Towards Information-Theoretic Decision Making in a <u>Conservative</u> Information Space

Vadim Indelman

American Control Conference (ACC), July 2015

Introduction

- Decision making under uncertainty fundamental problem in autonomous systems and artificial intelligence
- Examples
 - Informative planning, active sensing
 - Sensor selection, sensor deployment
 - Belief space planning
 - Active simultaneous localization and mapping (SLAM)
 - Multi-agent informative planning and active SLAM
 - Target tracking

Introduction

- Information-theoretic decision making
 - Objective: find action(s) that minimizes an information-theoretic objective function (e.g. entropy)
 - Extensively investigated, e.g., in the context of sensor selection
- Decision making over <u>high-dimensional</u> state spaces is expensive!

State vector: $\mathbf{x} \in \mathbb{R}^n$

- Covariance matrix: $\Sigma \doteq \mathbb{E}\left[\left(\mathbf{x} \mathbb{E}\left[\mathbf{x}\right]\right)\left(\mathbf{x} \mathbb{E}\left[\mathbf{x}\right]\right)^{T}\right] \in \mathbb{R}^{n \times n}$
- Evaluating impact of a candidate action typically involves determinant calculation $O(n^3)$ in the general case

Introduction – Motivating Example I

Belief Space Planning, Active SLAM

- Robot operates in unknown/uncertain environments
- Concurrently infers its own state and the observed environment

Recursive

<u>Smoothing</u>

200

State:
$$\mathbf{x}_k \doteq \begin{bmatrix} x_k^T & l_1^T & \cdots & l_m^T \end{bmatrix}^T$$
 $\mathbf{x}_{0:k} \doteq \begin{bmatrix} x_0^T & \cdots & x_k^T & l_1^T & \cdots & l_m^T \end{bmatrix}^T$
pdf: $p(\mathbf{x}_k | z_{0:k}, u_{0:k-1})$ $p(\mathbf{x}_{0:k} | z_{0:k}, u_{0:k-1})$

- How to autonomously determine future action(s)?
- Involves reasoning, for different candidate actions, about belief evolution

 $p(\mathbf{x}_{k+L}|z_{0:k}, u_{0:k-1}, u_{k:k+L-1}, z_{k+1:k+L})$

Introduction – Motivating Example II

Sensor Deployment

- **Objective**: deploy k sensors in an $N \times N$ area
- e.g., provide localization, monitor spatial-temporal field

A priori joint covariance (with correlations between cells)

Introduction

- More generally, decision making over multiple look-ahead steps
 - A partially observable Markov decision process (POMDP), NP-hard
 - Different sub-optimal approaches exist (greedy, sampling, ...)

This work:

 Resort to conservative information fusion techniques for informationtheoretic decision making

Conservative information fusion approaches

- Allow to fuse information from multiple correlated sources, without knowing the correlation
- Guarantee **consistent** estimation
- Pioneered by Julier & Uhlmann [ACC 1997]: Covariance intersection

Introduction

- More generally, decision making over multiple look-ahead steps
 - A partially observable Markov decision process (POMDP), NP-hard
 - Different sub-optimal approaches exist (greedy, sampling, ...)

This work:

- Resort to conservative information fusion techniques for informationtheoretic decision making
- Motivation: these techniques allow correlation terms to be unknown!
- Key idea:
 - Reduce computational complexity by (appropriately) dropping correlations
 - Extreme case: drop all correlations; computational complexity becomes

 $O(n^3) \longrightarrow O(n)$

– Do we get the same performance??

