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Real-Time Vision-Aided Localization and

Navigation Based on Three-View Geometry
Vadim Indelman, Pini Gurfil, Ehud Rivlin and Hector Rotstein

Abstract

This paper presents a new method for vision-aided navigation based on three-view geometry. The

main goal of the proposed method is to provide position estimation in GPS-denied environments for

vehicles equipped with a standard inertial navigation system and a single camera only, without using any

a-priori information. Images taken along the trajectory are stored and associated with partial navigation

data. By using sets of three overlapping images and the concomitant navigation data, constraints relating

the motion between the time instances of the three images are developed. These constraints include, in

addition to the well-known epipolar constraints, a new constraint related to the three-view geometry of a

general scene. The scale ambiguity, inherent to pure computer vision-based motion estimation techniques,

is resolved by utilizing the navigation data attached to each image. The developed constraints are fused

with an inertial navigation system using an implicit extended Kalman filter. The new method reduces

position errors in all axes to the levels present while the first two images were captured. Navigation

errors in other parameters are also reduced, including velocity errors in all axes. Reduced computational

resources are required compared to bundle adjustment and Simultaneous Localization and Mapping. The

proposed method was experimentally validated using real navigation and imagery data. A statistical study

based on simulated navigation and synthetic images is presented as well.

I. INTRODUCTION

Inertial navigation systems develop navigation errors over time due to the imperfectness of the inertial

sensors. Over the past few decades, many methods have been proposed for restraining or eliminating these
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errors, assuming various types of additional sensors and a-priori information. The majority of modern

navigation systems rely on the Global Positioning System (GPS) as the primary means for mitigating

the inertial measurement errors. However, GPS might be unavailable or unreliable; this happens when

operating indoors, under water, or on other planets. In these scenarios, vision-based methods constitute

an attractive alternative for navigation aiding due to their relatively low cost and autonomous nature.

Vision-aided navigation has indeed become an active research field alongside the rapid development of

computational power.

The current work is concerned with vision-aided navigation for a vehicle equipped with a standard

inertial navigation system and a single camera only, a setup that has been studied in a number of previous

works. Existing methods vary by the number of overlapping images and by the techniques used for fusing

the imagery data with the navigation system. Two related issues that have drawn much attention are

computational requirements and the ability to handle loops, i. e. how the navigation solution is updated

when the platform revisits some area.

Given two overlapping images, it is only possible to determine camera rotation and up-to-scale trans-

lation [1]. Therefore, two-view based methods for navigation aiding [2]-[6] are incapable of eliminating

the developing navigation errors in all states. With no additional information or sensors for resolving the

scale ambiguity, such as range sensors or stereo vision, the vehicle states are only partially observable

(e. g. for an airborne platform, position and velocity along the flight heading are unobservable [3], [4]).

Imagery information stemming from multiple images (≥ 3) with a common overlapping region enables

to determine the camera motion up to a common scale [1]. Indeed, several multi-view methods for

navigation aiding have been already proposed [7], [8]. In Ref. [7], features that are observed within

multiple images and the platform pose are related using an augmented state vector: The state vector

contains the current platform pose and the platform pose for each previously-captured image that has at

least one feature that appears in the current image. Once a certain feature, observed in the previous images,

is no longer present in the currently-captured image, all the stored information for this feature is used for

estimating the platform parameters, and the pose entries that belong to these past images are discarded.

However, should the same feature be re-observed at some later time instant (e. g. a loop in a trajectory),

the method will be unable to use the data for the feature’s first appearance. It was later proposed [9] to

cope with loops using bundle adjustment [1]. However, this process involves processing all the images

that are part of the loop sequence, and therefore real-time performance is hardly possible. Furthermore,

the method contains an intermediate phase of structure reconstruction. In Ref. [8], the authors use the

rank condition on the multiple-view-matrix [10] for simultaneously recovering 3D motion and structure
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during a landing process of an unmanned aerial vehicle, assuming a planar ground scene is observed.

The augmented state technique is also found in other works. The state vector may be augmented

with the platform pose each time an image is obtained [4], [9], or with the 3D coordinates of the

observed features in these images, an approach commonly referred to as Simultaneous Localization and

Mapping (SLAM) [11]-[17]. While SLAM methods are naturally capable of handling loops, they present

increasing computational requirements at each update step, due to the state vector augmentation approach

undertaken for consistently maintaining the cross-correlation between the vehicle and map. Thus, real-time

performance over prolonged periods of time is difficult.

Another approach for coping with trajectories containing loops is to apply smoothing on the image

sequence, thereby improving the consistency of the environment representation (e. g. mosaic image),

and then update the navigation system [18], [19]. However, in Ref. [18] a stereo rig is used, allowing

computation of depth, while in the current work a single camera is utilized. In Ref. [19], a quasi-

planar scene is assumed and the motion estimation is based on a homography matrix refined during

the smoothing process. Since a two-view-based method is applied, only up-to-scale translation can be

estimated. Therefore, this method is incapable of updating the whole position state.

In contrast to SLAM, the approach proposed herein is based on decoupling the navigation-aiding

process from the process of constructing a representation of the observed environment [2]. While the

former should be performed in real time, the latter may not be required in real time. There are many

applications that settle for obtaining the environment representation with some time delay, or alternatively,

that prefer to obtain the raw imagery data and construct the environment representation on their own.

Thus, the state vector is constant in size and is comprised only of the vehicle’s parameters, while the

captured imagery and some associated navigation data are stored and maintained outside the filter. In

our previous work [2], this approach was used for vision-aided navigation based on two-view geometry.

Here, we extend this framework to three-view geometry.

In the newly-proposed approach, each update step requires only three images with an overlapping area

and some stored navigation data in order to estimate the vehicle’s parameters, which can be performed in

real time. The refinement of the environment representation, which is no longer coupled to the parameter

estimation, may be performed in a background process by applying various algorithms (e. g. smoothing,

bundle adjustment). Moreover, the newly-suggested approach eliminates the need for an intermediate

phase of structure reconstruction.

To obtain real-time vision-aided localization and navigation, this work suggests a new formulation of the

constraints related to the three-view geometry of a general scene. These constraints, developed following
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the rank condition approach [1], [10], combine imagery and navigation data at the time instances of the

three images. The said constraints and the well-known trifocal tensor [1] are both constituted assuming

a general three-view geometry. However, while the trifocal tensor utilizes only features that are observed

from all the three images, the developed constraints may also be separately applied using features that

are observed in each pair of images of the given three images. It should be noted that the trifocal tensor

has been suggested for camera motion estimation [21], [22], and for localization of a robot and observed

landmarks while performing a planar motion [23]. However, the trifocal tensor and in particular the

constraints developed herein, have not been proposed so far for navigation aiding.

The constrains are fused with an inertial navigation system using an implicit extended Kalman filter

(IEKF), allowing estimation of the position vector by reducing the position errors to the levels present

while the first two images were taken. The proposed method is also capable of estimating other states,

such as the velocity. A sequential application of the new algorithm to the incoming image sequence and

the stored navigation data yields reduced navigation errors. Loops in the trajectory are handled naturally,

requiring a reduced computational load compared to state-of-the-art techniques for handling loops such

as SLAM and bundle adjustment.

Consequently, the main contributions of this work are: 1) A new formulation of the constraints

stemming from a general static scene captured by three views; 2) Application of the developed three-

view constraints for navigation aiding, thereby allowing to efficiently handle loops, and 3) Reduced

computational requirements compared to other methods mentioned above.

II. METHOD OVERVIEW

A simplified diagram of the proposed method for navigation aiding is given in Figure 1. The vehicle

is equipped with a standard inertial navigation system (INS) and a camera (which may be mounted on

gimbals). The INS is comprised of an inertial measurement unit (IMU) whose readings are processed by

the strapdown algorithm into a navigation solution.

During motion, the camera-captured images and partial navigation data, to be defined in the sequel, are

stored and maintained. When a new image is captured, it is checked whether this image has a common

overlapping area with two previously stored images1. One possible outcome of this step is a set of three

overlapping images captured in close timing. Another possibility is a loop in the vehicle’s trajectory,

in which case the new image overlaps two stored images captured while the vehicle visited the region

previously.

1The term common overlapping area refers in this work to an area that is present in all the three images.
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Fig. 1. Aiding an inertial navigation system with three-view geometry constraints. Based on the three-view geometry constraints,

the filter estimates the navigation errors and a parametrization of IMU errors, which are used for correcting the navigation solution

and subsequent IMU readings, respectively. In the figure, “A” denotes the corrected navigation solution, while “B” represents

the estimated parametrization of IMU errors.

Once a set of three images containing a common overlapping area has been identified, the images and

the navigation data associated to each image are used for calculating the constraints developed in Section

III. These constraints are then reformulated into measurements and injected into an IEKF for estimating

the developed navigation error and IMU errors (cf. Section IV). These estimates are ultimately used for

correcting the navigation solution and the IMU measurements.

While some of the images in the repository are eventually used for navigation aiding, the overall set of

stored images may be used for constructing a representation of the observed environment, e. g. a mosaic.

The mosaic may be just a single image constructed from the set of camera-captured images (e. g. Ref.

