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Abstract— This paper presents a novel approach for multi-
robot pose graph localization and data association without
requiring prior knowledge about the initial relative poses of
the robots. Without a common reference frame, the robots can
only share observations of interesting parts of the environment,
and trying to match between observations from different robots
will result in many outlier correspondences. Our approach is
based on the following key observation: while each multi-robot
correspondence can be used in conjunction with the local robot
estimated trajectories, to calculate the transformation between
the robot reference frames, only the inlier correspondences
will be similar to each other. Using this concept, we develop
an expectation-maximization (EM) approach to efficiently infer
the robot initial relative poses and solve the multi-robot data
association problem. Once this transformation between the
robot reference frames is estimated with sufficient measure of
confidence, we show that a similar EM formulation can be
used to solve also the full multi-robot pose graph problem
with unknown multi-robot data association. We evaluate the
performance of the developed approach both in a statistical
synthetic-environment study and in a real-data experiment,
demonstrating its robustness to high percentage of outliers.

I. INTRODUCTION

A key capability in multi-robot autonomous systems is col-
laborative localization and mapping in challenging, partially
unknown environments. By sharing information between
the robots, the performance of individuals in the group
can be significantly improved, allowing for cooperatively
performing complicated tasks in different domains including
surveillance, search and rescue, and object manipulation. The
robotics community has been addressing this important line
of research over the past decade, in an effort to extend
simultaneous localization and mapping (SLAM) approaches
from single robot scenarios to multi-robot scenarios.

Multi-robot autonomy introduces a number of significant
challenges over those found in the single robot case. In this
paper we address two of these challenges: determining the
robots initial relative poses and reliably establishing multi-
robot data association. These issues are coupled: multi-robot
data association is essential to establish constraints between
poses of different robot or between mutually observed 3D
points. These constraints, together with efficient optimization
techniques, are essential in enabling reliable robot team
performance. A reliable data association between the robots
is therefore critical, as introducing false constraints, i.e.
outliers, may lead to a dramatic degradation in performance.

As in the single-robot case, multi-robot approaches can
be roughly divided into two main categories: Full SLAM
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and PoseSLAM. In the former case, the robots explicitly
estimate and share 3D points between themselves, or any
other parametrization of the observed environment. Multi-
robot SLAM attracted an extensive amount of research,
including [9], [25], [13], [14], [1], [22], [5]. Research
addressing multi-robot data association without assuming
known initial relative poses between the robots include [5],
[22] that perform robust data association using variations of
the RANSAC algorithm [10], with an emphasis on distributed
performance, and [2] where inconsistent data association is
identified and removed in a decentralized framework.

In this paper we focus on the second category in multi-
robot localization and mapping, multi-robot PoseSLAM,
which has attracted only limited attention from the research
community. The PoseSLAM framework avoids explicit es-
timation of landmarks, removing the necessity for finding a
good initialization for these variables while being computa-
tionally efficient and robust [12], [20], [8], [18]. Different
from Full SLAM approaches, robot state estimation is per-
formed based on relative pose constraints that relate between
different robot poses. Multi-robot PoseSLAM approaches
differ in the way these relative pose constraints are generated.

Many methods assume the robots are capable of making
direct observations of each other’s pose, as well as iden-
tifying the robot the relative pose measurement refers to.
The latter trivializes multi-robot data association, however
requires sophisticated classification algorithms or tagging
each robot with a unique mark, with drawbacks for each
alternative. Methods in this category focus on inferring
the robots poses without assuming prior knowledge on the
initial relative pose between the robots [14], [25], [1], [3].
Recent work [11] relaxes the aforementioned assumption and
considers direct relative pose observations that do not include
the identity of the measured robots.

