∇yi(ti)

h (9)

The linearized model can now in principle be used in
a Kalman Filter implementation. However this requires
tracking the cross-covariance terms relating the different
state vectors that appear in the measurement model (7).
Denoting by X̃ the estimation error of X, the required
cross-covariance terms are E[X̃i(ti)X̃

T
j (tj)] with i, j =

1 . . . r, i 6= j. If these terms are known, a consistent
measurement update can be employed.

Since tracking cross-covariances is a complex task, it
is tempting to follow the approach in [18], wherein an
augmented covariance matrix is maintained, consisting
of the covariance matrices of all the robots in the group
and of all cross-covariance matrices relating any pair of
robots. However, this approach can only be applied when
the measurement model involves concurrent information
from different robots, as indeed is the case with relative
pose measurements.

While the above formulation is valid for a general
multi-robot (MR) measurement function h, this paper
focuses on a specific MR measurement model dictated
by applying the recently-developed three-view geometry
constraints [6], [9]. A method for cross-covariance cal-
culation for a general MR measurement model can be
found in [6], [8].

III. THREE-VIEW GEOMETRY CONSTRAINTS

Consider a set of three views observing a common
overlapping area. These views can be captured by dif-
ferent robots, not necessarily at the same time. Assuming
the matching features among these views are given (i.e.,

the correspondence problem is solved), the three-view
geometry constraints can be formulated as follows [6]:

q̄T
1 (t̄1→2 × q̄2) = 0 (10)

q̄T
2 (t̄2→3 × q̄3) = 0 (11)

(q̄2× q̄1) · (q̄3× t̄2→3) = (q̄1× t̄1→2) · (q̄3× q̄2) (12)

where q1,q2 and q3 are the line-of-sight vectors of the
corresponding pixels in the three views, and t1→2 and
t2→3 are the translation vectors between these views.
The notation ā denotes the ideal value of some vector
a. The line-of-sight vector q for a given pixel p (in a
homogeneous representation) can be calculated in the
camera system as

q = K−1p.

with K being the camera calibration matrix. Appropriate
rotation matrices should be used for expressing all the
vectors in Eqs. (10)-(12) in the same coordinate system,
which can be chosen arbitrary.

The three-view constraints consist of the well-known
epipolar geometry constraints (10)-(11) [4], and of an
additional constraint (12) that allows to maintain a con-
sistent scale between the three given views. As proven
in [6], [9], these constraints are necessary and sufficient
conditions for a general scene observed by the given
three views.

In practice, the three-view constraints (10)-(12) will
not be satisfied due to image noise and navigation
errors. Therefore, there will be some residual error
z
.
=
[
z1 z2 z3

]T , defined as

z1
.
= qT

1 (t1→2 × q2)

z2
.
= qT

2 (t2→3 × q3)

z3
.
= (q2 × q1) · (q3 × t2→3)− (q1 × t1→2) · (q3 × q2)

The above three equations form a non-linear function h
of the navigation state of the different robots at appro-
priate time instances, and of the image measurements.
Therefore, these equations can be written in the form of
Eq. (6).

IV. CONCEPT OF GRAPH-BASED CN USING

THREE-VIEW CONSTRAINTS

This section presents the concept of the method for
graph-based cross-covariance calculation [6]. To better
explain the intuition, we focus on a simple example
of multi-robot CN using three-view measurements. The
considered scenario is shown in Figure 1: A formation
of two robots traveling along a straight line in north



Table I
TWO-ROBOT SCENARIO: INITIAL NAVIGATION ERRORS AND IMU ERRORS

Parameter Description Robot I Robot II Units
Initial position error (1σ) (10, 10, 10)T (100, 100, 100)T m
Initial velocity error (1σ) (0.1, 0.1, 0.1)T (0.3, 0.3, 0.3)T m/s
Initial attitude error (1σ) (0.1, 0.1, 0.1)T (0.1, 0.1, 0.1)T deg

IMU drift (1σ) (1, 1, 1)T (10, 10, 10)T deg/hr
IMU bias (1σ) (1, 1, 1)T (10, 10, 10)T mg

a1 c2c1b2b1

b3a3

a2

Robot I

Robot II

...

...

Figure 1. Three-view measurements schedule in the considered two-
robot scenario.

direction is assumed. Each robot is calculating its own
navigation solution based on the on-board inertial sen-
sors. The first robot has better inertial sensors and its
initial navigation solution is assumed to be of a better
accuracy, as described in Table I.

