

Incremental Distributed Robust Inference from Arbitrary Poses via EM and Model Selection

Vadim Indelman, Nathan Michael and Frank Dellaert

Problem Statement

- Robots operate in the same environment (e.g. building),
- Initially unaware of each others' location
- How to establish collaboration and perform multi-robot localization?
 - Unknown multi-robot data association
 - Unknown initial relative poses between robots

Approach

- Robots share informative (laser) measurements
- Calculate multi-robot relative-pose constraints (e.g. ICP)
 - includes outliers
- Initial relative pose is unknown and set to arbitrary value
- Joint pdf over robot poses and multi-robot data association:

local Multi-robot Data Measurement likelihood measurements correspondence association

Key Observation

- Must first infer initial relative pose
- Given robot local trajectories, each multi-robot constraint determines initial relative pose transformation between robots
- Transformation is consistent only for inlier correspondences
- Therefore: identify cluster via EM

Multi-robot correspondences

Distribution of transformations (planar case – x,y,θ)

Challenges

- Perceptual aliasing

 multiple clusters (hypotheses)
- including consistent-outliers cluster(s)
- Which one to choose?
- How to know sufficient data exists for making decision?

Approach - Incremental Framework

- Model selection calculate probability of each hypothesis
- Use Chinese restaurant process for Hypothesis prior
- Discriminates between hypotheses as more data comes in

Result (incremental framework)

Ground truth (full dataset)

References

- [1] "Multi-Robot Pose Graph Localization and Data Association from Unknown Initial Relative Poses via Expectation Maximization", ICRA 2014
- [2] "An Experimental Study of Robust Distributed Multi-Robot Data Association from Arbitrary Poses", ISER 2014