Another approach in multi-robot PoseSLAM relies on
indirect relative pose constraints between the robots, that
can be established whenever the same scene is observed by
several robots. Different from direct relative pose constraints,
indirect constraints do not require rendezvous or direct line
of sight between the robots. Furthermore, these constraints
can be established between poses of different robots from
different time instances. Existing work typically assumes
the relative poses of the robots are either known [9] or
can be accurately inferred [13]. The use of multiple view
geometry for multi-robot localization, tightly connected with
PoseSLAM, was proposed in [16], [15]. Distributed multi-
robot PoseSLAM was considered in [19], [17], [24]. In
[19] the multi-robot PoseSLAM problem was formulated
within a single centralized optimization framework where the
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Fig. 1: Distribution of the transformation T r1
r2 for all multi-

robot candidate correspondences. Only inlier correspon-
dences result in similar transformations.

unknown initial relative poses between the robots are treated
as variables and inferred in conjunction with the robot poses.
The common aspect in all these approach is the assumption
of known multi-robot data association.

In this work we relax this restricting assumption and
develop an approach for multi-robot PoseSLAM localization
and data association from unknown initial robot relative
poses. Our approach is based on the observation that by
analyzing the distribution of multi-robot relative pose con-
straints (illustrated in Figure 1) it is possible to estimate the
transformation between the robot reference frames and reject
the outliers. Based on this insight we develop an expectation-
maximization (EM) approach to efficiently perform this
inference and show that once this transformation has been
estimated with sufficient measure of confidence, it is possible
to solve the multi-robot PoseSLAM problem with unknown
multi-robot data association.

II. PROBLEM FORMULATION

We consider a group of R robots deployed to collabo-
ratively operate in some unknown environment and assume
the robots start operating from different locations, initially
unaware of each other. Each robot r is assumed to be
capable of estimating its trajectory Xr based on observations
Zr from its onboard sensors. We represent this estimation
problem in a pose graph probabilistic formulation

p (Xr|Zr) ∝ p (xr0)
∏
i

p
(
uri−1,i|xri−1, x

r
i

)
, (1)

where xri ∈ Xr is the robot’s pose at time ti, expressed
relative to some reference frame, and p (xr0) is a prior. Since
we assume no a priori knowledge about the environment and
the initial pose of the robots, the reference frame of each
robot is arbitrarily set to coincide with the initial pose.

The measurement likelihood term p
(
uri−1,i|xri−1, x

r
i

)
in

Eq. (1) involves the relative pose measurement uri−1,i that
can be either directly obtained from odometry measurements
or calculated from vision or laser sensor observations at the

two time instances ti−1 and ti. We follow the standard as-
sumption in SLAM community and model the measurement
likelihood as a Gaussian:

p
(
uri−1,i|xri−1, x

r
i

)
∝exp

(
−1

2

∥∥uri−1,i 	 h
(
xri−1, x

r
i

)∥∥2

Σ

)
,

(2)
with Σ being the measurement noise covariance and h
the measurement model that, in the case of relative pose
observations and robot poses expressed in the same reference
frame, is h

(
xri−1, x

r
i

) .
= xri−1	xri . We follow Lu and Milios

[21] and use the notation 	 in a	 b to express b locally in
the frame of a for any two poses a, b.

The maximum a posteriori (MAP) estimate of the rth robot
poses Xr using only local information is then given by

X̂r = arg max
Xr

p (Xr|Zr) . (3)

In the multi-robot case, relative pose constraints between
different robots can be established to substantially improve
the estimate of each individual trajectory and allow for
coordination between the robots.

We denote by F the set of multi-robot data association,
with each individual data association (r1, r2, k, l) ∈ F
representing a relative pose constraint ur1,r2k,l relating between
the pose of robot r1 at time tk and the pose of robot r2 at
time tl. This constraint can represent both direct observation
of one robot pose relative to another robot, and also the
estimated relative pose based on observation of a common
scene by two robots. In the latter case, it is computed
from the measurements of the two robots zr1k ∈ Zr1 and
zr2l ∈ Zr2 , that can represent, for example, laser scans or
image observations.