While the robots perform the same trajectory, the first
robot is 2 seconds ahead of the second robot. Since the
robots perform the same trajectory, they observe similar
areas on the ground, and therefore it is possible to use
three-view constraints, as discussed in previous sections,
for reducing for navigation aiding.

Thus, the first robot transmits images to the second
robot. Assume that at some point of time, robot II
identifies that two of the images, transmitted by robot
I, overlap with its currently-captured image. In order
to update its navigation system with the three-view
constraints formulated based on these images, the ap-
propriate correlation terms should be calculated.

The cross-covariance terms are computed in the fol-
lowing recursive way. Referring to Figure 1, assume
the first measurement, comprised of a1, a2 and a3 was
carried out, and that the a priori and a posteriori co-
variance and cross-covariance terms are known. Now,
it is required to calculate the cross-covariance terms
E[(X̃

−
b3)(X̃

−
b2)

T ], E[(X̃
−
b3)(X̃

−
b1)

T ] and E[(X̃
−
b2)(X̃

−
b1)

T ]
for performing the second three-view update.

At this point, we assume the following basic naviga-

tion error state vector:

X =
[
∆PT ∆VT ∆ΨT dT bT

]T (13)

where ∆P ∈ R3,∆V ∈ R3,∆Ψ = (∆φ,∆θ,∆ψ)T ∈
[0, 2π) × [0, π) × [0, 2π) are the position, velocity and
attitude errors, respectively, and d and b are the residual
gyro drift and accelerometer bias, respectively:

d
.
= dIMU − dt

IMU , b
.
= bIMU − bt

IMU (14)

with dt
IMU ,b

t
IMU being the unknown true values of

dIMU ,bIMU . The position and velocity errors are ex-
pressed in the NED system, while d and b are given in
the body-fixed reference frame.

The following equations can be written for the state
propagation:

X̃
−
b3 = Φa3→b3X̃

+
a3

+ ωa3:b3

X̃
−
bi = Φa2→biX̃

−
a2

+ ωa2:bi , i = 1, 2

where ωi:j is the equivalent process noise between the
time instances ti and tj of the appropriate vehicle. The
cross-covariance terms E[(X̃

−
b3)(X̃

−
bi)

T ] with i = 1, 2,
may be calculated as:

E

[(
Φa3→b3X̃

+
a3

+ ωa3:b3

)(
Φa2→biX̃

−
a2

+ ωa2:bi

)T]
(15)

The a posteriori estimation error X̃
+
a3

is given by [10]:

X̃
+
a3

= (I −Ka3
Ha3

) X̃
−
a3
−Ka3

Ha2
X̃
−
a2
− (16)

− Ka3
Ha1

X̃
−
a1
−Ka3

Dava

Since ωa2:b2 is statistically independent of
X̃
−
a3
, X̃
−
a2
, X̃
−
a1

, and since ωa3:b3 is statistically
independent of X̃

−
a2

and ωa2:b2 (cf. Fig. 1):

E
[
X̃

+
a3
ωT

a2:b2

]
= 0

E

[
ωa3:b3

(
Φa2→b2X̃

−
a2

+ ωa2:b2

)T]
= 0



Denoting Pab
.
= E[(X̃a)(X̃b)

T ] and incorporating the
above into Eq. (15) yields

P−b3b2 = Φa3→b3

{
(I −Ka3

Ha3
)P−a3a2

−
−Ka3

Ha2
P−a2a2

−Ka3
Ha1

P−a1a2

}
ΦT
a2→b2

(17)

where the expectation terms involving a3, a2, a1 are
known (from previous update). In a similar manner we
get

P−b3b1 = Φa3→b3

{
(I −Ka3

Ha3
)P−a3a2

−
−Ka3

Ha2
P−a2a2

−Ka3
Ha1

P−a1a2

}
ΦT
a2→b1

(18)

while P−b2b1
.
= E[(X̃

−
b2)(X̃

−
b1)

T ] is given by

P−b2b1 = Φb1→b2P
−
b1b1

(19)

The above example demonstrated calculation of cross-
covariance terms in a simple scenario. The graph-based
approach developed in [6] follows a similar concept,
while considering a general MR measurement model and
a general schedule of measurements.

V. FIXED-LAG CENTRALIZED SMOOTHER APPROACH

In this section the proposed method for cross-
covariance calculation is compared to a centralized ap-
proach, in which a single state vector comprising infor-
mation from all the robots in the group is maintained.
The considered scenario consists of two robots that share
visual and navigation information and perform a straight
and level trajectory as in Section IV.

