Planning Under Uncertainty in the Continuous Domain: a Generalized Belief Space Approach

Vadim Indelman, Luca Carlone and Frank Dellaert

Institute of Robotics and Intelligent Machines (IRIM)
Georgia Institute of Technology

International Conference on Robotics and Automation (ICRA), June 2014
Introduction

- Key components for autonomous operation include
 - **Perception**: Where am I? What is the surrounding environment?
 - **Planning**: What to do next?

Localization and mapping given robot motion

Planning (e.g. reach a goal)

Coupled problems

Estimation uncertainty and accuracy **varies** for different motion plans
Introduction – Motivating Example

- **Autonomous navigation** to different goals in unknown environment

Not accounting for uncertainty in planning

Accounting for uncertainty in planning
Related Work

- **Existing approaches often**
 - Assume known environment (e.g. map)
 [Prentice and Roy 2009], [Van den Berg et al. 2012], [Hollinger et al. 2013]
 - Discretize state and control space - performance depends on grid resolution
 [Stachniss et al. 2004], [Bryson and Sukkarieh 2008], [Valencia et al. 2012], [Kim and Eustice 2013]
 - Assume maximum likelihood observations
 [Miller et al. 2009], [Platt et al. 2010], [Patil et al. 2014]

- **Planning in the continuous domain - Generalized Belief Space (GBS)**
 - Probabilistic description of the robot and the environment states
 - Direct trajectory optimization approach (provides locally-optimal trajectories)
 - Environment is unknown/uncertain
 - Maximum likelihood observations assumption is avoided
 - Model the probability of acquiring a future observation (extends [Indelman et al. 2013])
Notations and Probabilistic Formulation

- **Joint state vector**
 \[X_k \doteq \{ x_0, \ldots, x_k, L_k \} \]
 - Past & current robot states
 - Mapped environment

- **Joint probability distribution function**
 \[p (X_k | Z_k, U_{k-1}) \]
 \[
p (X_k | Z_k, U_{k-1}) = \text{priors} \cdot \prod_{i=1}^{k} p (x_i | x_{i-1}, u_{i-1}) p (z_i | X_i^o)
 \]
 - General observation model \(X_i^o \subseteq X_i \)

- **Computationally-efficient maximum a posteriori inference** e.g. [Kaess et al. 2012]
 \[p (X_k | Z_k, U_{k-1}) \sim N (X_k^*, \Sigma_k) \]
Planning in the Generalized Belief Space

- Plan (locally) optimal control sequence over L look-ahead steps: $u_{k:k+L-1}^\star$
 - By minimizing an objective function
 - Operating over the **generalized belief**
 - Model predictive control framework

What is the generalized belief?
- Probabilistic description of the **robot** and the **environment** states
- Generalized belief at planning time t_k: $gb(X_k) = p(X_k|Z_k, U_{k-1}) \sim N(X_k^\star, \Sigma_k)$

Known (from perception)
Planning in the Generalized Belief Space

- Generalized belief at the l-th look-ahead step

 - Describes the joint pdf (robot and environment states) at that time

 \[gb(X_{k+l}) = p(X_{k+l}|Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1}) \]

 - Joint state at the l-th look ahead step
 - Past controls & measurements
 - Controls & measurements at the first l look-ahead steps

 Planning time

 l-th look ahead step
Planning in the Generalized Belief Space

- Generalized belief at the l-th look-ahead step
 - Describes the joint pdf (robot and environment states) at that time

 \[
 gb(X_{k+l}) = p(X_{k+l} \mid Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1})
 \]

- Objective function can now involve uncertainty (e.g. covariance) in robot and environment states

 \[
 J_k(u_{k:k+L-1}) = \mathbb{E}_{Z_{k+1:k+L}} \left\{ \sum_{l=0}^{L-1} c_l (gb(X_{k+l}, u_{k+l}) + c_L (gb(X_{k+L})) \right\}
 \]

- For example, plan motion to minimize uncertainty in robot state
Generalized Belief Space (Cont.)

\[gb \left(X_{k+l} \right) = p \left(X_{k+l} \mid Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1} \right) \]

- Modeling future observations \(Z_{k+1:k+l} \):
 - Treated as random variables [Van den Berg et al. 2012]
 - Will a future observation be actually acquired?
 - Model probabilistically acquisition of \(Z_{k+1:k+l} \) by random binary variables \(\Gamma_{k+1:k+l} \)

- Marginalize out \(\Gamma_{k+1:k+l} \) to get \(gb \left(X_{k+l} \right) \)

\[gb \left(X_{k+l} \right) = \sum_{\Gamma_{k+1:k+l}} p \left(X_{k+l}, \Gamma_{k+1:k+l} \mid Z_k, U_0, \ldots, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1} \right) \]