Problem Formulation

- Probability distribution function (pdf) at time t_k : $p(x_k|z_{0:k}, u_{0:k-1})$
- Transition/motion model $p(x_{k+1}|x_k, u_k)$
- Observation model $p(z_k|x_k)$
- Given control u_k and new observation(s) z_{k+1} , pdf becomes

$$p(x_{k+1}|z_{0:k+1}, u_{0:k}) = \eta p(z_k|x_k) \cdot \int p(x_k|z_{0:k}, u_{0:k-1}) p(x_{k+1}|x_k, u_k) dx_k$$

• Entropy:
$$\mathcal{H}(p(x)) = -\mathbb{E}\left[\log p(x)\right] = -\int p(x)\log p(x) dx$$

Information-theoretic objective function (single look-ahead step):

$$J(u_k) = \mathbb{E}_{z_{k+1}} \left[\mathcal{H} \left(p\left(x_{k+1} | z_{0:k+1}, u_{0:k} \right) \right) \right]$$

• Optimal control: $u_k^{\star} = \underset{u_k}{\operatorname{arg\,min}} J(u_k).$

Problem Formulation

- Assumptions:
 - Gaussian distributions
 - Deterministic control (for now)

$$p(x_k | z_{0:k}, u_{0:k-1}) = N(\mu_k, I_k^{-1})$$
$$z_i = h_i(x_i) + v_i \quad , \quad v_i \sim N(0, \Sigma_{v_i})$$

- Entropy becomes $\mathcal{H}\left(p\left(x_{k+1}|z_{0:k+1}, u_{0:k}\right)\right) = -\frac{1}{2}\log\left[\left(2\pi e\right)^n \left|I_{k+1}^+\right|\right]$
- A posteriori information matrix:

$$I_{k+1}^{+} = I_k + H^T \Sigma_v^{-1} H$$
Jacobian

- Best action = highest information gain
- Impact evaluation for a candidate action is in the general case: $O(n^3)$

Conservative Information Space

- Conservative approximation of a pdf sufficient conditions [Bailey et al. 2012 Fusion]:
 - Entropy: $\mathcal{H}(p(x)) \leq \mathcal{H}(p_c(x))$
 - Order preserving (same shape):

$$\forall x_i, x_j \quad p_c(x = x_i) \le p_c(x = x_j) \text{ iff } p(x = x_i) \le p(x = x_j)$$

Gaussian case:

 $|I_c| \le |I|$

Concept

Decision Making Over a Conservative Information Space - 1D Case

Consider some two actions a and b with measurement models

$$z_a = h_a (x) + v_a \qquad z_b = h_b (x) + v_b$$

Theorem - for the 1D case:

where the a posteriori information matrices are calculated using

• original information matrix:
$$I^{a+} = I + H_a^T \Sigma_v^{-1} H_a$$
 $I^{b+} = I + H_b^T \Sigma_v^{-1} H_b$
• conservative information matrix: $I_c^{a+} = I_c + H_a^T \Sigma_v^{-1} H_a$ $I_c^{b+} = I_c + H_b^T \Sigma_v^{-1} H_b$

Concept

Decision Making Over a Conservative Information Space - <u>1D Case</u>

Consider some two actions a and b with measurement models

$$z_a = h_a (x) + v_a \qquad \qquad z_b = h_b (x) + v_b$$

Theorem - for the 1D case:

$$\left|I^{a+}\right| \le \left|I^{b+}\right| \text{ iff } \left|I^{a+}_c\right| \le \left|I^{b+}_c\right|$$

In words:

the impact of any two candidate actions has <u>the same trend</u> regardless if it is calculated based on the original or conservative information space

Therefore: decision making can be done considering a conservative information space

Basic Example – 1D Case

$$\left|I^{a+}\right| \leq \left|I^{b+}\right|$$
 iff $\left|I^{a+}_{c}\right| \leq \left|I^{b+}_{c}\right|$

Entropy values are shown in legend

$$\Sigma_v = 0.5^2 \qquad \qquad \Sigma_v = 0.2^2$$

High Dimensional State Space

Recall: $\mathcal{H}\left(p\left(x_{k+1}|z_{0:k+1},u_{0:k}\right)\right) = -\frac{1}{2}\log\left[\left(2\pi e\right)^{n}\left|I_{k+1}^{+}\right|\right]$

- Is the concept valid also for high-dimensional spaces?
- Why is it interesting?
 - Consider an information matrix $I \in \mathbb{R}^{n \times n}$
 - Calculating |I| is often expensive ($O(n^3)$), in the general case)
 - Instead
 - Calculate a conservative <u>sparse</u> information matrix I_c
 - Evaluating $|I_c|$ can be done very efficiently
 - If concept applies, same performance is guaranteed!
- Next: Going to the extreme appropriately <u>drop all correlation terms</u>
 - I_c is diagonal
 - Complexity is reduced to O(n)

