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Collaborative Localization and Mapping

= [mportant in a variety of scenarios
— Exploration in unknown/uncertain, dangerous environments
— Search and rescue

— Surveillance, tracking ...

= Cooperative inference requires
— Sharing relevant information (observations, marginals over variables of interest)
— Correct interpretation (data association)

— Robustness to outliers
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Motivating Scenario

= Robots/sensors are deployed in an environment (e.g. building)
= |nitially unaware of each others’ location
* How to establish collaboration and perform multi-robot localization?

— Unknown multi-robot data association
— Unknown initial relative poses between robots




Related Work

= Known data association and common reference frames
— Full SLAM [Howard et al. 2006], [Andersson et al. 2008]
— Pose SLAM (direct, indirect) [Roumeliotis et al. 2002], [Kim et al. 2010], [Indelman et al. 2012]
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Related Work

= Known data association and common reference frames
— Full SLAM [Howard et al. 2006], [Andersson et al. 2008]
— Pose SLAM (direct, indirect) [Roumeliotis et al. 2002], [Kim et al. 2010], [Indelman et al. 2012]

= Unknown multi-robot data association and common reference frame

— Full SLAM [Montijano et al. 2011], [Cunningham et al. 2012]
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Related Work

= Known data association and common reference frames
— Full SLAM [Howard et al. 2006], [Andersson et al. 2008]
— Pose SLAM (direct, indirect) [Roumeliotis et al. 2002], [Kim et al. 2010], [Indelman et al. 2012]

= Unknown multi-robot data association and common reference frame

— Full SLAM [Montijano et al. 2011], [Cunningham et al. 2012]

= Robust graph optimization (single robot case — loop closures)
— [Sunderhauf and Protzel 2012, 2013], [Latif et al. 2012], [Lee et al. 2013]
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This Work

= Multi-robot framework with
— Unknown multi-robot data association
— Unknown initial relative poses between robots

— Pose SLAM approach

= How to establish multi-robot data association when robots start operating
from unknown locations?
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Multi-Robot Correspondences

= |f no common reference frame is available, what information to share?
— Robots share informative observations (e.g. laser scans)
— Calculate candidate multi-robot relative pose constraints
Collect into set F
Includes (many) outliers

Arbitrary common reference frame Ground truth
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Probabilistic Formulation

= Notations:

— JF: Multi-robot correspondences set

— J: Latent variables to indicate inliers/outliers

= Joint pdf over robot trajectories and multi-robot data association:
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Measurement likelihood
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Measurement likelihood
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Key Observation

= Given robot local trajectories, relative initial pose can be
calculated from each candidate multi-robot correspondence

V2
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— Only inliers produce similar transformations

— Objective: identify cluster

Initial relative pose between two robots (planar case:z, y, ¢))
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Inference Over Common Reference Frame via EM

= MAP estimate of T given robot local trajectories (using only local data):

qu;l = argmaxp (T;;l ‘XSRj Z) = arg %glxzp (qu“zl’j|XSR7 Z)
T,. o

T2

— J: Latent binary variables to indicate inliers/outliers T

= EM formulation:

172 = arg max p (j‘T:;)XSR, Z) log p (T[;, J|X5F, Z)

T2
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Inference Over Common Reference Frame via EM (Cont.)

= Convergence only to local minima

= Therefore:
— Start process from several initial guesses of 7!
— Results in several locally-optimal solutions (inliers/outliers, estimated7})

— Choose most likely solution (best support)
Ongoing research: model selection, sensitivity to perceptual aliasing
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Inference Over Robot Trajectories

= Once a common reference frame is established:
— Multi-robot localization becomes possible
— Robot trajectories can be expressed in the same frame

= [nfer robot trajectories via EM (see paper for full derivation):

A

X = Arg Mmax p (.7|X',Z) logp (X, J|Z2)

— ldentified common reference frame is used as initial guess within
measurement likelihood
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Indoor navigation

Shared salient laser scans Ground truth




Results (Cont.)

Local trajectories of 3 robots; Arbitrary common reference frame
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Conclusions and Future Work

= Collaborative inference from unknown initial poses and data association
— Key observation (clusters for inlier correspondences)
— EM approach to infer common reference frames and data association
— Once established, EM approach for inference over robot poses
— Extensive experimental study to appear in ISER 2014

Future Work
= Distributed and incremental framework

— Perceptual aliasing ’l

— How to know when to make a decision?

= \/ision sensors
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