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Introduction 

§ Key components for autonomous operation include 
–  Perception: Where am I? What is the surrounding environment? 

–  Planning: What to do next? 

Indelman et al., Planning in Generalized Belief Space 

Localization and mapping given robot motion Planning (e.g. reach a goal) 

? 

Coupled problems 

Estimation uncertainty and accuracy varies 
for different motion plans 
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Accounting for uncertainty in planning 

Not accounting for uncertainty in planning 

§ Autonomous navigation to different goals in unknown environment 

Introduction – Motivating Example 
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Related Work 

§ Planning in the continuous domain - Generalized Belief Space (GBS) 
–  Probabilistic description of the robot and the environment states 

–  Direct trajectory optimization approach (provides locally-optimal trajectories)  

Indelman et al., Planning in Generalized Belief Space 

§ Existing approaches often 
–  Assume known environment (e.g. map)  

[Prentice and Roy 2009], [Van den Berg et al. 2012], [Hollinger et al. 2013] 

–  Discretize state and control space - performance depends on grid resolution  
[Stachniss et al. 2004], [Bryson and Sukkarieh 2008], [Valencia et al. 2012], [Kim and Eustice 2013] 

–  Assume maximum likelihood observations  
[Miller et al. 2009], [Platt et al. 2010], [Patil et al. 2014] 

 - Environment is unknown/uncertain 

 - Maximum likelihood observations assumption is avoided 

 - Model the probability of acquiring a future observation 
(extends [Indelman et al. 2013]) 
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Notations and Probabilistic Formulation 

§ Joint state vector Xk
.

= {x0, . . . , xk, Lk}

p (Xk|Zk,Uk�1)

§ Computationally-efficient maximum a posteriori inference e.g. [Kaess et al. 2012] 

p (Xk|Zk,Uk�1) ⇠ N (X⇤
k ,⌃k)

x1 x2 x3 x4Poses:

3D points: l1 l2

§ Joint probability distribution function  

Past & current 
robot states 

Mapped 
environment 

p (X
k

|Z
k

,U
k�1) = priors ·

kY

i=1

p (x
i

|x
i�1, ui�1) p (zi|Xo

i

)
General observation 
model Xo

i

✓ X
i
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Planning in the Generalized Belief Space 

Indelman et al., Planning in Generalized Belief Space 

§ Plan (locally) optimal control sequence over L look-ahead steps:  

–  By minimizing an objective function 

–  Operating over the generalized belief  
–  Model predictive control framework 

u⇤
k:k+L�1

§ What is the generalized belief? 

–  Probabilistic description of the robot and the environment states 

–  Generalized belief at planning time    :  tk
Known  

(from perception) 

gb(Xk)
.
= p (Xk|Zk,Uk�1) ⇠ N (X⇤

k ,⌃k)

   : Joint state at time 
   : All past controls 

tkXk

Uk�1

Generalized belief at planning time = joint pdf 

x1 x2 x3 x4Poses:

3D points: l1 l2
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Planning in the Generalized Belief Space 

Indelman et al., Planning in Generalized Belief Space 

gb (Xk+l)
.
= p (Xk+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)

l§ Generalized belief at the  -th look-ahead step 

–  Describes the joint pdf (robot and environment states) at that time 

Past controls & 
measurements 

Controls & measurements at 
the first l look-ahead steps 

Joint state at the     
l-th look ahead step 

k + 1k k + l. . .

Planning 
time 

l-th look 
ahead step 

. . . k + L
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Planning in the Generalized Belief Space 

Indelman et al., Planning in Generalized Belief Space 

Past controls & 
measurements 

Controls & measurements at 
the first l look-ahead steps 

Joint state at the     
l-th look ahead step 

gb (Xk+l)
.
= p (Xk+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)

§ Objective function can now involve uncertainty (e.g. covariance) in robot and 
environment states 

§ For example, plan motion to minimize uncertainty in robot state 

l§ Generalized belief at the  -th look-ahead step 

–  Describes the joint pdf (robot and environment states) at that time 

Jk (uk:k+L�1)
.
= E

Zk+1:k+L

(
L�1X

l=0

cl (gb (Xk+l) , uk+l) + cL (gb (Xk+L))

)
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Generalized Belief Space (Cont.) 