Assuming multi-robot data association F has been estab-
lished and appropriate constraints ur1,r2k,l have been calcu-
lated, we can write a probabilistic formulation for the multi-
robot joint pdf for all the robots as follows:

p (X|Z) ∝
∏
r

p (Xr|Zr)
∏

(r1,r2,k,l)∈F

p
(
ur1,r2k,l |x

r1
k , x

r2
l

)
,

(4)
where X and Z represent, respectively, the trajectories and
the measurements of all the robots in the group.

As the robots express their local trajectories with respect
to different reference systems, the measurement likelihood
term in Eq. (4) is

p
(
ur1,r2k,l |x

r1
k , x

r2
l

)
∝exp

(
−1

2

∥∥∥err (ur1,r2k,l , xr1k , x
r2
l

)∥∥∥2

Σ

)
,

(5)
with

err
(
ur1,r2k,l , xr1k , x

r2
l

)
.
= ur1,r2k,l 	 h (xr1k , x

r2
l ) , (6)

and
h (xr1k , x

r2
l )

.
= xr1k 	

(
T r1
r2 ⊕ x

r2
l

)
. (7)

The notation ⊕ represents the compose operator [21], and
T r1
r2 is a transformation between the reference frames of

robots r1 and r2. Since the robots start operating from



different unknown locations, this transformation is initially
unknown.

While the formulation (4) assumes multi-robot data asso-
ciation F is given, in practice it is unknown ahead of time
and should therefore be established. In this paper our goal
is to reliably infer the multi-robot data association F in a
multi-robot PoseSLAM framework, without assuming prior
knowledge on initial relative poses between the robots, i.e.,
unknown T r1

r2 for all pairs r1, r2 ∈ [1, . . . , R].

III. APPROACH

We assume each robot r shares carefully chosen Nr high-
quality measurements {zri }

Nr

i=1 with other robots. For any two
robots r1 and r2, the data association problem can then be
formulated as identifying the inliers among the constraints
ur1,r2k,l that are calculated for each zr1k ∈ {zr1i }

Nr1
i=1 and

zr2l ∈ {zr2i }
Nr2
i=1 . Instead of assuming data association to

be given, we introduce a latent binary variable jr1,r2k,l for
each possible multi-robot data association (r1, r2, k, l) ∈ F ,
and use the intuitive convention that the data association is
an inlier if jr1,r2k,l = inlier and accordingly outlier when
jr1,r2k,l = outlier. We collect all such latent variables into
the set J that becomes part of the inference.

The probabilistic formulation (4) then turns into

p (X,J |Z) ∝
∏
r

p (Xr|Zr)∏
(r1,r2,k,l)∈F

p
(
jr1,r2k,l

)
p
(
ur1,r2k,l |x

r1
k , x

r2
l , j

r1,r2
k,l

)
. (8)

Since the robots are unaware of each other’s locations,
only a small fraction of the multi-robot data associations
in F will be inliers. One may argue that outliers can be
directly identified and rejected by matching algorithms, such
as RANSAC-based fundamental matrix estimation in the case
of image observations or ICP matching in the case of laser
measurements. However, this argument is only partially true:
while these algorithms are capable of accurate relative pose
estimation given observations of a common scene, identifying
the fact that two given observations were acquired from
different parts of the environment is a much more challenging
task. For example, ICP will often produce some relative pose
(with a reasonable uncertainty covariance and number of
matched points between the two scans) when fed with two
laser scans from different yet similar in appearance parts of
the environment (e.g. corridor, hallway). It is for this reason
that the outliers ratio in the set J may be quite high.

What complicates this problem is the fact that the trans-
formation T r1

r2 , for a given pair of robots r1, r2 ∈ [1, . . . , R],
is unknown. Assuming some arbitrary value T r1

r2 , each
candidate multi-robot data association (r1, r2, k, l) with a
corresponding constraint ur1,r2k,l will typically result in high
discrepancy between ur1,r2k,l and the prediction h (xr1k , x

r2
l )

from Eq. (7). These high errors (6) will be obtained both for
inlier and outlier correspondences.