- Expensive! Instead – Expectation Maximization (details soon)
Planning in the Generalized Belief Space

\[J_k (u_{k:k+L-1}) \equiv \mathbb{E}_{Z_{k+1:k+L}} \left\{ \sum_{l=0}^{L-1} c_l (gb (X_{k+l}), u_{k+l}) + c_L (gb (X_{k+L})) \right\} \]

- How to calculate locally-optimal control?

\[u^*_{k:k+L-1} = \arg \min_{u_{k:k+L-1}} J_k (u_{k:k+L-1}) \]

Dual-layer iterative optimization

Outer layer - Inference over \(u_{k:k+L-1} \)

Starting from initial guess \(u_{k:k+L-1}^{(0)} \)

At each iteration:
- Compute \(\Delta u_{k:k+L-1} \)
- Update control

\[u_{k:k+L-1}^{(i+1)} = u_{k:k+L-1}^{(i)} + \Delta u_{k:k+L-1} \]

Inner layer - Inference over the belief

For each look-ahead step, for a given control

\[gb(X_{k+l}) \sim N (X_{k+l}^*, \Sigma_{k+l}) \]

- As a function of random variables \(Z_{k+1:k+l} \)
- EM formulation to avoid marginalizing over the latent variables \(\Gamma_{k+1:k+l} \)
Outer Layer: Inference over the Control

Iterative optimization over the nonlinear objective function $J_k (u_{k:k+L-1})$

\[J_k (u_{k:k+L-1}) = \mathbb{E} \left\{ \sum_{l=0}^{L-1} c_l \left(gb \left(X_{k+l} \right) , u_{k+l} \right) + c_L \left(gb \left(X_{k+L} \right) \right) \right\} \]

- Involves:
 - Calculating gradient ∇J_k
 - Evaluating objective function J_k for different control values

Outer layer - Inference over $u_{k:k+L-1}$

Starting from initial guess $u_{k:k+L-1}^{(0)}$

At each iteration:

- Compute $\Delta u_{k:k+L-1}$
- Update control

\[u_{k:k+L-1}^{(i+1)} = u_{k:k+L-1}^{(i)} + \Delta u_{k:k+L-1} \]

Inner layer - Inference over the belief

For each look-ahead step, for a given control $gb(X_{k+l}) \sim N \left(X_{k+l}^*, \Sigma_{k+l} \right)$

- As a function of random variables $Z_{k+1:k+l}$
- EM formulation to avoid marginalizing over the latent variables $\Gamma_{k+1:k+l}$
Inner Layer: Inference Over the Belief

Given **current** controls $u_{k:k+L-1}$, for each look ahead step l:

- Compute the Gaussian approximation X_{k+l}^*, Σ_{k+l} such that

 $$
 gb(X_{k+l}) \sim N \left(X_{k+l}^*, \Sigma_{k+l} \right)
 $$

- **EM formulation:**

 $$
 X_{k+l}^* = \arg \min_{X_{k+l}} \mathbb{E}_{\Gamma_{k+1:k+l} | X_{k+l}} \left[-\log p \left(X_{k+l}, \Gamma_{k+1:k+l} | Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1} \right) \right]
 $$

- **Gauss Newton method**

Outer layer - Inference over $u_{k:k+L-1}$

Starting from initial guess $u_{k:k+L-1}^{(0)}$

At each iteration:

- Compute $\Delta u_{k:k+L-1}$
- Update control

\[u_{k:k+L-1}^{(i+1)} = u_{k:k+L-1}^{(i)} + \Delta u_{k:k+L-1} \]

Inner layer - Inference over the **belief**

For each look-ahead step, for a **given** control

$$
gb(X_{k+l}) \sim N \left(X_{k+l}^*, \Sigma_{k+l} \right)
$$

- As a function of random variables $Z_{k+1:k+l}$
- EM formulation to avoid marginalizing over the latent variables $\Gamma_{k+1:k+l}$
Inner Layer: Inference Over the Belief

Given current controls $u_{k:k+L-1}$, for each look ahead step l:

- Compute the Gaussian approximation X^*_{k+l}, Σ_{k+l} such that

$$gb(X_{k+l}) \sim N(X^*_{k+l}, \Sigma_{k+l})$$

- EM formulation:

$$X^*_{k+l} = \arg\min_{X_{k+l}} \mathbb{E}_{\Gamma_{k+1:k+l}|\bar{X}_{k+l}} \left[-\log p(X_{k+l}, \Gamma_{k+1:k+l}| Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1})\right]$$

- Gauss Newton method

- Next - we show the above formulation:
 - Guides the robot towards informative distant 3D points (outside sensing range)
 - Loop closures to reduce uncertainty
 - Alternative formulation using signed distance function [Patil et al. 2014]
Limited Sensing Range