[2]), or alternatively, the mosaic may be represented by the original images accompanied by homography

matrices that relate each image to a common reference frame [19]. In any case, since the navigation

aiding step does not rely on the mosaic, but rather on the original images and the concomitant navigation

data, the mosaic image construction may be performed in a background (low-priority) process [2]. A

somewhat similar concept can be found in [20], where an architecture was developed allowing access to
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a repository constantly updated with readings from different sensors.

Throughout this paper, the following coordinate systems are used:

• L - Local-level, local-north (LLLN) reference frame, also known as a north-east-down (NED)

coordinate system. Its origin is set at the location of the navigation system. XL points north, YL

points east and ZL completes a Cartesian right hand system.

• B - Body-fixed reference frame. Its origin is set at the vehicle’s center-of-mass. XB points towards

the vehicle’s front, YB points right when viewed from above, and ZB completes the setup to yield

a Cartesian right hand system.

• C - Camera-fixed reference frame. Its origin is set at the camera center-of-projection. ZC points

toward the FOV center, XC points toward the right half of the FOV when viewed from the camera

center-of-projection, and YC completes the setup to yield a Cartesian right hand system.

III. THREE-VIEW GEOMETRY CONSTRAINTS DEVELOPMENT

We begin by presenting a development of constraints based on a general three-view geometry. Figure 2

shows the considered scenario, in which a single ground landmark p is observed in three images captured

at time instances t1, t2 and t3, where t1 < t2 < t3. Denote by Tij the camera translational motion from

the ith to the jth view, with i, j ∈ {1, 2, 3} and i ̸= j. Let also qi and λi be a line of sight (LOS) vector

and a scale parameter, respectively, to the ground landmark p at time ti, such that ||λiqi|| is the range

to this landmark. In particular, if qi is a unit LOS vector, then λi is the range to the ground landmark.

1 1,λq 

2 2,λq 
3 3,λq 

12T 
23T 

13T 
1111tttt 

2222tttt 

3333tttt 

p 

Fig. 2. Three view geometry: a ground landmark observed in three different images.

Assuming t3− t2 > t2− t1, the translation vectors between the different views, when calculated solely

based on the navigation data, will be obtained with different accuracy due to the developing inertial

navigation errors: T12 contains navigation errors developed from t1 to t2, while T23 (and T13) is mainly
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affected by position errors developed from t2 (or t1) to t3. Since t3− t2 > t2− t1, the accuracy of T23 is

deteriorated compared to the accuracy of T12. The purpose of this section is to formulate constraints for

determining T23 based on information extracted from the three images and partial navigation information

(from which T12 may be calculated), thereby improving the accuracy of T23, bringing it to the accuracy

levels of T12.

The position of a ground landmark p relative to the camera position at t1, expressed in the LLLN

system of t2, can be written as:

λ1C
C1

L2
qC1

1 = CC1

L2
TC1

12 + λ2C
C2

L2
qC2

2 (1)

λ1C
C1

L2
qC1

1 = CC1

L2
TC1

12 + CC2

L2
TC2

23 + λ3C
C3

L2
qC3

3 (2)

where qCi

i is a LOS vector to the ground feature at ti, expressed in a camera system at ti; CCi

L2
is a

directional cosine matrix (DCM) transforming from the camera system at ti to the LLLN system at

t2; and TCi

ij is the platform translation from time ti to tj , expressed in the camera system at ti. Here

i, j ∈ {1, 2, 3}, i ̸= j.

Subtraction of Eq. (1) from Eq. (2) and some basic algebraic manipulations give

0 = λ1C
C1

L2
qC1

1 − λ2C
C2

L2
qC2

2 − CC1

L2
TC1

12 (3a)

0 = λ2C
C2

L2
qC2

2 − λ3C
C3

L2
qC3

3 − CC2

L2
TC2

23 (3b)

Since the scale parameters λ1, λ2, λ3 are neither required nor known, we wish to form constraints on

T23 without using these parameters, or in other words, avoid structure reconstruction. For this purpose,

Eq. (3) is rewritten into the matrix form

 q1 −q2 03×1 −T12

03×1 q2 −q3 −T23


6×4


λ1

λ2

λ3

1


4×1

= 06×1 (4)

For the sake of brevity, the superscript L2 was omitted, e. g. q1 ≡ qL2

1 = CC1

L2
qC1

1 .

Let

A =

 q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

 ∈ R6×4 (5)

In a similar manner to Refs. [1] and [10], since all the components in
[
λ1 λ2 λ3 1

]T
are nonzero, it

follows that rank(A) < 4. The following theorem provides necessary and sufficient conditions for rank

deficiency of A.
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Theorem 3.1: rank(A) < 4 if and only if all the following conditions are satisfied:

qT
1 (T12 × q2) = 0 (6a)

qT
2 (T23 × q3) = 0 (6b)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (6c)

The proof of Theorem 3.1 is provided in Appendix A.

The first two constraints in Eq. (6) are the well-known epipolar constraints, which force the translation

vectors to be co-planar with the LOS vectors. Given multiple matching features, one can determine from

Eqs. (6a) and (6b) the translation vectors T12 and T23, respectively, up to scale. In general, these two

scale unknowns are different. The two scales are connected through Eq. (6c), which relates between the

magnitudes of T23 and T12. Consequently, if the magnitude of T12 is known, it is possible to calculate

both the direction and the magnitude of T23, given multiple matching features. To the best of the Authors’

knowledge, the constraint (6c) has not appeared in previous publications.

Choosing the time intervals t2 − t1 and t3 − t2 should be made while considering several aspects.

Most importantly, when calculating the translation vectors T12 and T23 based on data taken from the

navigation system, the navigation error in T23 should be larger than the navigation error in T12. It is

recommended to choose the time intervals t2 − t1 and t3 − t2 such that ∥T12∥ and ∥T23∥ are of the

same order of magnitude. This also applies to trajectories that contain loops; however, one should note

that in these cases t3− t2 will be typically much larger than t2− t1. In addition, choosing too small time

intervals can render the constraints (6) ill-conditioned.

Several remarks are in order. First, Eq. (6) also contains rotation parameters, since all the quantities

are assumed to be expressed in the LLLN system at t2. Second, structure reconstruction is not required.

As shown in the sequel, this allows to maintain a constant-size state vector comprised of the vehicle’s

parameters only, resulting in a reduced computational load.

A. Multiple Features Formulation

In typical scenarios there is a set of matching pairs of features between the first two views, another

set between the second and third view, and a set of matching triplets between all the three views, which

is the intersection of the previous two sets. These sets are denoted by {qC1

1i
,qC2

2i
}N12

i=1, {q
C2

2i
,qC3

3i
}N23

i=1 and

{qC1

1i
,qC2

2i
,qC3

3i
}N123

i=1 , respectively, where N12, N23 and N123 are the number of matching features in each

set, and q
Cj

ji
is the ith LOS vector in the jth view, j ∈ (1, 2, 3). Note that each LOS vector is expressed in
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its own camera system. These LOS vectors can be expressed in the LLLN system at t2, as was assumed

in the development leading to Eq. (6), using rotation matrices whose entries are taken from the navigation

system. Thus, omitting again the explicit notation of the LLLN system at t2, we have the matching sets

{q1i
,q2i

}N12

i=1, {q2i
,q3i

}N23

i=1 and {q1i
,q2i

,q3i
}N123

i=1 . Obviously,

(q1,q2) ∈ {q1i
,q2i

,q3i
}N123

i=1

→ (q1,q2) ∈ {q1i
,q2i

}N12

i=1

(q2,q3) ∈ {q1i
,q2i

,q3i
}N123

i=1

→ (q2,q3) ∈ {q2i
,q3i

}N23

i=1

The matching sets are assumed to be consistent in the following sense. Denote by (q∗
1,q

∗
2,q

∗
3) the jth

element in {q1i
,q2i

,q3i
}N123

i=1 . Then, the matching pairs (q∗
1,q

∗
2) and (q∗

2,q
∗
3) appear in the matching

pairs sets {q1i
,q2i

}N12

i=1 and {q2i
,q3i

}N23

i=1, respectively, in the jth position as well.

Since the constraints in Eq. (6) are linear in T12 and T23, it is convenient to re-organize the equations

into the following form:

(q1 × q2)
T [q3]×T23 = (q2 × q3)

T [q1]×T12 (7)

(q2 × q3)
TT23 = 0 (8)

(q1 × q2)
TT12 = 0 (9)

Here [.]× is the operator defined for some vector a = [a1 a2 a3]
T as

[a]× =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 (10)

Defining the vectors f ,g,u,w ∈ R3×1 as

fT
.
= (q2 × q3)

T (11)

gT .
= (q1 × q2)

T (12)

uT .
= (q1 × q2)

T [q3]× = gT [q3]× (13)

wT .
= (q2 × q3)

T [q1]× = fT [q1]× (14)
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and considering all the matching pairs and triplets, Eqs. (7) - (9) turn into[
uT
i

]
1×3

T23 =
[
wT

i

]
1×3

T12 (15)[
fTj

]
1×3

T23 = 0 (16)[
gT
k

]
1×3

T12 = 0 (17)

with i = 1 . . . N123 , j = 1 . . . N23 , k = 1 . . . N12. Stacking these equations together yields
U

F

0


N×3

T23 =


W

0

G


N×3

T12 (18)

where N .
= N12 +N23 +N123 and

U =
[
u1 . . . uN123

]T
(19)

W =
[
w1 . . . wN123

]T
(20)

F =
[
f1 . . . fN23

]T
(21)

G =
[
g1 . . . gN12

]T
(22)

If T12 and the rotation matrices are given (e. g. by the navigation system), the minimum number of

matching features required for determining the vector T23 are a single matching pair between the second

and the third views, and one matching triplet that may be utilized both in the trifocal constraint (7) and

in the epipolar constraint (8). Moreover, since T12 is known with a certain level of accuracy, it is not

essential to use the epipolar constraint for the first two views. Application of this constraint, however, is

expected to improve the a-priori accuracy of T12, and therefore reduce the estimation error of T23.

