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Introduction 

 Robot Navigation: Recover the state of a moving robot over time through 
fusion of multiple sensors, including a monocular camera 

Indelman et al., Incremental Light  
Bundle Adjustment for Robot Navigation 

Left image courtesy of Georgia Tech Research Institute 
Right image courtesy of Chris Beall 

Simultaneous Localization and Mapping (SLAM) 
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Vision-Aided Robot Navigation 

 Fusion of monocular image measurements and IMU measurements 
–  Full joint pdf: 

Image from: http://www.tnt.uni-hannover.de/project/motionestimation 
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Vision-Aided Robot Navigation 

 Fusion of monocular image measurements and IMU measurements 
–  Full joint pdf: 

Image from: http://www.tnt.uni-hannover.de/project/motionestimation 

   : number of robot states 
   : set of observed 3D points at state i 
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: Robot state at time i 
 (pose and velocity) 

: j-th 3D point 

: Image observation 
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 Assuming Gaussian distributions: 
–  MAP estimate                     is obtained by bi : IMU Bias at time i 
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Factor Graph Representation
 Factor graph: a graphical representation of the joint pdf factorization  
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 Full SLAM pdf: 
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The naïve IMU factor 
can add a significant number of 

unnecessary variables! 
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Incremental Light Bundle Adjustment (iLBA) for 
Robot Navigation 

 Problems! 
–  3D structure is expensive to compute (and not necessary for navigation):  

•  Algebraically eliminate 3D points using multi-view geometry constraints 

•  Significantly reduce the number of variables for optimization 

•  3D points can always be reconstructed (if required) based on optimized camera poses 

–  High rate sensors introduce large number of variables:  
•  Utilize pre-integration of IMU to reduce the number of variables [Lupton et al., TRO 2012] 

•  Incremental inference requires only partial re-calculation 
–  Update factorization rather than compute from scratch 

Indelman et al., Incremental Light Bundle Adjustment for Robot 
Navigation 
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Three-View Constraints 

  Theorem: Algebraic elimination of a 3D point that is observed by 3 views k,l and 
m leads to: 

Epipolar 
constraints 

Scale 
consistency 

 Necessary and sufficient conditions 

    : translation from view i to view j 

    : rotation from global frame to view i Ri
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  LBA cost function: 
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[Indelman et al., TAES 2012] 

  Third equation – relates between the magnitudes of         and tl!m tk!l

Indelman et al., Incremental Light Bundle Adjustment for Robot 
Navigation 

V. Indelman, P. Gurfil, E. Rivlin, H. Rotstein, “Real-Time Vision-Aided Localization and Navigation Based on Three-View Geometry’’, 
IEEE Transactions on Aerospace and Electronic Systems, 2012 
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Vision Only : Light Bundle Adjustment (LBA) 

 LBA cost function: 

–     : i-th multi-view constraint 
•  Involves several views and the corresponding image observations 

–     : An equivalent covariance 

–     : Jacobian with respect to image observations 

⌃i ⌃i = Ai⌃A
T
i

Ai

hi

Number of optimized variables:  6N + 3M 6N

JLBA (X)
.
=

NhX

i

khi (X,Z)k2⌃i

 Multi-view constraints - Different formulations in literature 
–  Epipolar geometry, trifocal tensors, quadrifocal tensors etc. 

–  Independent relations exist only between up to three cameras [Ma et al., 2004] 

–  Here, three-view constraints formulation is used 
•  Originally developed for navigation aiding [Indelman et al., TAES 2012] 

Indelman et al., Incremental Light Bundle Adjustment for Robot 
Navigation 
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Pre-Integrated IMU Factors 
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f Equiv

Equivalent IMU 
(non-linear) factor 

 Pre-integrate IMU measurements and insert equivalent factors only when 
inserting new LBA factors into the graph 

 Components of            are expressed in body-frame, not navigation frame, 
which allows relinearization of the factor without repeated computation 

 Significantly reduces graph size, and subsequently time for elimination.  
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Todd Lupton and Salah Sukkarieh, “Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without 
Initial Conditions ’’, IEEE Transactions on Robotics, 2012 

[Lupton et al., TRO 2012] 
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Second Component - Incremental Inference 

 Example: 

Factorized Jacobian matrix 

Linearization 

Factorization 
Elimination order 
Linearization and elimination 

 When adding new variables\factors, calculations can be reused 
–  Factorization can be updated (and not re-calculated from scratch) 

[Kaess et al., 2012] 
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Incremental Inference in iLBA (Cont.) 

Linearization 

 Example: New camera and factors are added 

 What should be re-calculated? 

–  Nodes in all paths that lead from the last-eliminated node to nodes involved in new factors 

–  Efficiently calculated using Bayes tree [Kaess et al., 2012] 
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iLBA for Robotics – Monte-Carlo Study 
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 Scenario: 
–  Single camera 

–  IMU 

Estimated trajectory 
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Conclusions 

 Algebraic elimination of 3D points significantly reduces the size of the 
optimization problem and provides speed up to online robot navigation 

 Use of pre-integration methods for high-frequency inertial measurements 
also reduces the size of the problem 

 Accuracy is similar to full SLAM 

 At least 2-3.5x speed up in computation time 

Indelman et al., Incremental Light Bundle Adjustment for Robot 
Navigation 

 Code and datasets are available from the author’s website 
–  http://www.cc.gatech.edu/~vindelma 