We illustrate this fact in a simple synthetic planar scenario
of 3 robots shown in Figure 2. The ground truth robot
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Fig. 2: (a) Ground truth synthetic scenario; (b) Arbitrary
robot initial relative poses and all candidate correspondences
between the red and blue robots; (c)-(d) Constraints errors
(6) evaluated using arbitrary and estimated initial robot poses.
Also shown is 1σ uncertainty ellipse corresponding to Σ.

trajectories are shown in Figure 2a, while Figure 2b shows
the estimated robot trajectories, using odometry and loop
closures, where the initial pose of each robot was set to
some arbitrary value. Additionally, the figure illustrates the
candidate multi-robot relative pose constraints (the set F)
between the red and the blue robot, 85% of which are
outliers. The errors (6) for all these constraints, evaluated
using arbitrary initial pose values and the correctly-estimated
values are shown respectively in Figures 2c and 2d, along
with the 1σ ellipse representing the measurement noise
covariance Σ. One can observe that in the former case, the
majority of the errors are high and no inliers can be found
in the vicinity of the 1σ ellipse.

Therefore, attempting to directly identify inlier corre-
spondences in the full problem (8), for example by using
robust estimation techniques (e.g. [23]), will typically fail
as further discussed in Section V. On the other hand, if
the transformation T r1

r2 was known, the distribution of the
errors would be different, with all the inliers located in
the vicinity of the 1σ ellipse, as illustrated in Figure 2d,
making it feasible to correctly identify the corresponding data
associations as inliers and rejecting the outliers.

Consequently, we propose first to infer the reference frame
transformations T r1

r2 and only when these transformations
are known with significant levels of confidence we approach
the full problem (8), then much easier. Therefore, in our
approach the robots first establish a mutual reference frame
and only then proceed to multi-robot information fusion.



IV. INFERENCE OVER ROBOTS REFERENCE FRAMES
TRANSFORMATION

Our approach for inferring T r1
r2 for any two robots r1 and

r2 is based on the following key observation: each candidate
multi-robot correspondence (r1, r2, k, l), regardless if it is
inlier or outlier, suggests a solution for the transformation
T r1
r2 . However, only the inlier correspondences will produce

similar transformations, while those calculated from outlier
correspondences will typically disagree amongst each other.

This concept is illustrated in Figure 1 for the synthetic
scenario from Figure 2. The distribution of the calculated
transformation T r1

r2 , between the green and blue robots, for
each candidate multi-robot correspondence is shown (pose
is represented by x-y coordinates and an angle). One can
observe the cluster representing the correct transformation
T r1
r2 , while the rest of the data points are scattered.
How to automatically estimate the transformation T r1

r2
while being robust to high percentage of outliers? One
alternative is to apply clustering over the distribution of the
transformations. As the number of clusters is unknown ahead
of time, a good candidate is the meanshift algorithm that
infers the number of clusters instead of pre-determining it.
Following this approach, one can identify dominant clusters
and then determine the transformation from correspondences
that belong to the most dominant cluster. The advantage is
that a global search is performed, treating each data point, in
our case the transformations for each correspondence, as a
potential different cluster. A downside is the computational
complexity which, for the basic version of mean shift, is
O
(
τn2

)
with τ number of iterations and n being the number

of data points, i.e. the number of candidate multi-robot
correspondences.

A. Expectation-Maximization Formulation

Instead, we develop an alternative approach that is based
on the expectation-maximization (EM) algorithm [7]. We
assume the trajectories Xr estimated by each robot based
on local observations according to Eq. (3) are of reasonable
accuracy and denote all these trajectories by

X̂SR .
=
{
X̂r
}R

r=1
,

where the superscript “SR” stands for “single robot”. Con-
sidering these trajectories as given the MAP estimate of the
transformation T r1

r2 can be written as

T̂ r1
r2 = arg max

T
r1
r2

p
(
T r1
r2 |X̂

SR, Z
)

=

arg max
T

r1
r2

∑
J
p
(
T r1
r2 ,J |X̂

SR, Z
)
, (9)

where the summation refers to all the possible values for
each of the latent binary variables jr1,r2k,l in J .