Indelman et al., Planning in Generalized Belief Space 

Past Future 

gb (Xk+l)
.
= p (Xk+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)

§ Modeling future observations               : 

–  Treated as random variables [Van den Berg et al. 2012] 

Zk+1:k+l

–  Model probabilistically acquisition of               by random binary variables   �k+1:k+lZk+1:k+l

§ Marginalize out               to get  �k+1:k+l gb (Xk+l)

gb (Xk+l) =
X

�k+1:k+l

p (Xk+l,�k+1:k+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)

–  Will a future observation be actually acquired? 

§ Expensive! Instead – Expectation Maximization (details soon)   

- Depends on the true state at future time 
- e.g. is a 3D point within sensing range 

p (Xk+l,�k+1:k+l, Zk+1:k+l|Zk,Uk�1, uk:k+l�1)
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Planning in the Generalized Belief Space 

§ How to calculate locally-optimal control? 

Dual-layer iterative optimization 

Jk (uk:k+L�1)
.
= E

Zk+1:k+L

(
L�1X

l=0

cl (gb (Xk+l) , uk+l) + cL (gb (Xk+L))

)

u?
k:k+L�1 = argmin

uk:k+L�1

Jk (uk:k+L�1)

Outer layer - Inference over 

Starting from initial guess 

At each iteration: 
–  Compute 

–  Update control 

 

uk:k+L�1

u(i+1)
k:k+L�1 = u(i)

k:k+L�1 +�uk:k+L�1

u(0)
k:k+L�1

�uk:k+L�1

Inner layer - Inference over the belief  

For each look-ahead step, for a given control 

–  As a function of random variables   

–  EM formulation to avoid marginalizing over 
the latent variables   

⇠ N
�
X⇤

k+l,⌃k+l

�
gb(Xk+l)

Zk+1:k+l

�k+1:k+l
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§  Involves: 

–  Calculating gradient 

–  Evaluating objective function     for different control values  

Outer Layer: Inference over the Control 
Iterative optimization over the nonlinear objective function  

Jk (uk:k+L�1)
.
= E

Zk+1:k+L

(
L�1X

l=0

cl (gb (Xk+l) , uk+l) + cL (gb (Xk+L))

)

Outer layer - Inference over 

Starting from initial guess 

At each iteration: 
–  Compute 

–  Update control 

 

uk:k+L�1

u(i+1)
k:k+L�1 = u(i)

k:k+L�1 +�uk:k+L�1

u(0)
k:k+L�1

�uk:k+L�1

Inner layer - Inference over the belief  

For each look-ahead step, for a given control 

–  As a function of random variables   

–  EM formulation to avoid marginalizing over 
the latent variables   

⇠ N
�
X⇤

k+l,⌃k+l

�
gb(Xk+l)

Zk+1:k+l

�k+1:k+l

rJk

Jk

Jk (uk:k+L�1)
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Inner Layer: Inference Over the Belief 
 
Given current controls           , for each look ahead step   : 
§ Compute the Gaussian approximation               such that 

Outer layer - Inference over 

Starting from initial guess 

At each iteration: 
–  Compute 

–  Update control 

 

uk:k+L�1

u(i+1)
k:k+L�1 = u(i)

k:k+L�1 +�uk:k+L�1

u(0)
k:k+L�1

�uk:k+L�1

Inner layer - Inference over the belief  

For each look-ahead step, for a given control 

–  As a function of random variables   

–  EM formulation to avoid marginalizing over 
the latent variables   

⇠ N
�
X⇤

k+l,⌃k+l

�
gb(Xk+l)

Zk+1:k+l

�k+1:k+l

uk:k+L�1 l

X⇤
k+l,⌃k+l

X?
k+l = argmin

Xk+l

E
�k+1:k+l|X̄k+l

[�log p (Xk+l,�k+1:k+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)]

⇠ N
�
X⇤

k+l,⌃k+l

�
gb(Xk+l)

§ EM formulation: 

§ Gauss Newton method 
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Inner Layer: Inference Over the Belief 
 
Given current controls           , for each look ahead step   : 
§ Compute the Gaussian approximation               such that 

uk:k+L�1 l

X⇤
k+l,⌃k+l

X?
k+l = argmin

Xk+l

E
�k+1:k+l|X̄k+l

[�log p (Xk+l,�k+1:k+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)]

⇠ N
�
X⇤

k+l,⌃k+l

�
gb(Xk+l)

§ EM formulation: 

§ Gauss Newton method 

§ Next - we show the above formulation: 

–  Guides the robot towards informative distant 3D points (outside sensing range) 

•  Loop closures to reduce uncertainty 

–  Alternative formulation using signed distance function [Patil et al. 2014] 

Indelman et al., Planning in Generalized Belief Space 
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Limited Sensing Range 