"Decoupled" Conservative PDF

Definition:

$$p_c(X) \doteq \eta \prod_i p^{w_i}(x_i) \qquad \forall x_i \in X \qquad \sum_i w_i = 1$$

TECHNION Israel Institute of Technology

V. Indelman, Towards Information-Theoretic Decision Making in a Conservative Information Space

"Decoupled" Conservative PDF

Definition:

$$p_c(X) \doteq \eta \prod_i p^{w_i}(x_i) \qquad \forall x_i \in X \qquad \sum_i w_i = 1$$

• Example - $X \in \mathbb{R}^4$:

 $p(X) = p(x_0) p(x_1|x_0) p(x_2|x_1, x_0) p(x_3|x_2, x_1) \implies p_c(X) = p_c(x_0) p_c(x_1) p_c(x_2) p_c(x_3).$

V. Indelman, Towards Information-Theoretic Decision Making in a Conservative Information Space

High Dimensional State Space

- Is the concept valid also for high-dimensional spaces?
 - In particular, in conjunction with the **decoupled** conservative pdf
- Valid (at least) in the following cases:
 - Observation models include the same arbitrary states, possibly with different measurement noise covariance

$$z_i = h\left(X'\right) + v_i \qquad \qquad X' \subset X$$

- Unary observation models, possibly involving different states $z_i = h_i(x_i) + v_i$ $x_i \in X$ - Binary observation models with the same uncorrelated state $z_i = h_i(x, x_i) + v_i$ $x, x_i \in X$ - Here, x is not correlated with other states Example I

$\left|I^{a+}\right| \le \left|I^{b+}\right| \text{ iff } \left|I^{a+}_c\right| \le \left|I^{b+}_c\right|$

• Unary observation models, possibly involving different states $z_i = h_i (x_i) + v_i$

Example I

Original covariance:

$$\Sigma = \left[\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}^T & \Sigma_{22} \end{array} \right]$$

• Conservative covariance:
$$\Sigma_c = \begin{bmatrix} \Sigma_{c,11} & 0 \\ 0 & \Sigma_{c,22} \end{bmatrix}$$

- Consider two actions/sensors:
 - Action **a**: 2nd state is measured
 - Action b: 1st state is measured

Recall - a posteriori information matrix:

$$I^+ = I + H^T \Sigma_v^{-1} H$$

$\left|I^{a+}\right| \le \left|I^{b+}\right| \text{ iff } \left|I^{a+}_c\right| \le \left|I^{b+}_c\right|$

• Unary observation models, possibly involving different states $z_i = h_i (x_i) + v_i$

- Consider two actions/sensors:
 - Action a: 2nd state is measured
 - Action b: 1st state is measured

Recall - a posteriori information matrix:

$$I^+ = I + H^T \Sigma_v^{-1} H$$

Example I

Example I

 $\left|I^{a+}\right| \le \left|I^{b+}\right| \text{ iff } \left|I^{a+}_c\right| \le \left|I^{b+}_c\right|$

Example II

Binary observation models with the same uncorrelated state

 $z_i = h_i \left(x, x_i \right) + v_i$

- Aerial visual SLAM scenario
- Objective each time a new image is received:
 - Decide what image observations to use
 - Identify most informative visual observations

Remarks:

- New camera pose *x* remains uncorrelated as long as no image observations have been incorporated
- Note: can still add a prior p(x)

21

Example II

 $\left|I^{a+}\right| \le \left|I^{b+}\right| \text{ iff } \left|I^{a+}_{c}\right| \le \left|I^{b+}_{c}\right|$

Conclusions

- Decision making in the conservative information space
 - Use a <u>sparse conservative</u> information matrix to greatly reduce computational complexity
 - In particular:
 - **Decoupled** conservative pdf diagonal information matrix
 - Computational complexity is reduced by 2 orders of magnitude
 - Concept was proved to yield the same performance (decisions) in several scenarios of interest
- Multiple extensions to be investigated