Following the EM approach, we re-write the above as

T̂ r1
r2 = arg max

T
r1
r2

p
(
J |T̂ r1

r2 , X̂
SR, Z

)
log p

(
T r1
r2 ,J |X̂

SR, Z
)
,

(10)

alternating between the E step, that infers the data association
given current estimate T̂ r1

r2 (and also given X̂SR, Z that
remain fixed), and the M steps where the transformation T r1

r2
is re-estimated using updated multi-robot data association.
Eq. (10) represents a single EM iteration (iteration number
is not shown explicitly).

Recalling Eq. (8) and applying Bayes rule we can write:

log p
(
T r1
r2 ,J |X̂

SR, Z
)

= log p
(
T r1
r2 |X̂

SR
)

+∑
(r1,r2,k,l)

log p
(
jr1,r2k,l

)
p
(
ur1,r2k,l |x̂

r1
k , x̂

r2
l , j

r1,r2
k,l , T r1

r2

)
.

Since p
(
J |T̂ r1

r2 , X̂
SR, Z

)
p
(
ur1,r2k,l , jr1,r2k,l |X̂SR

)
≡

p
(
jr1,r2k,l |T̂ r1

r2 , X̂
SR, Z

)
p
(
ur1,r2k,l , jr1,r2k,l |X̂SR

)
, and

assuming an uninformative prior p
(
T r1
r2 |X̂

SR
)

, we
can re-write Equation (10) as

T̂ r1
r2 = arg max

T
r1
r2

∑
(r1,r2,k,l)

p
(
jr1,r2k,l |T̂

r1
r2 , X̂

SR, Z
)

log p
(
jr1,r2k,l

)
p
(
ur1,r2k,l |x̂

r1
k , x̂

r2
l , j

r1,r2
k,l , T r1

r2

)
.

Further, as the latent variable jr1,r2k,l is binary, there are only
two cases to consider (inlier or outlier). Defining the set M
of these possible cases as M .

= {inlier, outlier} we get:

T̂ r1
r2 =arg max

T
r1
r2

∑
(r1,r2,k,l)

∑
m∈M

p
(
jr1,r2k,l =m|T̂ r1

r2 , X̂
SR, Z

)
log p

(
jr1,r2k,l =m

)
p
(
ur1,r2k,l |x̂

r1
k , x̂

r2
l , j

r1,r2
k,l = m,T r1

r2

)
.

(11)

Calculation of the weight p
(
jr1,r2k,l = m|T̂ r1

r2 , X̂
SR, Z

)
pro-

ceeds by applying the Bayes rule, followed by normalization
of the weights for the latent variable jr1,r2k,l to sum to 1.

Starting from an initial value for the transformation T r1
r2 ,

the nonlinear optimization (11) is guaranteed to converge
to a local maximum of (9). However, choosing an initial
guess far away from the true solution will lead to a local
minimum, especially in the presence of many outliers. In the
next section we discuss a simple method for addressing this
problem, and suggest a measure to quantify the confidence
in the estimated transformation T r1

r2 . The latter can be used
to decide whether to accept the estimate T̂ r1

r2 and proceed to
full multi-robot localization we discuss in Section V.

B. Initial Guess and Measure of Confidence

We propose a simple approach for identifying several
promising candidates for good initial guesses of the transfor-
mation T r1

r2 . Recalling the key observation from Section IV,
we look at the distribution of the transformations, calculated
for each candidate multi-robot data association (r1, r2, k, l),
and identify dominant values for each element in T r1

r2 sepa-
rately (i.e., x axis, y-axis etc.).

This basic clustering results in a small set of initial values
for the transformation T r1

r2 . We then perform the optimization



(11) for each such initial guess of T r1
r2 , typically leading to

different estimations of T r1
r2 , one for each initial guess. We

merge nearby initial guesses, therefore guaranteeing all initial
guesses substantially differ from each other.

Now the question is - which estimate of T r1
r2 to choose?