§  Illustrative (toy) example 

Indelman et al., Planning in Generalized Belief Space 

Sensing radius 

Possible 
control 

§ Without modeling probability of acquiring future observations: 
–  3D points outside sensing range contribute zero gradient to 

–  Robot will not be guided to re-observe these points (i.e. no loop closures) 
rJk

Propagated 
uncertainty 
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… Back to Inner Layer 

§ Joint pdf: 

Indelman et al., Planning in Generalized Belief Space 

X?
k+l = argmin

Xk+l

E
�k+1:k+l|X̄k+l

[�log p (Xk+l,�k+1:k+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)]

p(X
k

|Z
k

,U
k�1)

lY

i=1

p (x
k+i

|x
k+i�1, uk+i�1) p

�
Z

k+i

,�
k+i

|Xo

k+i

�

§  Inference over the belief: 

+
lX

i=1

niX

j=1

p
�
�
k+i,j

= 1|X̄
k+l

� ��z
k+i,j

� h
�
Xo

k+i,j

���2
⌦ij

v

X?
k+l = argmin

Xk+l

kXk �X

?
kk

2
Ik

+
lX

i=1

kxk+i � f (xk+i�1, uk+i�1)k2⌦w

Probability of observing 
the j-th 3D point 
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… Back to Inner Layer 

§ Joint pdf: 

Indelman et al., Planning in Generalized Belief Space 

X?
k+l = argmin

Xk+l

E
�k+1:k+l|X̄k+l

[�log p (Xk+l,�k+1:k+l|Zk,Uk�1, Zk+1:k+l, uk:k+l�1)]

p(X
k

|Z
k

,U
k�1)

lY

i=1

p (x
k+i

|x
k+i�1, uk+i�1) p

�
Z

k+i

,�
k+i

|Xo

k+i

�

§  Inference over the belief: 

X?
k+l = argmin

Xk+l

kXk �X

?
kk

2
Ik

+
lX

i=1

kxk+i � f (xk+i�1, uk+i�1)k2⌦w

+
lX

i=1

niX

j=1

p
�
�
k+i,j

= 1|X̄
k+l

� ��z
k+i,j

� h
�
Xo

k+i,j

���2
⌦ij

v

–  E.g., probability to observe 3D points decreases with distance 

–  Contributes to       , becomes dominant if information gain is substantial 

§ Equivalent to weighting the measurement covariance matrix 

⌦̄ij
v = p

�
�k+i,j = 1|X̄k+l

�
⌦ij

v

��z
k+i,j

� h
�
Xo

k+i,j

���2
⌦̄ij

v

rJk
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Results 
§ Autonomous navigation to different goals in an unknown environment 

–  Objective function: penalize control usage, uncertainty and distance to goal  
–  No absolute information 

–  Onboard sensors: camera and range sensor  

–  Control: heading angle 
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Results 
§ Autonomous navigation to different goals in an unknown environment 

–  Objective function: penalize control usage, uncertainty and distance to goal  
–  Compared methods: 

•  Planning in GBS 

•  Planning in GBS, no uncertainty 

•  Discrete planning - A*, adaptation of [Kim and Eustice 2013] 
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[Kim and Eustice 2013] 

Discrete Planning (adaptation of [Kim and Eustice 2013]) 
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Results 
§ Autonomous navigation to different goals in an unknown environment 

–  Objective function: penalize control usage, uncertainty and distance to goal  
–  Compared methods: 

•  Planning in GBS 

•  Planning in GBS, no uncertainty 

•  Discrete planning - A*, adaptation of [Kim and Eustice 2013] 
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Results 
§ Autonomous navigation to different goals in an unknown environment 

–  Objective function: penalize control usage, uncertainty and distance to goal  
–  Compared methods: 

•  Planning in GBS 

•  Planning in GBS, no uncertainty 

•  Discrete planning - A*, adaptation of [Kim and Eustice 2013] 
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Conclusions 

§ Planning in the continuous domain - Generalized Belief Space 
–  General framework for planning under uncertainty (incl. uncertainty in environment) 

–  Addresses 3 limitations of state of the art: 

Indelman et al., Planning in Generalized Belief Space 

Discretization of state or control space ✓ 
Maximum likelihood observations assumption ✓ 
Exact prior knowledge regarding environment ✓ 

–  Limited sensing range 

•  Latent variables to model acquisition probability of future observations 

•  Allow planning loop closures outside sensing range 

–  Produces smooth trajectories with reduced control effort 
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Extras 
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Discrete Planning 
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Comparison Between Different Methods 
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