An alternative formulation of the constraints induced by three-view geometry of a general scene is

described by the trifocal tensor [1]. Indeed, the application of the trifocal tensor was already suggested

for estimating the camera motion [21], [22]. However, three-view geometry, and in particular the trifocal

tensor and the constraints proposed herein, have not been used thus far for navigation aiding. Moreover,

while the trifocal tensor approach is solely based on matching triplets, the constraints formulation

presented in Eq. (18) allows using matching pairs as well. This is expected to improve the state estimation

accuracy, since in typical applications the cardinality of the sets of matching pairs {q1i
,q2i

}N12

i=1 and

{q2i
,q3i

}N23

i=1 is much larger than the cardinality of the set of matching triplets {q1i
,q2i

,q3i
}N123

i=1 .
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While the development of the constraints in Eq. (18) assumed a general ground scene, when a planar

scene is under consideration, an additional constraint, expressing the fact that all the observed features

are located on the same plane [10], [8], may be incorporated.

One may estimate T23 based on Eq. (18) using standard techniques (e. g. SVD) and then fuse T23

with the INS. However, a better alternative is to utilize the implicit nature of Eq. (18) using an Implicit

Extended Kalman Filter [24], as discussed in the next section.

IV. FUSION WITH A NAVIGATION SYSTEM

In this section we present a technique for fusing the three-view geometry constraints with a standard

navigation system, assuming three images with a common overlapping area had been identified. The

data fusion is performed using an indirect IEKF that estimates the navigation parameter errors instead

of the parameters themselves. These estimated errors are then used for correcting the navigation solution

computed by the navigation system (cf. Figure 1).

When real imagery and navigation data are considered, the existence of navigation errors and image

noise renders the constraints of Eq. (18) inaccurate. Thus, the following residual measurement is defined:

z
.
=


U

F

0


N×3

T23 −


W

0

G


N×3

T12
.
= AT23 − BT12 (23)

Since T12 = Pos(t2)−Pos(t1) , T23 = Pos(t3)−Pos(t2), and the matrices F,G,U,W are functions

of the LOS vectors, the residual measurement z is a nonlinear function of the following parameters2:

z = h (Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),Pos(t1),Ψ(t1),{
qC1

1i
,qC2

2i
,qC3

3i

})
(24)

Here (t3, t2, t1) denote the time instances in which the three overlapping images were captured, with

t3 being the current time.

We now define the state vector as

X =
[
∆PT ∆VT ∆ΨT dT bT

]T
(25)

2In Eq. (24), the notation
{
qC1
1i

,qC2
2i

,qC3
3i

}
refers to the fact that LOS vectors from all the three images are used for

calculating the residual measurement z. Note that each of the matrices F,G,U,W is a function of a different set of matching

points.
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where ∆P ∈ R3,∆V ∈ R3,∆Ψ = (∆ϕ,∆θ,∆ψ)T ∈ [0, 2π] × [0, π] × [0, 2π] are the position,

velocity and attitude errors, respectively, and (d,b) is the parameterization of errors in the inertial sensor

measurements: d ∈ R3 is the gyro drift, and b ∈ R3 is the accelerometer bias. The first 9 components

of X are given in LLLN coordinates, while the last 6 are written in a body-fixed reference frame. The

corresponding transition matrix Φd(tb, ta) satisfying X(tb) = Φd(tb, ta)X(ta) is given in [3].

Since it is unknown a-priori which three images will have a common overlapping area, and in order

to maintain a constant-size state vector, each captured image should be stored and associated with the

relevant navigation information. The navigation data that should be attached to each image are the platform

position, attitude, gimbal angles and the filter’s covariance matrix.

Linearizing h about Pos(t3), Ψ(t3), Pos(t2), Ψ(t2), Pos(t1), Ψ(t1) and
{
qC1

1i
,qC2

2i
,qC3

3i

}
, and

keeping the first order terms yields

z ≈ H3X(t3) +H2X(t2) +H1X(t1) +Dv (26)

where H3,H2,H1 ∈ RN×15 are defined as

H3
.
= ∇ζ(t3)h , H2

.
= ∇ζ(t2)h , H1

.
= ∇ζ(t1)h (27)

while ζ is composed of the navigation solution and IMU errors parametrization:

ζ
.
=

[
PosT VT ΨT dT bT

]
(28)

with Pos,V and Ψ representing position, velocity and attitude calculated by the inertial navigation

system, respectively.

The terms X(t3),X(t2) and X(t1) in Eq. (26) are the navigation errors at the three time instances; in

general, X(t1),X(t2) and X(t3) may be correlated.

Noting that we are only interested in estimating the navigation errors at the current time instant,

X(t3), the navigation errors at the first two time instances are considered as random parameters in

the measurement equation. Therefore, since X(t2) and X(t1) are not estimated, the estimation error

X̃
.
= X − X̂ in these two time instances is X̃(t2) ≡ X(t2) and X̃(t1) ≡ X(t1), respectively. These

errors are represented by the filter covariance matrices P (t1), P (t2), respectively, which are attached to

the first two images.

The matrix D in Eq. (26) is the gradient of h with respect to the LOS vectors, i. e. D .
= ∇{qC1

1i
,q

C2
2i

,q
C3
3i
}h,

and v is the image noise associated with the LOS vectors, having a covariance matrix R. Thus, the

measurement noise is modeled as a combination of image noise, with the appropriate Jacobian matrix
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D, and the estimation errors X̃(t2) and X̃(t1) with the Jacobian matrices H2 and H1, respectively. The

development of the matrices H3,H2,H1, D and R is given in Appendix B.

The propagation step of the filter is carried out using the matrix Φd and the state vector X ∈ R15×1,

as explained in [2]. The update step is executed only when a set of three overlapping images becomes

available. In this step the current state vector, X(t3), is estimated based on the LOS vectors and the

first two state vectors X(t1),X(t2), as explained next. This is in contrast to the SLAM approach, in

which both the propagation and update steps of the filter are performed on a state vector that constantly

increases in size.

The Kalman gain matrix is given by

K = PX(t3)z(t3,t2,t1)P
−1
z(t3,t2,t1)

=

= E[X̃
−
z̃T ]E[z̃z̃T ]−1 = (29)

= E[(X− X̂
−
)(z− ẑ)T ]E[(z− ẑ)(z− ẑ)T ]−1

where the explicit time notations were omitted for conciseness.

Since ẑ = H3X̂
−
(t3)

z̃ = z− ẑ = (30)

= H3X̃
−
(t3) +H2X̃(t2) +H1X̃(t1) +Dv

Hence

PX(t3)z(t3,t2,t1) = P−
3 H

T
3 + P−

32H
T
2 + P−

31H
T
1 (31)

Pz(t3,t2,t1) = H3P
−
3 H

T
3 + (32)

+
[
H2 H1

] P2 P21

P T
21 P1

[
H2 H1

]T
+

+ DRDT

where Pi = E[X̃iX̃
T
i ] and Pij = E[X̃iX̃

T
j ].

As the measurement noise, H2X(t2) +H1X(t1) +Dv, is statistically dependent with the state vector

to be estimated, X(t3), the basic assumption of the Kalman filter is contradicted. Eqs. (31) and (32) are

an ad-hoc approach for taking into consideration this dependence within the Kalman filter framework,

that has given good results. Note that if all the three state vectors, X(t3),X(t2) and X(t1), were to be

estimated, the measurement noise in Eq. (26) would be Dv, which is still statistically dependent with the
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state vectors. However, this dependence would only be due to the Jacobian D, as modeled by a standard

IEKF formulation [24], [31]. Explicit equations in such case are given, for example, in [32].

Referring to Eqs. (31) and (32), while the matrices P−
3 , P2 and P1 are known, the cross-correlation

matrices P−
32, P

−
31 and P21 are unknown, and therefore need to be calculated. However, since X(t2) and

X(t1) are stored outside the filter, these terms cannot be calculated without additional information or

assumptions.

This issue is handled as follows. Inertial navigation between t1 and t2 is assumed. Denoting by

Φd(t2, t1) the transition matrix between X(t1) and X(t2), the term P21 may be calculated as

P21 = E[X̃(t2)X̃
T
(t1)] = Φd(t2, t1)P1 (33)

The other two cross-correlation terms, P−
32 = E[X̃

−
(t3)X̃

T
(t2)] and P−

31 = E[X̃
−
(t3)X̃

T
(t1)], may be

neglected if t3 ≫ t2 (e. g. loops), or when the first two images and their associated navigation data have

been received from an external source (e. g. some other vehicle).