Since the three-view MR measurement model involves
different time instances, a fixed-lag centralized smooth-
ing was applied with a state vector and a covariance
matrix defined as:

X̆(tk)
.
=
[

X̆
T
I (tk) X̆

T
II(tk)

]T
(20)

P̆ (tk)
.
= E

[
X̆(tk)X̆

T
(tk)

]
with

X̆i(tk)
.
=
[

XT
i (tk) XT

i (tk−1) . . . XT
i (tk−w+1)

]T
(21)

where i ∈ {I, II} and Xi(tk) is the state vector of the
i-th robot at time tk, as defined in Eq. (13), and w is
the size of the smoothing lag. The smoothing lag should
be long enough to contain the information from all the
time instances involved in each MR measurement, which
therefore should be known a priori (as opposed to the
considered graph-based approach [6]). Thus, since in this
section Xi ∈ R15×1 (cf. Eq. (13)) and recalling that
N is the number of robots in the group, the overall

dimensions of the centralized smoothing state vector
X̆(tk) and covariance matrix P̆ (tk) are:

X̆(tk) ∈ R15wN×1 , P̆ (tk) ∈ R15wN×15wN (22)

In the specific scenario considered in this section, only
2 robots were involved (N = 2) and the minimum
smoothing window lag to accommodate the measurement
schedule (schematically) shown in Figure 1 is w = 30,
corresponding to storing information of about 30 seconds
for each robot in the state vector X̆.

In practice, to simplify the involved computations and
because of the assumed known measurement schedule,
it is possible to use a reduced version of the augmented
state vector: Since in the considered scenario, Robot II
contributes only its current information, while Robot I
contributes information from two time instances from
the past (t1 and t2), there is no need to store the past
state information for Robot II. Therefore, referring to
Eqs. (20) and (21), the actual augmented state vector X̆
for a given three-view measurement involving the time
instances t1, t2 and t3, with tk ≡ t3 being the current
time, is of the following form:

X̆(t3)
.
=
[

X̆
T
I (t3) XT

II(t3)

]T
(23)

where

X̆I(t3)
.
=
[

XT
I (tk) . . . XT

I (t2) . . . XT
I (t1)

]T
,

while the augmented covariance matrix P̆ is accordingly
defined as

P̆ (tk ≡ t3)
.
= E[X̆(t3)X̆

T
(t3)] (24)

Since w = 30, the dimensions of X̆ and P̆ are 465× 1
and 465× 465, respectively.

Updating all the involved robots in the centralized
smoothing filter formulation using the specific measure-
ment model of the three-view constraints is the topic of
an ongoing research, since not all of the navigation pa-
rameters in these robots are observable. Therefore, while
the formulation of the centralized smoothing approach
allows updating all the involved robots, only Robot II is
actually updated in the current implementation, as is the
case in the results presented in the previous section.

To avoid updating Robot I in the centralized smooth-
ing approach, while still maintaining a consistent aug-
mented covariance matrix P̆ (t3), a set of constraints was
introduced: for each state vector XI(ti) of Robot I, which
is part of X̆(t3), the constraints are

H∗XI(ti) = 0 (25)



where H∗ is the identity matrix of the appropriate di-
mensions. These constraints lead the filter to believe that
there is no need to update the state XI(ti) by the three-
view MR measurements. Thus, if H̆ is the measurement
matrix calculated for the augmented state X̆(t3):

H̆
.
=
[

0 . . . 0 HI (t2) 0 . . . 0 HI (t1) HII (t3)
]
,

the overall measurement matrix H is

H .
=

[
H̆I HII (t3)

Ĭ 0

]
,

where H̆I , HII (t3) are defined as

H̆
.
=
[
H̆I HII (t3)

]
,

and Ĭ is an identity matrix of the appropriate dimensions.
Once the Kalman gain matrix is calculated using

the measurement matrix H, the additional columns in
the gain matrix belonging to the above constraints are
removed, followed by application of the standard filter
equations for updating the augmented state vector X̆ and
the covariance matrix P̆ . Applying constraints in this
manner can be also found in [7], where the constraints
were used to avoid updating navigation parameters along
the motion heading, which are unobservable when con-
sidering two-view measurements.

It is important to emphasize that the calculated aug-
mented covariance matrix P̆ is consistent, i. e. it contains
the actual covariance and cross-covariance terms of the
involved robots at different time instances. Therefore, the
centralized smoothing solution can be used to validate
the solution obtained using the proposed graph-based
approach for calculating the involved cross-covariance
terms.