Selecting the solution that minimizes the cost in Eq. (11)
is not a good approach as the cost is expected to be
lower for solutions with only a few (or none at all) iden-
tified inliers. Instead, we examine for each solution, how
many inliers were identified, i.e. how many multi-robot
correspondences (r1, r2, k, l) are with high inlier probability
p
(
jr1,r2k,l = inlier

)
, and choose the solution with the largest

number of identified inliers. The latter can be used as mea-
sure of confidence, considering the transformation between
the robots as established once the number of identified inliers
is above a threshold.

C. Scalability to More than Two Robots

The proposed approach can be trivially generalized to any
number of robots. To this end, the robot poses are expressed
in an arbitrary common reference frame. The objective then
becomes inferring the transformations between the local
frame of each robot r and that reference frame.

Without loss of generality, if we set the reference frame
to the origin of (some) robot r0, then the transformations to
be estimated

{
T r0
ri

} .
=
{
T r0
r2 , . . . , T

r0
rR

}
are given by a slight

modification of the EM formulation (11):{
T̂ r0
ri

}
= arg max

T
r0
ri

∑
(r1,r2,k,l)

p
(
jr1,r2k,l |T

r0
r1 , T

r0
r2 , X̂

SR, Z
)

log p
(
jr1,r2k,l

)
p
(
ur1,r2k,l |x̂

r1
k , x̂

r2
l , j

r1,r2
k,l , T r0

r1 , T
r0
r2

)
. (12)

The measurement likelihood is accordingly changed into

p
(
ur1,r2k,l |x̂

r1
k , x̂

r2
l , j

r1,r2
k,l , T r0

r1 , T
r0
r2

)
∝

exp

(
−1

2

∥∥∥ur1,r2k,l 	
(
T r0
r1 x

r1
k 	 T

r0
r2 x

r2
l

)∥∥∥2

Σ

)
. (13)

As observed from Eqs. (12)-(13), the number of variables
in the optimization (12) scales linearly with the number of
robots in the group, while all multi-robot correspondences in
F can be accommodated.

V. MULTI-ROBOT LOCALIZATION VIA
EXPECTATION-MAXIMIZATION

After establishing the transformation between the robot’s
reference frames, it is possible to perform multi-robot lo-
calization, expressing the robots trajectories in the same
reference frame. Since the approach discussed in Section IV
depends on the quality of the local trajectories Xr, the esti-
mated transformations are not exact. Moreover, although one
could use the identified multi-robot inlier correspondences,
multi-robot data association is still required for any new
incoming observations from different robots.

We therefore continue considering a probabilistic formu-
lation in which the data association is represented by latent

variables, as given by Eq. (8). At this point, since the
transformation between the robots is approximately known,
the errors for inlier multi-robot correspondences in F will
typically be small while the outlier correspondences will
produce high errors (see, e.g., Figure 2d). One alternative
therefore would be to use robust graph optimization ap-
proaches (e.g. [23]).

However, instead we propose an EM framework
to efficiently infer the robots trajectories X as
X̂ = arg maxX p

(
J |X̂, Z

)
log p (X,J |Z) . Performing a

derivation similar to the one presented in Section IV-A, we
get

X̂ = arg max
X

∑
r

log p (Xr|Zr)−∑
(r1,r2,k,l)

∑
m∈M

p
(
jr1,r2k,l = m|X̂, Z

)
·

log p
(
jr1,r2k,l = m

)
p
(
ur1,r2k,l |x

r1
k , x

r2
l , j

r1,r2
k,l = m

)
, (14)

where, as earlier, M = {inlier, outlier}, and the measure-
ment likelihood is given by Eqs. (5) and (7). If desired, the
multi-robot correspondences identified as inliers in Section
IV can be initialized with a high prior p

(
jr1,r2k,l = inlier

)
.