Several approaches exist for handling all the other cases in which t3 − t2 is not considerably large.

One possible approach is to keep a limited history of the platform navigation parameters by incorporating

these parameters into the state vector each time a new image is captured within a certain sliding window

[7]. This approach is capable of handling scenarios in which all the three images are captured within the

assumed sliding window. Another alternative would be to develop a bound on t3 − t2 under which the

cross-correlation terms P−
32 and P−

31 can be considered negligible, and select sets of overlapping images

accordingly. These two approaches may also be jointly applied. Covariance intersection (CI) [26], [27]

could also be potentially used to deal with the cross-correlation terms. However, CI is incapable of

handling cases in which the measurement matrix contains only a partial representation of the state vector

[27], [28], which is the situation in the present case.

In this work, it is assumed that the current navigation parameters are not correlated with the navigation

parameters that are associated with the first two images, i. e. P−
32 = 0 and P−

31 = 0.

In case the above assumptions regarding P−
32, P

−
31 and P21 are not satisfied, these terms can be explicitly

calculated using the method developed in [33]. This method allows calculating the cross-covariance terms

for a general multi-platform measurement model assuming all the thus-far performed multi-platform

measurement updates are stored in a graph. As described in [32], the method can be adjusted in a

straightforward manner to the three-view constraints measurement model (26) considered in this paper.

After the residual measurement and the gain matrix have been computed using Eqs. (24) and (29),

respectively, the state vector and the covariance matrix can be updated based on the standard equations
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of the IEKF.

A. Computational Requirements

A single filter update step, given three images with a common overlapping area, involves computation

of the matrices A,B and the Jacobian matrices H3, L2, L1 and D. These calculations are linear in N ,

the overall size of the matching sets
{
qC1

1i
,qC2

2i
,qC3

3i

}N123

i=1
,
{
qC1

1i
,qC2

2i

}N12

i=1
and

{
qC2

2i
,qC3

3i

}N23

i=1
. Noting

that the state vector is constant in size, the most computationally expensive operation in the filter update

step is the inversion of an N ×N matrix required for the calculation of the gain matrix.

The computational load of the proposed method does not change significantly over time (depending

on the variation of N ), regardless of the scenarios in which the algorithm is applied to (including loops).

Moreover, if the computational capability is limited, it is possible to utilize only part of the available

matching pairs and triplets (cf. Section III-A), or eliminate the epipolar constraint for the first two views,

thus reducing the computational load even further.

In contrast to the above, the computational requirements of other methods, capable of handling tra-

jectory loops, are much higher. Conventional SLAM entails constantly-increasing computational require-

ments, due to the augmentation of the state vector. Furthermore, the high computational load is induced

in each filter propagation step. For example, denote by d the number of elements added to the state

vector each time a new image is captured. After using n images, the state vector in SLAM will consist

of nd elements, representing the observed scene, and of navigation parameters. In contrast to this, in our

approach the state vector is a fixed-size 15-element vector, being propagated and updated by the filter.

Methods that perform state augmentation until a certain size of the state vector is reached (e. g. Ref.

[7]), handle loops in the trajectory by applying bundle adjustment over all the images that have been

captured during the loop chain, as opposed to processing only three images as done in our approach.

B. Extensions

It is straightforward to extend the developed method for handling more than three overlapping images,

which may improve robustness to noise. In the general case, assume k given images, such that each three

neighboring images are overlapping (a common overlapping area for all the k images is not required).

Assume also that all these images are associated with the required navigation data. In the spirit of Eq.

(6), we write an epipolar constraint for each pair of consecutive images, and a constraint for relating the

magnitudes of the translation vectors (similar to Eq. (6c)) for each three adjacent overlapping images.
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Next, the residual measurement z is redefined and the calculations of the required Jacobian matrices in

the IEKF formulation are repeated.

For example, consider the case of four images captured at time instances t1, . . . , t4, with t4 being the

current time, and assume existence of common overlapping areas for the first three images and for the

last three images. One possible formulation of the constraints is

(q1 × q2)
T [q3]×T23 = (q2 × q3)

T [q1]×T12 (34)

(q2 × q3)
TT23 = 0 (35)

(q1 × q2)
TT12 = 0 (36)

(q2 × q3)
T [q4]×T34 = (q3 × q4)

T [q2]×T23 (37)

(q3 × q4)
TT34 = 0 (38)

Considering all the available matches and following the same procedure as in Section IV, the residual

measurement z will assume the form

z = JT34 − VT23 − LT12

where the matrices J ,V,L are constructed based on Eqs. (34)-(38).

Since T12,T23 and all the rotation matrices that implicitly appear in Eqs. (34)-(38) can be calculated

based on the navigation data associated with the images, the residual measurement z is given by

z = h (Pos(t4),Ψ(t4),Pos(t3),Ψ(t3),Pos(t2),

Ψ(t2),Pos(t1),Ψ(t1),
{
qC1

1i
,qC2

2i
,qC3

3i
,qC4

4i

})
in which Pos(t4),Ψ(t4) are part of the current navigation solution. This measurement may be utilized

for estimating the developed navigation errors in the same manner as discussed in Section IV. The

involved computational requirements will increase only in the update step, according to the total size of

the matching sets. The propagation step of the filter remains the same.

V. SIMULATION AND EXPERIMENTAL RESULTS

This section presents statistical results obtained from simulated navigation data and synthetic imagery

data, as well as experimental results utilizing real navigation and imagery data.
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A. Implementation Details

1) Navigation Simulation: The navigation simulation consists of the following steps [2]: (a) Trajectory

generation; (b) velocity and angular velocity increments extraction from the created trajectory; (c) inertial

measurement unit (IMU) error definition and contamination of pure increments by noise; and (d) strap-

down calculations. The strapdown mechanism provides, at each time step, the calculated position, velocity

and attitude of the vehicle. Once a set of three images with a common overlapping area is available, the

developed algorithm is executed: the state vector is estimated based on the developed algorithm using

IEKF, which is then used for updating the navigation solution (cf. Figure 1). The estimated bias and drift

are used for correcting the IMU measurements.

2) Image Processing Module: Given three images with a common overlapping area, the image process-

ing phase includes features extraction from each image using the SIFT algorithm [29] and computation

of sets of matching pairs between the first two images,
{
xi
1,x

i
2

}N12

i=1
, and between the last two images,{

xi
2,x

i
3

}N23

i=1
, where xi = (xi, yi)T are the image coordinates of the ith feature. This computation proceeds

as follows. First, the features are matched based on their descriptor vectors (that were computed as part

of the SIFT algorithm), yielding the sets
{
xi
1,x

i
2

}Ñ12

i=1
,
{
xi
2,x

i
3

}Ñ23

i=1
. Since this step occasionally produces

false matches (outliers), the RANSAC algorithm [30] is applied over the fundamental matrix [1] model

in order to reject the existing false matches, thus obtaining the refined sets
{
xi
1,x

i
2

}N12

i=1
and

{
xi
2,x

i
3

}N23

i=1
.

The fundamental matrices are not used in further computations.

The next step is to use these two sets for calculating matching triplet features, i. e. matching features

in the three given images. This step is performed by matching all x1 ∈
{
xi
1,x

i
2

}N12

i=1
with all x3 ∈{

xi
2,x

i
3

}N23

i=1
, yielding a set of matching triplets

{
xi
1,x

i
2,x

i
3

}N123

i=1
. The matching process includes the

same steps as described above.

When using synthetic imagery data, a set of points in the real-world are randomly drawn. Then, taking

into account the camera motion, known from the true vehicle trajectory, and assuming specific camera

calibration parameters, the image coordinates of the observed real-world points are calculated using a

pinhole projection [1] at the appropriate time instances. See, for example, Ref. [31] for further details.

Consequently, a list of features for each time instant of the three time instances, which are manually

specified, is obtained:
{
xi
1

}
,
{
xi
2

}
and

{
xi
3

}
. The mapping between these three sets is known, since these

sets were calculated using the pinhole projection based on the same real-world points. Thus, in order to

find the matching sets
{
xi
1,x

i
2,x

i
3

}N123

i=1
,
{
xi
1,x

i
2

}N12

i=1
and

{
xi
2,x

i
3

}N23

i=1
it is only required to check which

features are within the camera field of view at all the three time instances.
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TABLE I

INITIAL NAVIGATION ERRORS AND IMU ERRORS

Parameter Description Value Units

∆P Initial position error (1σ) (100, 100, 100)T m

∆V Initial velocity error (1σ) (0.3, 0.3, 0.3)T m/s

∆Ψ Initial attitude error (1σ) (0.1, 0.1, 0.1)T deg

d IMU drift (1σ) (10, 10, 10)T deg/hr

b IMU bias (1σ) (10, 10, 10)T mg

Finally, the calculated sets of matching features are transformed into sets of matching LOS vectors.