VI. RESULTS

In this section the method for graph-based CN is com-
pared to the fixed-lag centralized smoother, while con-
sidering three-view measurements. A formation scenario
of two robots, described in Section IV is used. To this
end, a statistical performance study was performed for
both methods in a simulated environment. Further details
regarding the simulated environment are described in [6].

The initial navigation errors, as well as the accelerom-
eters bias and gyroscopes drift, were assumed to be of a
zero-mean Gaussian distribution, with standard deviation
values specified in Table I. In each simulation run, the
drawn values of initial navigation errors were used for
calculating the actual initial navigation solution, while
the drawn drift and bias were applied to corrupt the

ground-truth IMU measurements. The IMU measure-
ments were also contaminated by a zero-mean Gaussian
noise with a standard deviation of 100 µg/

√
Hz and

0.001 deg/
√
hr for the accelerometers and gyroscopes,

respectively.
Figures 2-3 present the comparison results obtained

from the statistical performance study. The results are
shown in terms of the standard deviation error (σ), while
the mean error is zero in both cases. Only the perfor-
mance of Robot II is shown, since Robot I develops
inertially as it is not updated by the three-view MR
measurements.

As can be seen, the overall performance obtained
using the graph-based approach is quite similar to the
performance of the centralized smoothing approach. The
errors in case of a centralized smoothing approach are
slightly lower in the first few updates, in particular
in the velocity and bias states (cf. Figures 2(b) and
3(b)). However, the graph-based approach manages to
close most of this gap in all the shown navigation
states (position, velocity, Euler angles and bias) after
incorporating additional three-view MR measurements.
The drift state is poorly estimated by both methods (not
shown).

The fact that the graph-based approach is somewhat
inferior to the centralized smoothing approach is not
surprising, since the centralized smoothing approach
essentially represents the optimal solution (given the lin-
earization assumptions), while the graph-based approach
makes an additional approximation, in the process of
calculating the Kalman gain matrix. As discussed in [6],
[9], [10], this approximation is made whenever only part
of the involved robots are updated, as indeed is the case
in this section.

However, while the centralized smoothing approach
provides up-to-linearization optimal solution, it has two
significant deficiencies compared to the proposed graph-
based approach.

First, the fixed-lag centralized smoothing approach
supports only MR measurements that involve time in-
stances within the fixed lag window. Using a large
(or unlimited) smoothing lag is not practical, since the
dimensions of the augmented state vector and the aug-
mented covariance matrix grow rapidly as a function of
the smoothing lag size (cf. Eq. (22)). Therefore, choosing
the actual size of the lag window requires a priori
knowledge of the MR measurements to be performed.
For example, in the scenario considered herein, it was
possible to set the smoothing lag to 30 only because the
three-view MR measurements schedule was assumed to



be known. In contrast to this, the proposed graph-based
approach does not require the MR measurement schedule
to be known a priori: even if the graph structure has
a limited capacity, it can be used to process any MR
measurement schedule, provided there is enough space
to accommodate the involved information [6].

Second, the augmented state vector and covariance
matrix should be constantly propagated and updated by
the filter, resulting in a continuous high computational
load, whereas in the proposed graph-based approach,
a basic local state vector is maintained by each robot
and the appropriate cross-covariance terms are calculated
only when required.
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Figure 2. Monte-Carlo results comparing between the graph-based
approach and the fixed-lag centralized smoother approach. (top)
Position errors. (bottom) Velocity errors.

Consequently, this comparison validates the graph-
based approach for cross-covariance calculation (at least)
for similar scenarios and MR measurement models.
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Figure 3. Monte-Carlo results comparing between the graph-based
approach and the fixed-lag centralized smoother approach. (top)
Attitude errors. (bottom) Bias estimation errors.

VII. CONCLUSIONS

This paper considered a recently-developed graph-
based approach for consistent cooperative navigation, in
which the required cross-covariance terms were explic-
itly calculated on-demand. While the original approach
was formulated for a general multi-robot measurement
model, it was recently applied to vision-aided cooper-
ative navigation based on three-view constraints. This
paper discussed the difficulties in other existing methods
for maintaining a consistent information fusion, and
validated the graph-based approach by a comparison
to a fixed-lag centralized smoother. As opposed to the
considered approach, applying a fixed-lag centralized
smoother required assuming a known schedule of the
three-view multi-robot measurements, thereby determin-
ing the length of the fixed-lag. The comparison clearly



showed the advantage of using the on-demand approach.
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