Remark: One could be tempted to directly apply the EM
optimization (14), even before establishing the transforma-
tions between the robot reference frames. However, since this
transformation is unknown and is set to an arbitrary value, the
errors for any candidate multi-robot constraint will be high,
regardless if it is inlier or outlier (see Section III). Since the
inlier distributions is (by definition) narrower than the outlier
distribution, i.e. Σinlier � Σoutlier, the outlier distribution
will always get the higher probability. As a consequence all
the multi-robot constraints will be considered as outliers and
therefore will be rejected.

VI. RESULTS

The developed approach was implemented within the
GTSAM optimization library [6], and evaluated both in sim-
ulated environment and in an experiment with real sensors.

A. Simulation

We evaluate the robustness of the approach to outliers in a
statistical study of 3 robots starting out with unknown relative
position. The ground truth robot trajectories are given in
Figure 2a, with circles denoting the true starting locations of
the robots. The prior on the initial position was set to random
values in each run, drawn from a zero-mean Gaussian distri-
bution with 100 meters standard deviation (std). The robot
local trajectories were calculated by integrating simulated
odometry observations with 1 cm std on position and 0.01
degrees on rotation. Multi-robot relative pose constraints
were calculated between the robot poses every 5 meters. A
typical scenario with the calculated multi-robot constraints
and some position priors is shown in Figure 2b. Some of the
constraints were intentionally set to be outliers, according to
the examined outlier ratio (10%, 40% and 90%).
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Fig. 3: (a) Global and (b) relative position and orientation
estimation errors. The three robots are shown in different
colors (red, green, blue) with dashed lines denoting perfor-
mance after establishing transformation between reference
frames but before the multi-robot optimization. Solid lines
represent performance after multi-robot optimization.

Figure 3 shows the position and orientation errors in
a typical run (using 10% outliers). For each robot (red,
blue, green), errors are evaluated using estimates after the
reference frame transformation T r1

r2 calculation (11) (dashed
line), and after the complete multi-robot optimization (14).
Both global and relative errors are shown, with the relative
pose error calculated relative to the previous pose and com-
pared to the appropriate ground truth relative pose. One can
observe the global errors that correspond to the calculated
transformation T r1

r2 accuracy (dashed line) are within 3-
4 meters, although the latter was set to initial values of
100m (1σ std). These level of errors are further reduced
by the overall EM optimization (14), shown by solid line,
both in the global and relative frame. The latter corresponds
to improvement of robot’s local trajectories via multi-robot
localization.

First, observe that as the number of outlier increases (from
10% to 90%), the distribution of the transformation T r1

r2 ,
calculated for each multi-robot candidate correspondence,
becomes more sporadic. This is shown in Figure 4. The
inliers are still clustered together, however, as expected, it
becomes increasingly difficult to identify this cluster as the
outlier ration increases. Nevertheless, in our experiments we
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(c) 90% outliers

Fig. 4: Distribution of the reference frame transformation
T r1
r2 , calculated using each multi-robot candidate correspon-

dence, for different outlier ratios (see Section IV).

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

Pose index

P
o

s
it
io

n
 e

rr
o

r 
n

o
rm

 [
m

]

 

 

10%

40%

90%

(a) Robot 2 (green color in Figure 2a).
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(b) Robot 3 (blue color in Figure 2a).

Fig. 5: Position estimation errors (norm) in statistical study
of 50 runs. Mean errors are shown in bold, standard deviation
about the mean in dashed line.

have observed the method to be resilient to this effect and
were able to correctly identify the inliers even with high
outlier ratio. As summarized in Table I below, reference
frame transformation T r1

r2 using the EM optimization (11)
results in all the inliers correctly identified for 10% outlier
ratio, a number that drops to 70% for 90% outlier ratio. The
final optimization, initialized by the estimated transformation
(Section V), further improves these numbers. Importantly,
while not always all inliers were identified as such, the
algorithm does not produce any false positives, i.e. outliers
are never identified as inliers.

Outlier ratio 10 % 40 % 90%
Correct inliers est. in EM (11) 100% 75% 70%

False positives in EM (11) 0% 0% 0%
Correct inliers in final EM (14) 100% 100% 80%
False positives in final EM (14) 0% 0% 0%

TABLE I: Percentage of correctly identified inliers in estima-
tion of reference frame transformation T r1

r2 and in the final
multi-robot optimization (14).