A LOS vector, expressed in the camera system for some feature x = (x, y)T , is calculated as qC =

(x, y, f)T , where f is the camera focal length. As a result, three matching LOS sets are obtained:{
qC1

1i
,qC2

2i
,qC3

3i

}N123

i=1
,
{
qC1

1i
,qC2

2i

}N12

i=1
and

{
qC2

2i
,qC3

3i

}N23

i=1
. When handling real imagery, the camera focal

length, as well as other camera parameters, are found during the camera calibration process. In addition,

a radial distortion correction [1] was applied to camera-captured images, or alternatively, to the extracted

feature coordinates.

B. Statistical Results based on Simulated Navigation and Synthetic Imagery

In this section, we present statistical results obtained by applying the developed algorithm to a trajectory

containing a loop based on a simulated navigation system and synthetic imagery data. The assumed initial

navigation errors and IMU errors are summarized in Table I. The synthetic imagery data was obtained by

assuming a 200×300 camera FOV, focal length of 1570 pixels, and image noise of 1 pixel. The assumed

trajectory, shown in Figure 3(a), includes a loop that is repeated twice (see also Figure 3(b)).

In order to demonstrate the performance of the algorithm in loop scenarios, the three-view navigation-

aiding algorithm was applied twice, at t = 427 seconds and at t = 830 seconds; each time a specific

point along the trajectory was revisited. The true translation vectors are TL
12 = [100 0 0]T and TL

23 =

[500 0 0]T . No other updates of the navigation system were performed, i. e. inertial navigation was

applied elsewhere.

Figure 4 provides the Monte-Carlo results (100 runs). As seen, with the help of the three-view update,

the position error (which has grown to several kilometers because of the inertial navigation phase) is reset

in all axes to the levels of errors at t1 and t2 (see Figure 4(b)). The velocity error is also considerably
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Fig. 3. Trajectory used in the statistical study. The vehicle performs the loop twice.

reduced in all axes as a result of the algorithm activation, while the accelerometer bias is estimated

mainly in the z axis (cf. Figure 4(d)).

Assuming at least three matching triplets of features exist, the proposed method can be applied without

using the epipolar constraints, utilizing only the constraint relating the magnitudes of translation vectors

(Eq. (15)). In this case the accuracy of the method will degrade, mainly in a direction normal to the

motion heading, as shown in Figure 5. The position error in the north direction, which is the motion

heading at the time of the algorithm activation, is roughly the same as in the case where all the constraints

in Eq. (18) are applied. However, in the east direction the accuracy of the position state is considerably

degraded, with an error of around 900 meters, compared to an error of about 100 meters (Figure 4(b)),

which is the initial position error (cf. Table I). Observe also that although the error in the down direction

has not significantly changed, the filter covariance is no longer consistent (the same filter tuning was used

in both cases). The absolute reduction of position and velocity errors in all axes is not possible when

applying two-view based techniques for navigation aiding, since the position and velocity along the motion

direction are unobservable (cf. Refs. [2], [3]). In practical applications each of the two approaches may be

applied, depending on the number of available overlapping images. Whenever a set of three images with

a common overlapping area becomes available, the proposed method will reduce the navigation errors

that two-view navigation aiding methods were unable to estimate (e. g. errors along motion heading) in

accordance with the quality of navigation data attached to the first two images in the set.
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0 200 400 600 800 1000
0

10

20

V
N

 [m
/s

]

 

 

0 200 400 600 800 1000
0

10

20

V
E
 [m

/s
]

0 200 400 600 800 1000
0

50

V
D

 [m
/s

]

Time [sec]

σ+µ
Sqrt cov.
µ

(c) Velocity errors.

0 200 400 600 800 1000
0

5

10

15

b x [m
g]

 

 

0 200 400 600 800 1000
0

5

10

15
b y [m

g]

0 200 400 600 800 1000
0

5

10

15

b z [m
g]

Time [sec]

σ+µ
Sqrt cov.
µ

(d) Bias estimation errors.

Fig. 4. Monte-Carlo results of the three-view navigation-aiding algorithm based on navigation simulation and synthetic imagery

data.

C. Experiment Results

An experiment was carried out for validating the proposed method. The experimental setup contained

an MTi-G Xsens3 IMU/INS and a 207MW Axis network camera4 that were mounted on top of a ground

vehicle. The vehicle was manually commanded using a joystick, while the camera captured images

perpendicular to the motion heading. During the experiment, the inertial sensor measurements and camera

images were recorded for post-processing at 100 Hz and 15 Hz, respectively. In addition, these two data

sources were synchronized by associating to each image a time stamp from the navigation timeline.

3http://www.xsens.com/en/general/mti-g.
4http://www.axis.com/products/cam 207mw/index.htm.
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Fig. 5. Monte-Carlo results of the three-view navigation-aiding algorithm based on a navigation simulation and synthetic

imagery data without applying epipolar constraints.

Since the experiment was carried out indoors, GPS was unavailable, and therefore the MTi-G could

not supply a valid navigation solution for reference. However, the true vehicle trajectory was manually

measured during the experiment and associated with a timeline by post-processing the inertial sensors

readings. The reference trajectory is shown in Figure 6. The diamond markers denote the manual

measurements of the vehicle position, while the solid line represents a linear interpolation between each

two markers. The vehicle began its motion at t ≈ 76 seconds. As can be seen in Figure 6(a), the vehicle

performed the same closed trajectory twice (see also Figure 6(b)).
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Fig. 6. Trajectory performed in the experiment.
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The recorded inertial sensor measurements were processed by the strapdown block yielding an inertial

navigation solution. Sets of three images with a common overlapping area were identified and chosen.

The proposed algorithm was applied for each such set and used for updating the navigation system. Two

different update modes are demonstrated in this experiment: a) “Sequential update”, in which all the

three images are acquired closely to each other, and b) “Loop update”, in which the first two images are

captured while the platform passes a given region for the first time, whereas the third image is obtained

at the second passing of the same region. The algorithm application is the same in both cases.

The image matching process for the first set of three overlapping images is shown in Figure 7. The

camera-captured images are given in Figures 7(a)-7(c). The set of matching triplets
{
xi
1,x

i
2,x

i
3

}N123

i=1
is

provided in Figures 7(d)-7(f), showing matches between each pair of images. For example, Figure 7(d)

shows the matches between the first and second image, such that (x1,x2) ∈
{
xi
1,x

i
2,x

i
3

}N123

i=1
. As seen,

the three images have a significant common overlapping area, and thus it is possible to obtain a large

number of matching triplets. About 140 matching triplets were found for the three images shown in

Figures 7(a)-7(c); however, only a few of them are explicitly shown in Figures 7(d)-7(f), while the rest

of the matches are denoted by various markers.

The localization results are shown in Figure 8. Figure 8(a) presents the estimated position compared

to the true position. In addition, inertial-navigation-based position estimation is shown for comparison.

Figure 8(b) depicts the position estimation errors (computed by subtracting the true position from the

estimated position) and the square root of the filter covariance. The update mode is presented in both

figures: until t ≈ 150 seconds sequential updates were performed, while loop updates were applied after

the platform has completed a loop, starting from t ≈ 158 seconds.

During the sequential updates phase, the time instances (t1, t2, t3) were chosen such that t2 − t1 ≈ 1

seconds and t3− t2 ≈ 5 seconds. As seen in Figure 8, while sequential updates are active, the position is

estimated with an accuracy of several meters, whereas the inertial solution rapidly diverges. Increasing

the filter’s frequency, given the appropriate triplets of images are available, is expected to reduce the

position error even further. The consistent behavior of the filter covariance indicates that the correlation

between X(t3) and X(t2), which is not accounted for in the current filter formulation (cf. Section IV),

is not significant.

Although the position error is significantly reduced during the sequential updates of the algorithm (until

t ≈ 120 seconds), its development is mitigated during this phase but not entirely eliminated, as clearly

evident in the height error. Two main reasons for this phenomenon are: a) Imperfect estimation of the

actual IMU errors; b) In each update, the algorithm allows reducing current position errors only to the
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(a) (b) (c)

(d)

(e)

(f)

Fig. 7. Image matching process. (a)-(c) Three camera-captured images used in the first sequential update in the experiment.

(d) Matching triplets between image 1 and 2: (x1,x2) ∈
{
xi
1,x

i
2,x

i
3

}N123

i=1
; (e) Matching triplets between image 2 and 3:

(x2,x3) ∈
{
xi
1,x

i
2,x

i
3

}N123

i=1
; (f) Matching triplets between image 1 and 3: (x1,x3) ∈

{
xi
1,x

i
2,x

i
3

}N123

i=1
. For clarity, only the

first few matches are explicitly shown; the rest of the matches are denoted by marks in each image.
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level of errors that were present while the first two images of the three, were taken. Because each update

in the sequential mode uses a different set of three images, and because the development of inertial error

between these images, the error – although considerably mitigated – will continue to develop.

After the vehicle had completed its first loop, it became possible to apply the algorithm in a “loop

update” mode. As seen in Figure 8, the loop updates were applied at a varying frequency, which was

typically lower than the frequency of sequential updates. Referring to Figure 6, the vehicle completed

its first loop at t ≈ 158 seconds and performed the same trajectory once again, completing the second

loop at t ≈ 230 and afterwards continuing the same basic trajectory for another 10 seconds. In these last

10 seconds the vehicle began performing a third loop.

