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Introduction

= Decision making under uncertainty - fundamental problem in autonomous
systems and artificial intelligence

= Examples
— Informative planning, active sensing
— Sensor selection, sensor deployment
— Belief space planning
— Active simultaneous localization and mapping (SLAM)
— Multi-agent informative planning and active SLAM
— Target tracking
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Introduction

= [nformation-theoretic decision making

— Objective: find action(s) that minimizes an information-theoretic
objective function (e.g. entropy)

— Extensively investigated, e.g., in the context of sensor selection

= Decision making over high-dimensional state spaces is expensive!

State vector: x € R"
Covariance matrix: Y F [(X ~Ex])(x—E [X])T} c RPXN

= Evaluating impact of a candidate action typically involves determinant
calculation - O(n*) in the general case
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Introduction — Motivating Example |

= Belief Space Planning, Active SLAM
— Robot operates in unknown/uncertain environments

— Concurrently infers its own state and the observed environment

Recursive Smoothing
State: xp=[aL & . L] xo = [ &l o2l T o T
pdf: p (XK |20:k, V0:k—1) P (X0:k|20:k, U0:k—1)

200
100

— How to autonomously determine future action(s)?

N

— Involves reasoning, for different candidate
actions, about belief evolution

p (Xk+L \Zo;k, Uo:k—1y Uk:k+L—1, Zk+1:k+L)




Introduction — Motivating Example li

= Sensor Deployment

— Objective: deploy k sensorsinan N x N area

— e.g., provide localization, monitor spatial-temporal field

Prior uncertainty field:
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Introduction

= More generally, decision making over multiple look-ahead steps
— A partially observable Markov decision process (POMDP), NP-hard

— Different sub-optimal approaches exist (greedy, sampling, ...)

= This work:

— Resort to conservative information fusion techniques for information-
theoretic decision making

= Conservative information fusion approaches

— Allow to fuse information from multiple correlated sources, without
knowing the correlation

— Guarantee consistent estimation
— Pioneered by Julier & Uhlmann [ACC 1997]: Covariance intersection
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Introduction

= More generally, decision making over multiple look-ahead steps
— A partially observable Markov decision process (POMDP), NP-hard

— Different sub-optimal approaches exist (greedy, sampling, ...)

= This work:

— Resort to conservative information fusion techniques for information-
theoretic decision making

— Motivation: these techniques allow correlation terms to be unknown!

— Key idea:
Reduce computational complexity by (appropriately) dropping correlations
Extreme case: drop all correlations; computational complexity becomes

O(n’) === O(n)

— Do we get the same performance??
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Problem Formulation

= Probability distribution function (pdf) at time tx: p (zx|z0:%, uo:k—1)

= Transition/motion model  p (zur1|xk, ur)

= Observation model p (zx|zk)
= Given control ux and new observation(s) zx+1, pdf becomes

P (Tr41]20:k+1, Uo:k) = NP (zk\xk)-/p(xk\z();k,u@k1)p(:vk+1!xk,uk)dxk

« Entropy: H(p(x) = —E [logp (2)] = / p(z)logp () de

* Information-theoretic objective function (single look-ahead step):

J(uk) = Ezppy [H (0 (@Tht1120:0+1, v0:k))]

= Optimal control: uf = argmin J (ug) .

Uk
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Problem Formulation

= Assumptions:

— Gaussian distributions p (Tk| 200, wok—1) = N (e, Iy )
— Deterministic control (for now) zi = h; (;) +v; , vi~N(0,%,)
1
= Entropy becomes H (p (zh11 2041, v0:k)) = =5 log [( [(2me)"™ |1 4]]
= A posteriori information matrix: Lia=hL+H'S'H
Jacobian

= Best action = highest information gain

= Impact evaluation for a candidate action is in the general case: O(n?)
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Conservative Information Space

= Conservative approximation of a pdf — sufficient conditions [gailey et al. 2012 Fusion:

— Entropy: H(p(z)) <H(pe (2))
— Order preserving (same shape):

Vi, 5 pe(r = x;) <pc(xr =x;) iff plr=x;)<plr=u1)

= (Gaussian case:
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Concept

Decision Making Over a Conservative Information Space - 1D Case

= Consider some two actions a and b with measurement models

Za = ha (x) + v, zp = hy () + vy

= Theorem - for the 1D case:
R EER

— where the a posteriori information matrices are calculated using
Action a Action b

original information matrix: ItV=14+H'S'H, I =I+H'S]'H,

conservative information matrix: 71t = 1.+ H's-'H, It =1+ H!Y 'H,
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Concept