- Illustrative (toy) example

- **Without** modeling probability of acquiring future observations:
 - 3D points outside sensing range contribute **zero** gradient to ∇J_k
 - Robot will **not be guided** to re-observe these points (i.e. no loop closures)
Back to Inner Layer

\[X_{k+l}^* = \arg \min_{X_{k+l}} \mathbb{E}_{\Gamma_{k+1:k+l} \mid \bar{X}_{k+l}} \left[-\log p(X_{k+l}, \Gamma_{k+1:k+l} \mid Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1})\right] \]

- Joint pdf:
 \[p(X_k \mid Z_k, U_{k-1}) \prod_{i=1}^l p(x_{k+i} \mid x_{k+i-1}, u_{k+i-1}) p(Z_{k+i}, \Gamma_{k+i} \mid X_{k+i}^o) \]

- Inference over the belief:

\[X_{k+l}^* = \arg \min_{X_{k+l}} \|X_k - X_k^*\|_I_k^2 + \sum_{i=1}^l \|x_{k+i} - f(x_{k+i-1}, u_{k+i-1})\|_{\Omega_w}^2 \]

\[+ \sum_{i=1}^l \sum_{j=1}^{n_i} p(\gamma_{k+i,j} = 1 \mid \bar{X}_{k+l}) \|z_{k+i,j} - h(X_{k+i,j}^o)\|_{\Omega_{w,j}}^2 \]

Probability of observing the j-th 3D point
\[X_{k+l}^* = \arg \min_{X_{k+l}} \mathbb{E}_{\Gamma_{k+1:k+l} | \bar{X}_{k+l}} \left[-\log p (X_{k+l}, \Gamma_{k+1:k+l} | Z_k, U_{k-1}, Z_{k+1:k+l}, u_{k:k+l-1}) \right] \]

- Joint pdf:
\[
p(X_k | Z_k, U_{k-1}) \prod_{i=1}^{l} p(x_{k+i} | x_{k+i-1}, u_{k+i-1}) p (Z_{k+i}, \Gamma_{k+i} | X_{k+i}^o)\]

- Inference over the belief:
\[
X_{k+l}^* = \arg \min_{X_{k+l}} \| X_k - X_k^* \|^2_k + \sum_{i=1}^{l} \| x_{k+i} - f (x_{k+i-1}, u_{k+i-1}) \|^2_{\Omega_w} \\
+ \sum_{i=1}^{l} \sum_{j=1}^{n_i} p (\gamma_{k+i,j} = 1 | \bar{X}_{k+l}) \| z_{k+i,j} - h (X_{k+i,j}^o) \|^2_{\Omega^i,j_v}
\]
- Equivalent to weighting the measurement covariance matrix
\[
\tilde{\Omega}^i,j_v = p (\gamma_{k+i,j} = 1 | \bar{X}_{k+l}) \Omega^i,j_v \\
\| z_{k+i,j} - h (X_{k+i,j}^o) \|^2_{\Omega^i,j_v}
\]

- E.g., probability to observe 3D points decreases with distance
- Contributes to \(\nabla J_k\), becomes dominant if information gain is substantial
Results

- **Autonomous navigation** to different goals in an unknown environment
 - **Objective function**: penalize control usage, uncertainty and distance to goal
 - No absolute information
 - Onboard sensors: camera and range sensor
 - Control: heading angle
Results

- **Autonomous navigation** to different goals in an unknown environment
 - **Objective function**: penalize control usage, uncertainty and distance to goal
 - Compared methods:
 - Planning in GBS
 - Planning in GBS, no uncertainty
 - Discrete planning - A*, adaptation of [Kim and Eustice 2013]

[Kim and Eustice 2013]

Discrete Planning (adaptation of [Kim and Eustice 2013])
Results

- **Autonomous navigation** to different goals in an unknown environment
 - **Objective function**: penalize control usage, uncertainty and distance to goal
 - Compared methods:
 - Planning in GBS
 - Planning in GBS, no uncertainty
 - Discrete planning - A*, adaptation of [Kim and Eustice 2013]
Results

- **Autonomous navigation** to different goals in an unknown environment
 - **Objective function**: penalize control usage, uncertainty and distance to goal
 - Compared methods:
 - Planning in GBS
 - Planning in GBS, no uncertainty
 - Discrete planning - A^*, adaptation of [Kim and Eustice 2013]
Conclusions

- **Planning in the continuous domain - Generalized Belief Space**
 - General framework for planning under uncertainty (incl. uncertainty in environment)
 - Addresses 3 limitations of state of the art:

 | Discretization of state or control space | ✓ |
 | Maximum likelihood observations assumption | ✓ |
 | Exact prior knowledge regarding environment | ✓ |

- Limited sensing range
 - Latent variables to model acquisition probability of future observations
 - Allow planning loop closures outside sensing range
- Produces smooth trajectories with reduced control effort
Extras
Discrete Planning
Comparison Between Different Methods

![Graphs showing comparison between different methods.]