Each loop update significantly reduces the inertially-accumulated position error, yielding a small error

of several meters after over 150 seconds of operation. For comparison, the inertial error approaches 1100

meter (in the north axis) over this period of time, indicating the low quality of the inertial sensors. Note

that the position error is reduced in all axes, including along the motion direction, which is not possible

in two-view methods for navigation aiding [2].

As seen in Figure 8, although each loop update drastically reduces the developed position error, the

rate of the inertially-developing position error between each two loop updates has not been arrested

compared to the pure inertial scenario (cf. Figure 8(a)), leading to the conclusion that the IMU errors

parametrization (drift and bias) were not estimated well in the experiment.

Note also that as additional loop updates are applied and until reaching t ≈ 230 seconds, the update

accuracy deteriorates. For example, the east position error is reduced to −1.5 meters at the first loop

update (t = 158 seconds), while in the loop update at t = 201 seconds the east position error was reduced

only to 6 meters. The reason for this accuracy deterioration is that each loop update is performed using

the current image and two images of the same scene that had been captured while the platform visited

the area for the first time. As already mentioned, each update allows to reduce the current position error

to the level of errors that were present while the first two images were captured. However, as can be

seen from Figure 8, the position error in the sequential updates phase, although considerably arrested,

gradually increases over time, and hence the loop updates are capable of reducing the position error to

the level of errors that increase with time. For example, the first two images participating in the first

loop update at t = 158 seconds were captured at t = 77 and t = 78 seconds, while the first two images

participating in the loop update at t = 201 seconds were captured at t = 131 and t = 132 seconds. Since

the position error at t = 131 and t = 132 seconds was larger than the position error at t = 77 and t = 78

seconds (cf. Figure 8(b)), the position error after the loop update at t = 201 seconds was accordingly
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larger than the position error after the first loop update (at t = 158 seconds).

After t ≈ 230 seconds, the platform began its third loop and thus the loop updates from t ≈ 230

and on were performed using images (and the attached navigation data) captured at the beginning of the

platform’s trajectory (around t = 80 seconds). Therefore, the obtained position error at these loop updates

is of accuracy comparable to the accuracy of the first loop updates (starting from t = 158 seconds), and

hence to the accuracy of the navigation solution calculated in the beginning of the trajectory.

Analyzing the experiment results, it is also tempting to compare the performance obtained in the

sequential and loop update modes. However, because these two modes of algorithm activation were not

applied in the same phase, a quantitative analysis cannot be performed. Nevertheless, regardless of the

sequential update mode, it is safe to state that activation of the algorithm in a loop update mode reduces

the position errors in all axes to prior values while processing only three images.
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(a) Estimated position.
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(b) Position estimation error vs. filter uncertainty covariance

Fig. 8. Experiment results. A small position error (several meters) is obtained while sequentially activating the algorithm. The

position error is reset to its prior levels each time a loop update is applied.

VI. CONCLUSIONS

This paper presented a new method for vision-aided navigation based on three-view geometry. Camera-

captured images were stored and designated by partial navigation data taken from the inertial navigation

July 18, 2011 DRAFT



26

system. These images were used for constructing a representation of the observed environment, while

some of them were also incorporated for navigation aiding. The proposed method utilized three overlap-

ping images to formulate constraints relating between the platform motion at the time instances of the

three images. The associated navigation data for each of the three images allowed to determine the scale

ambiguity inherent to all pure computer vision techniques for motion estimation. The constraints were

further reformulated and fused with an inertial navigation system using an implicit extended Kalman

filter. A single activation of the method over a set of three overlapping images reduces the inertially

developed position errors to the levels present while the first two images were captured.

The developed method for vision-aided navigation may be used in various applications in which three

overlapping images, and the required navigation data, are available. In this paper the method was applied

to maintaining small navigation errors, while operating in a GPS-denied environment, accomplished by

engaging the algorithm over sequential overlapping imagery, and utilizing the overlapping images in case

a loop in the trajectory occurs. In contrast to the existing methods for vision-aided navigation, which are

also capable of handling loops, such as bundle adjustment and SLAM, the computational requirements

of the proposed algorithm allow real-time navigation aiding, since a constant-size state vector is used,

and only three images are processed at each update step of the IEKF. The refinement process of the

environment representation, such as mosaic image construction, may be performed in a background

process.

The method was examined based on real imagery and navigation data, obtained in an experiment, and

in a statistical study using simulated navigation and synthetic imagery. The results showed that reduced

position and velocity errors can be maintained over time, thus allowing operation without relying on the

GPS signal. Specifically, the position errors obtained in the experiment, in which a low-grade IMU was

used, were reduced to several meters each time the algorithm was applied, while the inertial position error

has reached over 1000 meters in 150 seconds of operation. The implication of this result is important

for various applications, in which the GPS signal is unavailable or unreliable. Among these is a holding

pattern mission, in which the platform has to perform the same loop trajectory numerous times. Satellite

orbit determination is another possible application.

APPENDIX A: PROOF OF THEOREM 3.1

Recall the matrix A,

A =

 q1 −q2 03×1 −T12

03×1 q2 −q3 −T23

 ∈ R6×4 (39)

July 18, 2011 DRAFT



27

and the constraints

qT
1 (T12 × q2) = 0 (40)

qT
2 (T23 × q3) = 0 (41)

(q2 × q1)
T (q3 ×T23) = (q1 ×T12)

T (q3 × q2) (42)

Next we prove that the constraints (40)-(42) hold if and only if rank(A) < 4.

A. rank(A) < 4 ⇒ Eqs. (40)-(42)

Since rank(A) < 4, there exists a nonzero vector β = (β1, β2, β3, β4)
T such that Aβ = 0. The explicit

equations stemming from Aβ = 0 are

q1β1 − q2β2 −T12β4 = 0 (43)

q2β2 − q3β3 −T23β4 = 0 (44)

Cross-multiplying Eq. (43) by q1 and Eq. (44) by q3 yields

(q1 × q2)β2 + (q1 ×T12)β4 = 0 (45)

(q3 × q2)β2 − (q3 ×T23)β4 = 0 (46)

If q1 × q2 ̸= 0 and q3 × q2 ̸= 0, then performing an inner product of Eq. (45) with (q3 × q2) and of

Eq. (46) with (q1 × q2) yields

(q3 × q2)
T (q1 × q2)β2 + (47)

+(q3 × q2)
T (q1 ×T12)β4 = 0

(q1 × q2)
T (q3 × q2)β2 − (48)

−(q1 × q2)
T (q3 ×T23)β4 = 0

Noting that (q3 × q2)
T (q1 × q2) = −(q1 × q2)

T (q3 × q2) and adding Eqs. (48) and (49) gives the

constraint (42).

The first two constraints may be obtained similarly: Cross-multiplying Eq. (43) by q2 and then taking

an inner product with q1 gives the constraint (40). Cross-multiplying from the right Eq. (44) by q3 and

then taking an inner product with q2 gives the constraint (41). “
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Degenerate Cases: q1 × q2 = 0 or q3 × q2 = 0, or both, i. e. q1 ∥ q2 or q2 ∥ q3, or q1 ∥ q2 ∥ q3.

Consider the case q1 ∥ q2. Since both q1 and q2 point to the same ground point, it may be concluded

that T12 is parallel to q1 and q2. More formally, if r1 and r2 are the scale parameters such that ||riqi||

is the range to the ground point, then T12 = r2q2 − r1q1 = r2aq1 − r1q1 = (r2a− r1)q1, where a is a

constant. Hence T12 ∥ q1 ∥ q2. Consequently, Eq. (41) is the only constraint from the three constraints

in Eqs. (40)-(42) that is not degenerate. This constraint may be obtained as explained above. The case

q2 ∥ q3 is handled in a similar manner.

The last degenerated case is q1 ∥ q2 ∥ q3, which occurs when the vehicle moves along the line of

sight vectors. In this case all the constraints in Eqs. (40)-(42) are degenerate.

Note that in the first two degenerate cases (q1 ∥ q2 or q2 ∥ q3), it is possible to write another set

of three constraints. For example, if q1 ∥ q2 (but not to q3), we can formulate two epipolar constraints

between views 1 and 3, and between views 2 and 3, and provide the equivalent constraint to Eq. (42)

relating between T13 and T23.

B. Eqs. (40)-(42) ⇒ rank(A) < 4

The proof is based on steps similar to the previous section, in a reverse order. Recall the constraint

(42), multiplied by some constant β4 ̸= 0:

(q2 × q1)
T (q3 ×T23)β4 = (q1 ×T12)

T (q3 × q2)β4 (49)

Since (q2 × q1)
T (q3 × q2) is a scalar and Eq. (49) is a scalar equation, there exists some β2 ̸= 0 such

that

(q2 × q1)
T (q3 × q2)β2 = (q2 × q1)

T (q3 ×T23)β4

(q2 × q1)
T (q3 × q2)β2 = (q1 ×T12)

T (q3 × q2)β4

The above equation may be rewritten into

(q2 × q1)
T (q3 × q2)β2 − (50)

−(q2 × q1)
T (q3 ×T23)β4 = 0

(q3 × q2)
T (q1 × q2)β2 + (51)

+(q3 × q2)
T (q1 ×T12)β4 = 0

or equivalently

(q2 × q1)
T [(q3 × q2)β2 − (q3 ×T23)β4] = 0 (52)
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(q3 × q2)
T [(q1 × q2)β2 + (q1 ×T12)β4] = 0 (53)

At this point it is assumed that q1 × q2 ̸= 0 and q3 × q2 ̸= 0. The proof for cases in which this

assumption does not hold is given in the sequel.