Decision Making Over a Conservative Information Space - 1D Case

= Consider some two actions a and b with measurement models

Za = ha (x) + v, zp = hy () + vp

= Theorem - for the 1D case:

R EER

= |n words:

the impact of any two candidate actions has the same trend regardless if it
is calculated based on the original or conservative information space

= Therefore: decision making can be done considering a conservative
information space
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Basic Example — 1D Case

Entropy values are shown in legend
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High Dimensional State Space

1 n
: Recall: H (p(Tks1|20:k41,U0:k)) = 5 log [(2776) ’II;FHH :

= |s the concept valid also for high-dimensional spaces?
= Why is it interesting?
— Consider an information matrix I € R™*"

— Calculating |1| is often expensive (O(n?), in the general case)

— Instead
Calculate a conservative sparse information matrix I,
Evaluating|/.| can be done very efficiently

If concept applies, same performance is guaranteed!

= Next: Going to the extreme — appropriately drop all correlation terms
— 1.is diagonal

— Complexity is reduced to O(n)
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“Decoupled” Conservative PDF

= Definition:

= 2D case:
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“Decoupled” Conservative PDF

= Definition:
pc(X)iUpri () Ve, € X Zwizl

= Example -X € R*:

p(X) =p(zo)p(21|T0) P (22|71, 20) P (73|72, 1) == p (X) = pe (T0) Pe (1) Pe (T2) Pe (23) -

Bayesian net Square root
information matrix I3

I=R'R

R

P(xo) p(m1|m0) p(ﬂﬁzlwl,wo) p(l‘3|902,$1)

w0 ® @ @
R,
pe(0)  pe(r1)

pe(w2)  pe(z3)
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High Dimensional State Space

= |s the concept valid also for high-dimensional spaces?
— In particular, in conjunction with the decoupled conservative pdf

= Valid (at least) in the following cases:

— Observation models include the same arbitrary states, possibly with different
measurement noise covariance

Zz:h(X/)—F’UZ X/CX
— Unary observation models, possibly involving different states
Example |
— Binary observation models with the same uncorrelated state
z; = hi (T, ;) + v; r,z; € X Example I
Here, x is not correlated with other states




Example | 1| < 1P| (2| < (12T

= Unary observation models, possibly involving different states z; = h; (z;) + v;

4t — o .
81 —% = Original covariance: Y = [ E,}Fl 212 ]
21 2y 222
1t
<0 . . E O
Al = Conservative covariance: .= | ~ %"
1 0 o2
21
31
.4,-;\:> : 5
= Consider two actions/sensors: = Recall - a posteriori information matrix:

B . . ~nd .
Action a: 2nd state is measured It =T+ HTEng

— Action b: 1st state is measured
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Example | 1| < 1P| (2| < (12T

= Unary observation models, possibly involving different states z; = h; (z;) + v;

Action a Action b

X,

A O N 4 O = pvow A
X5

A D DM 4 o 4 v ow A

5 0 -5 0 5 -5 0 5
X1 X1 X1

= Consider two actions/sensors: = Recall - a posteriori information matrix:

B . . ~nd .
Action a: 2nd state is measured It =T+ HTEng

— Action b: 1st state is measured
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Example | 1| < 1P| (2| < (12T

Action a Action b
4+ 4t —
3t 3l _zg
—
2t 2t .E‘C”f
1} T
sV Ot N Ot
Al -1t
21 ol
-3t 3l

Do not need correlations to decide whicH action is better
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Example Il [T < [IPF]E1er| < 12T

= Binary observation models with the same uncorrelated state
zi = hi (2, 1;) + v;

= Aerial visual SLAM scenario 200

100

-100
-200

= Objective - each time a new image is received: °%

-400

— Decide what image observations to use

— ldentify most informative visual observations

= Remarks:

— New camera pose z remains uncorrelated as long as no image observations
have been incorporated

— Note: can still add a prior p(z)
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Example Il [T < [IPF]E1er| < 12T

Trajectory (top view) I I c
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= Same trend!
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Conclusions

= Decision making in the conservative information space

— Use a sparse conservative information matrix to greatly reduce
computational complexity

— In particular:
Decoupled conservative pdf — diagonal information matrix

Computational complexity is reduced by 2 orders of magnitude

Concept was proved to yield the same performance (decisions) in
several scenarios of interest

= Multiple extensions to be investigated
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