Statistics for position estimation errors in the 50-run
Monte-Carlo study for each outlier ratio level is shown in
Figure 5 for two of the three robots. As seen, performance
deteriorates with higher number of outliers. However, given
the above explanation this deterioration is not due to the
outliers but instead because of the smaller number of the
actual multi-robot inlier constraints, which determines to
what extend the robots local trajectories can be improved.
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Fig. 6: (a) CMU sensor suite; (b) Trajectory and map
generated by one of the three robots.

B. Real-Data Experiments

We have evaluated the method in an experiment using laser
data collected by the CMU sensor suite (Figure 6a), which
also includes additional sensors. Three recording sessions
were carried out, corresponding to three robots performing
different trajectories. Figure 6b shows the trajectory and the
map generated by one of the robots.

While the robots did start operating from the same lo-
cation, this knowledge was assumed to be absent and the
robot initial positions were initialized to arbitrary values,
as shown in Figure 7. We generated the set of multi-robot
correspondences F , also shown in Figure 7, by performing
ICP match between laser scans of different robots.

A basic methodology was used to choose the laser scans
participating in this process: these were chosen by skipping
50 sequential scans and maintaining at least 1.5 meters with
the preceding chosen scan. More sophisticated approaches
can be used here, for example selecting only the informative
scans. Performing ICP matching of two laser scans from
different robots, we required a reasonable covariance and
number of matched points above a threshold, to consider
the match as a multi-robot candidate constraint and only
then included it in F . The set of all multi-robot candidate
constraints, the majority of which are outliers, is shown in
Figure 7 for the three robots. We use Censi’s implementation
[4] for both ICP matching and covariance calculation.

Figure 8a shows the robot trajectories after estimating the
reference frame transformations T r1

r2 and using these values
to express the local robot trajectories within a common refer-
ence frame. The local robot trajectories were obtained by per-
forming ICP matching between consecutive laser scans and
manually-identified rare loop closures to maintain reasonable
quality of the trajectories. From arbitrary initial relative poses
(Figure 7), including a large rotation for the blue robot,
and unknown multi-robot data association, this optimization
step recovered the reference frame transformations with good
accuracy. Observe the initial robot positions are close to each
other (in reality the robots started from the same position).

The final EM optimization (14) yields the result shown
in Figure 8b, where the multi-robot constraints identified
as inliers are shown in black, and the rest of the multi-

robot constraints shown in dashed cyan. Note that all the
identified multi-robot constraints relate between adjacent
poses of different robots. Also note that no inlier constraints
between the green robot and the other robots were identified.
The reason for this is that green robot was traveling in an
opposite direction to the other two robots and therefore the
laser scans represent different parts of environment although
the robot trajectories are similar in practice.

VII. CONCLUSIONS

In this paper we addressed the problem of multi-robot
localization and mapping when operating in unknown or
uncertain environments, considering both the robot initial
relative poses and multi-robot data association to be un-
known. Our approach was based on the key observation
that while each such multi-robot constraint can be used
in conjunction with local robot estimated trajectories to
calculate the transformation between the robot reference
frames, only the inlier correspondences will yield a similar
transformation. We developed an expectation-maximization
(EM) approach to infer the robot initial relative poses without
assuming multi-robot data association is given. Having esti-
mated these transformations, we approached the full multi-
robot localization problem with unknown data association
that uses a similar EM formulation. We presented an eval-
uation of this approach using a multi-robot statistical study
in a simulated environment, and in a real-data experiment.
The results of this study demonstrated the method is resilient
to high percentage of multi-robot outliers, correctly inferring
most of the inlier correspondences. Both the experiment and
statistical-study results showed the method correctly infers
the robot initial relative poses even despite setting the starting
positions of the robots to arbitrary values. Future work will
focus on extending the developed approach to distributed and
incremental framework and on further evaluation in more
complicated scenarios involving larger robot groups.
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