Noting that qT
2 (q3 × q2) ≡ 0, and since the constraint (41) is satisfied, the vectors (q3 × q2)β2 −

(q3 ×T23)β4 and (q2 × q1) are not perpendicular. In the same manner, since qT
2 (q1 × q2) = 0 and the

constraint (40) is met, the vectors (q1 × q2)β2 + (q1 ×T12)β4 and (q3 × q2) are not perpendicular as

well. Therefore the last two equations lead to

(q3 × q2)β2 − (q3 ×T23)β4 = 0 (54)

(q1 × q2)β2 + (q1 ×T12)β4 = 0 (55)

that me by rewritten as

q3 × (q2β2 −T23β4 + q3β3) = 0 (56)

q1 × (q2β2 +T12β4 + q1β1) = 0 (57)

for any β1, β3. Consequently,

q2β2 + q3β3 −T23β4 = 0 (58)

q1β1 + q2β2 +T12β4 = 0 (59)

In order to obtain the same expression for the matrix A, the vector α = (α1, α2, α3, α4)
T is defined as

α1
.
= β1 , α2

.
= −β2 , α3

.
= β3 , α4

.
= −β4 (60)

so that Eqs. (58) and (59) turn into

−q2α2 + q3α3 +T23α4 = 0 (61)

q1α1 − q2α2 −T12α4 = 0 (62)

The above may be rewritten as

Aα = 0 (63)

and since α is a nonzero vector, one may conclude that rank(A) < 4. “
Note that the epipolar constraints (40) and (41) only guarantee that the matrices

[
q1 −q2 −T12

]
and

[
q2 −q3 −T23

]
are singular, which not necessarily leads to rank(A) < 4.
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Degenerate Cases: Next we prove that rank(A) < 4 also when q1 ∥ q2 or q2 ∥ q3, or q1 ∥ q2 ∥ q3.

Let q1 ∥ q2 while q3 is not parallel to q1. As proven above, q1 ∥ q2 ∥ T12, and thus, the matrix A

is of the form

A =

 q1 aq1 03×1 bq1

03×1 aq1 q3 T23

 (64)

for some scalars a, b. In order to prove that rank(A) < 4, we need to show that Aβ = 0 for some

nonzero vector β = (β1, β2, β3, β4)
T . Assume a general vector β and explicitly write Aβ = 0:

q1β1 + aq1β2 + bq1β4 = 0 (65)

aq1β2 + q3β3 +T23β4 = 0 (66)

Observe that the second equation leads to the epipolar constraint qT
2 (q3×T23) = 0. Since the constraints

(40)-(42) hold, it follows that the matrix
[
q2 −q3 −T23

]
is singular, and since q2 = aq1, it is possible

to find nonzero entries for β2, β3 and β4 so that Eq. (66) is satisfied. From Eq. (65) it is easy to see that

β1 = −aβ2− bβ4. Thus, a nonzero vector β was found such that Aβ = 0, which leads to the conclusion

that rank(A) < 4. A similar procedure may be applied when q2 ∥ q3 while q1 is not parallel to q2.

The last degenerate case is when all the three vectors are parallel. As already mentioned, both of the

translation vectors in this case are parallel to the line of sight vectors, i. e. q1 ∥ q2 ∥ q3 ∥ T12 ∥ T23.

The matrix A is then of the following form:

A =

 q1 aq1 03×1 bq1

03×1 −aq1 cq1 dq1

 (67)

where a, b, c and d are some constants. Since one may find some nonzero vector β such that Aβ = 0,

(e. g. β = (b, 0, d/c,−1)T ), the conclusion is that rank(A) < 4.

APPENDIX B: IEKF MATRICES

In this appendix we present the development of the IEKF matrices H3, H2, H1, D and R. Recall the

residual measurement definition (cf. Eqs. (23), (24) and (26))

z = h (Pos(t3),Ψ(t3),Pos(t2),Ψ(t2),Pos(t1),

Ψ(t1),
{
qC1

1i
,qC2

2i
,qC3

3i

})
= AT23 − BT12 ≈

≈ H3X(t3) +H2X(t2) +H1X(t1) +Dv (68)
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where

A .
=


U

F

0


N×3

, B .
=


W

0

G


N×3

(69)

and X is the state vector defined in Eq. (25):

X15×1 =
[
∆PT ∆VT ∆ΨT dT bT

]T
(70)

Recall also that the time instant of the third image, t3, of the three overlapping images is the current time.

Therefore, in Eq. (68) X(t3) is the state vector to be estimated, while X̃(t2) = X(t2) and X̃(t1) = X(t1)

are the estimation errors at the first two time instances represented by the filter covariance attached to

each image. These last two terms, accompanied by the Jacobian matrices H2 and H1 and the image noise

v along with the Jacobian matrix D, constitute the measurement noise. Since navigation and imagery

information is independent of each other, these two sources of information will be analyzed separately.

C. Calculation of the Matrices H3,H2 and H1

The matrices H3,H2 and H1, are N × 15 and are defined as

H3
.
= ∇ζ(t3)h , H2

.
= ∇ζ(t2)h , H1

.
= ∇ζ(t1)h (71)

where ζ is defined in Eq. (28).

From Eq. (68) it is clear that these matrices are of the following form:

Hi =
[
HPos(ti) 0 HΨ(ti) 0 0

]
(72)

with i = 1, 2, 3. Since T23 = Pos(t3)−Pos(t2) and T12 = Pos(t2)−Pos(t1),

HPos(t3) = A (73)

HPos(t2) = − (A+ B) (74)

HPos(t1) = B (75)

Note that the influence of position errors on the LOS vectors that appear in the matrices A and B is

neglected: the position errors affect only the rotation matrices transforming the LOS vectors to the LLLN

system at t2. These errors are divided by the Earth radius, and therefore their contribution is insignificant.
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Calculation of HΨ(t3), HΨ(t2) and HΨ(t1): Recall the definition of the matrices F,G,U and W

U =
[
u1 . . . uN123

]T
(76)

F =
[
f1 . . . fN23

]T
(77)

W =
[
w1 . . . wN123

]T
(78)

G =
[
g1 . . . gN12

]T
(79)

with

ui = ui(q1i
,q2i

,q3i
) = −

[
q3i

]
×
[
q1i

]
× q2i

(80)

wi = wi(q1i
,q2i

,q3i
) = −

[
q1i

]
×
[
q2i

]
× q3i

(81)

f i = f i(q2i
,q3i

) =
[
q2i

]
× q3i

(82)

gi = gi(q1i
,q2i

) =
[
q1i

]
× q2i

(83)

Since the development of expressions for the matrices HΨ(t3),HΨ(t2) and HΨ(t1) is similar, we elaborate

only on the development process of HΨ(t3). This matrix is given by

HΨ(t3) = ∇Ψ(t3)h = ∇Ψ(t3) [AT23]−∇Ψ(t3) [BT12] (84)

We start by developing the first term in Eq. (84). According to the structure of the matrices U and F ,

the following may be written:

∇Ψ(t3) [AT23] =

N123∑
i=1

∂AT23

∂ui
∇Ψ(t3)ui +

+

N23∑
i=1

∂AT23

∂f i
∇Ψ(t3)f i (85)

Since ui and f i are independent of each other, and ∂xTT23

∂xi
= TT

23 for any vector x, we have

∂AT23

∂ui
= eiT

T
23 (86)

∂AT23

∂f i
= eN123+iT

T
23 (87)

where ej is a N × 1 vector that is comprised of zero entries except for the jth element which is equal

to one. Note also that the size of the matrices ∂AT23

∂ui
, ∂AT23

∂f i
is N × 3. The remaining quantities in Eq.

(85), ∇Ψ(t3)ui and ∇Ψ(t3)f i, can be calculated as

∇Ψ(t3)ui =
∂ui

∂q3i

∇Ψ(t3)q3i
(88)

∇Ψ(t3)f i =
∂f i
∂q3i

∇Ψ(t3)q3i
(89)
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here q3i
refers to the LOS vector of the ith feature in the third view.

Analytical expressions for ∂f
∂qj

, ∂g
∂qj

, ∂u
∂qj

, ∂w
∂qj

, for j = 1, 2, 3, are easily obtained based on Eqs. (80)-(83)

as
∂u
∂q1

= [q3]× [q2]×
∂w
∂q1

=
[
[q2]× q3

]
×

∂f
∂q1

= 03×3
∂g
∂q1

= − [q2]×
∂u
∂q2

= − [q3]× [q1]×
∂w
∂q2

= [q1]× [q3]×
∂f
∂q2

= − [q3]×
∂g
∂q2

= [q1]×
∂u
∂q3

=
[
[q1]× q2

]
×

∂w
∂q3

= − [q1]× [q2]×
∂f
∂q3

= [q2]×
∂g
∂q3

= 03×3

(90)

As for ∇Ψ(t3)q3, recall that the LOS vectors in f ,g,u,w are expressed in the LLLN system at t2. Thus,

for example, for some LOS vector from the first view

q1 = CC1

L2
qC1

1 = CL1

L2
CB1

L1
CC1

B1
qC1

1 =

= CL1

L2
[I + [∆Ψ1]×]C

B1

L1,True
CC1

B1
qC1

1

≈ q̄1 − CL1

L2
[qL1

1 ]×∆Ψ1 (91)

here q̄ is the true value of q. In a similar manner we get:

q2 ≈ q̄2 − [qL2

2 ]×∆Ψ2 (92)

q3 ≈ q̄3 − CL3

L2
[qL3

3 ]×∆Ψ3 (93)

Consequently,

∇Ψ(t1)q1 = −CL1

L2
[qL1

1 ]× (94)

∇Ψ(t2)q2 = −[qL2

2 ]× (95)

∇Ψ(t3)q3 = −CL3

L2
[qL3

3 ]× (96)

Incorporating all the above expressions, Eq. (85) turns into

∇Ψ(t3) [AT23] = −
N123∑
i=1

eiT
T
23

∂ui

∂q3i

CL3

L2
[qL3

3i
]× −

−
N23∑
i=1

eN123+iT
T
23

∂f i
∂q3i

CL3

L2
[qL3

3i
]× (97)

Noting that g is not a function of q3 and following a similar procedure we get

∇Ψ(t3) [BT12] = −
N123∑
i=1

eiT
T
12

∂wi

∂q3i

CL3

L2
[qL3

3i
]× (98)
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In conclusion, HΨ(t3) may be calculated according to

HΨ(t3)|N×3 =

=

N123∑
i=1

ei

[
TT

12

∂wi

∂q3i

−TT
23

∂ui

∂q3i

]
CL3

L2
[qL3

3i
]× −

−
N23∑
i=1

eN123+iT
T
23

∂f i
∂q3i

CL3

L2
[qL3

3i
]× (99)

Applying the same technique, the matrices HΨ(t2) and HΨ(t1) were obtained as

HΨ(t2) =

=

N123∑
i=1

ei

[
TT

12

∂wi

∂q2i

−TT
23

∂ui

∂q2i

]
[qL2

2i
]× −

−
N23∑
i=1

eN123+iT
T
23

∂f i
∂q2i

[qL2

2i
]× +

+

N12∑
i=1

eN123+N23+iT
T
12

∂gi

∂q2i

[qL2

2i
]× (100)

HΨ(t1) =

=

N123∑
i=1

ei

[
TT

12

∂wi

∂q1i

−TT
23

∂ui

∂q1i

]
CL1

L2
[qL1

1i
]× +

+

N12∑
i=1

eN123+N23+iT
T
12

∂gi

∂q1i

CL1

L2
[qL1

1i
]× (101)

D. Calculation of the Matrices D and R

The matrices D and R are given by:

D .
= ∇{qC1

1i
,q

C2
2i

,q
C3
3i
}h (102)

R
.
= cov

({
qC1

1i
,qC2

2i
,qC3

3i

})
(103)

D reflects the influence of image noise on the measurement z, while R is the image noise covariance

for each matching LOS vector in the given images. Assuming that the camera optical axis lies along the

z direction, a general LOS vector is contaminated by image noise v = (vx, vy)
T , according to

qC = q̄C +
(
vx vy 0

)T
(104)

where q̄C is the true value of the LOS vector, without noise contamination. Note that thus far we have

omitted the explicit notation in the LOS vectors, thereby assuming that all the vectors are given in the

LLLN system of t2.
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Recall that the sets of matching triplets and matching pairs

{q1i
,q2i

}N12

i=1 , {q2i
,q3i

}N23

i=1 , {q1i
,q2i

,q3i
}N123

i=1 (105)

were assumed to be consistent (cf. Section III-A). Thus, for example, the matrices U and F , which are

part of the matrix A, are comprised of

U =
[
u1 . . . uN123

]T
F =

[
f1 . . . fN23

]T
(106)

with ui and f i, constructed using the same LOS vectors, for i ≤ N123. We define ∆N12 and ∆N23 as the

number of additional pairs in {q1i
,q2i

}N12

i=1 and {q2i
,q3i

}N23

i=1 that are not present in {q1i
,q2i

,q3i
}N123

i=1 :

N12 = N123+∆N12 and N23 = N123+∆N23. Although the overall number of matches in the above sets

(Eq. (105)) is N = N123 +N12 +N23, the actual number of different matches is N123 +∆N12 +∆N23.

Assuming that the covariance of the image noise is the same for all the LOS vectors in the three

images, and recalling the structure of the matrices A,B that are used for calculating h, we can write

DRDT =

N123+∆N12∑
i=1

∂h

∂qC1

1i

Rv
∂hT

∂qC1

1i

+

+

N123+∆N12+∆N23∑
i=1

∂h

∂qC2

2i

Rv
∂hT

∂qC2

2i

+

+

N123+∆N23∑
i=1

∂h

∂qC3

3i

Rv
∂hT

∂qC3

3i

(107)

In the above equation, each summation refers to all the LOS vectors from the relevant image that

participate in the calculation of h. For example, the first summation refers to the first image. Rv is

a 3× 3 covariance matrix of the image noise

Rv =


Rx 0 0

0 Ry 0

0 0 Rf

 (108)

with Rx = E(vxv
T
x ) and Ry = E(vyv

T
y ). Rf represents the uncertainty in the camera focal length.

Assuming the focal length is known precisely, it can be chosen as zero.

Next we develop expressions for ∂h

∂q
Ck
k

for each image (i. e. k = 1, 2, 3). We begin with ∂h
∂q

C1
1

∂h

∂qC1

1i

|N×3 =
∂AT23

∂qC1

1i

− ∂BT12

∂qC1

1i

(109)
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∂h

∂qC1

1i

|N×3 =

[
∂AT23

∂ui

∂ui

∂qL2

1i

− ∂BT12

∂wi

∂wi

∂qL2

1i

− ∂BT12

∂gi

∂gi

∂qL2

1i

]
∂qL2

1i

∂qC1

1i

=

=


{
ei

[
TT

23
∂ui

∂q
L2
1i

−TT
12

∂wi

∂q
L2
1i

]
− eN123+N23+iT

T
12

∂gi

∂q
L2
1i

}
CC1

L2
i ≤ N123

−eN123+N23+iT
T
12

∂gi

∂q
L2
1i

CC1

L2
N123 < i ≤ N123 +∆N12

(111)

∂h

∂qC2

2i

|N×3 =



ei

[
TT

23
∂ui

∂q
L2
2i

−TT
12

∂wi

∂q
L2
2i

]
CC2

L2
+

+

[
eN123+iT

T
23

∂f i
∂q

L2
2i

− eN123+N23+iT
T
12

∂gi

∂q
L2
2i

]
CC2

L2
i ≤ N123

eN123+iT
T
23

∂f i
∂q

L2
2i

CC2

L2
N123 < i ≤ N123 +∆N23

−e2N123+iT
T
12

∂gi

∂q
L2
2i

CC2

L2
N123 +∆N23 < i ≤ N123 +∆N23 +∆N12

(112)

∂h

∂qC3

3i

|N×3 =


{
ei

[
TT

23
∂ui

∂q
L2
3i

−TT
12

∂wi

∂q
L2
3i

]
+ eN123+iT

T
23

∂f i
∂q

L2
3i

}
CC3

L2
i ≤ N123

eN123+iT
T
23

∂f i
∂q

L2
3i

CC3

L2
N123 < i ≤ N123 +∆N23

(113)

Since the matrices U,W and G contain LOS vectors from the first view while the matrix F does not,

the above equals to

∂h

∂qC1

1i

=

N123∑
k=1

∂AT23

∂uk

∂uk

∂qL2

1i

∂qL2

1i

∂qC1

1i

−

−
N123∑
k=1

∂BT12

∂wk

∂wk

∂qL2

1i

∂qL2

1i

∂qC1

1i

− (110)

−
N12∑
k=1

∂BT12

∂gk

∂gk

∂qL2

1i

∂qL2

1i

∂qC1

1i

Noting that ∀i ̸= k , ∂uk

∂q
L2
1i

= ∂wk

∂q
L2
1i

= ∂gk

∂q
L2
1i

= 0, and taking into account that
∂q

L2
1i

∂q
C1
1i

= CC1

L2
, the above

turns into Eq. (111), where the derivatives ∂ui

∂q
L2
1i

, ∂wi

∂q
L2
1i

and ∂gi

∂q
L2
1i

were already computed (cf. Eq. (90)).

Using the same procedure we obtain expressions for the N ×3 matrices ∂h
∂q

C2
2i

and ∂h
∂q

C3
3i

, which are given

in Eqs. (112) and (113).
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