
Chapter 1
Incremental Light Bundle Adjustment:
Probabilistic Analysis and Application to
Robotic Navigation

Vadim Indelman and Frank Dellaert

Abstract This paper focuses on incremental light bundle adjustment (iLBA), a
recently introduced [13] structureless bundle adjustment method, that reduces com-
putational complexity by algebraic elimination of camera-observed 3D points and
using incremental smoothing to efficiently optimize only the camera poses. We con-
sider the probability distribution that corresponds to the iLBA cost function, and
analyze how well it represents the true density of the camera poses given the im-
age measurements. The latter can be exactly calculated in bundle adjustment (BA)
by marginalizing out the 3D points from the joint distribution of camera poses and
3D points. We present a theoretical analysis of the differences in the way that light
bundle adjustment and bundle adjustment use measurement information. Using in-
door and outdoor datasets we show that the first two moments of the iLBA and the
true probability distributions are very similar in practice. Moreover, we present an
extension of iLBA to robotic navigation, considering information fusion between
high-rate IMU and a monocular camera sensor while avoiding explicit estimation of
3D points. We evaluate the performance of this method in a realistic synthetic aerial
scenario and show that iLBA and incremental BA result in comparable navigation
state estimation accuracy, while computational time is significantly reduced in the
former case.

1.1 Introduction

Bundle adjustment (BA) plays a key role in many applications in mobile vision and
robotics. The basic problem can be described as follows: given a sequence of im-
ages, determine the maximum a posteriori (MAP) estimate of camera poses and the
observed 3D points (or another representation of the observed structure). Fast and
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reliable calculation of this MAP estimate is important in particular in mobile robotic
applications and has been continuously addressed by the research community in re-
cent years.

This paper1 focuses on the recently developed incremental light bundle adjust-
ment (iLBA) approach [13], that belongs to “structure-less” BA methods [34, 31, 10,
13], in which the camera poses are optimized without including structure parameters
into the iterative optimization procedure. iLBA reduces computational complexity
by algebraic elimination of 3D points and using an efficient incremental optimiza-
tion that is based on incremental smoothing (iSAM2) [17, 18].

This paper presents a probabilistic analysis of iLBA, analyzing how well the
probability distribution corresponding to the iLBA cost function agrees with the
true probability distribution of the camera poses. Accurate and reliable maximum
a posteriori and uncertainty estimates are important in many structure from motion
and robotic applications, yet to the best of our knowledge this is the first time that
such an analysis is conducted for structure-less BA methods. This theoretical analy-
sis, which is also valid for other structure-less BA methods, reveals the root effects
that cause the iLBA distribution to be an approximation of the true distribution. Us-
ing real imagery datasets (see Figures 1.1 and 1.2) we show that in practice the two
distributions are close to each other.

In the second part of the paper an extension of iLBA to robotic navigation is pre-
sented. We argue that iLBA is in particular suitable for navigation problems, as it fa-
cilitates estimation of the navigation state without explicit 3D reconstruction, which
is typically not required in the navigation context. Furthermore, it supports loop
closure observations (re-observations of 3D points) that are essential for maintain-
ing accurate performance over time. We consider state estimation in the challeng-
ing configuration of a monocular camera and high-rate inertial navigation sensors
(IMU) and use incremental smoothing to fuse information from these sensors. Sim-
ilarly to [16], we adopt a recently developed technique [26] for IMU pre-integration
to summarize IMU information, significantly reducing the number of variables in
the optimization. Finally, we analyze the performance of the proposed method in a
synthetic aerial scenario.

Consequently, this paper makes three contributions: 1) probabilistic analysis of
iLBA; 2) extension of iLBA to robotic navigation; 3) Evaluation of thereof using
real-imagery datasets and a synthetic aerial scenario.

The remainder of this paper is organized as follows. After discussing related
work, Section 1.3 overviews the main component of iLBA. Section 1.4 presents a
probabilistic analysis of iLBA and evaluation using real-imagery datasets. In Sec-
tion 1.5 iLBA is extended to robot navigation; this section also includes performance
evaluation in a realistic synthetic aerial scenario. Section 1.6 concludes the discus-
sion and suggests directions for future research.

1 Part of the material discussed in this paper was presented in the conference papers [14] and [12].
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(a) Top view

(b) Zoom in on the stairway area

Fig. 1.1: Estimated camera trajectory and sparse 3D reconstruction in the Outdoor
dataset that is used for evaluating LBA and BA probability distributions.



4 Vadim Indelman and Frank Dellaert

Fig. 1.2: Estimated camera poses and sparse 3D reconstruction in the Indoor dataset
that is used for evaluating LBA and BA probability distributions.

1.2 Related Work

We organize this section into two parts, discussing first research related to computa-
tional efficient bundle adjustment and then reviewing related methods from simul-
taneous localization and mapping (SLAM) and vision-aided navigation literature.

1.2.1 Computationally Efficient Bundle Adjustment

Development of computationally efficient bundle adjustment approaches, in partic-
ular for large-scale scenarios, has become an active research area in the past few
years. The developed approaches include methods that exploit sparsity of the in-
volved matrices in the optimization [24, 21], decoupling the BA problem into sev-
eral submaps that can be efficiently optimized in parallel [30], constructing a skeletal
graph using a small subset of images and incorporating the rest of the images using
pose estimation [32], solving a reduced version of the non-linear system [22], and
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finding a coarse initial solution using a discrete-continuous optimization followed
by a BA refinement [2].

Another family of recently suggested methods is structure-less BA [34, 31, 10,
13], in which the camera poses are optimized without including structure parame-
ters into the iterative optimization procedure. The first structure-less BA method was
introduced, to the best of our knowledge, by Steffen et al. [34] who optimized the
corrections of image observations subject to satisfying trifocal tensor constraints [7].
A similar concept was developed in [10] using three-view constraints [11] instead
of the trifocal tensor. Rodrguez et al. [31] obtained reduced computational complex-
ity by reformulating the optimized cost function and refraining from correcting the
pixels. Another significant gain in computational complexity was obtained in incre-
mental light bundle adjustment [13], that applied a recently developed technique for
incremental smoothing [17, 18] to structure-less BA.

1.2.2 SLAM and Vision-Aided Navigation

Current SLAM algorithms can be divided into two main categories: feature- and
view-based SLAM. In feature-based SLAM, both the observed 3D points and the
robot’s past and current poses are optimized. Several efficient optimization methods
that exploit the sparsity of typical structure from motion and SLAM problems have
been developed in recent years, some of which are discussed in Section 1.2.1.

The second SLAM category is view-based SLAM [25, 4], or pose-SLAM, in
which, similar to iLBA, only the current and past robot’s poses are maintained. In
pose-SLAM approaches, pairs of poses are linked using relative pose constraints
that are straightforward to estimate in a stereo camera setup [8, 22], but become
more challenging when relying only on a single camera. In the latter case, the rel-
ative constraints can be estimated only up to a scale, which encodes the magnitude
of the relative translation [4]. This scale parameter can be set based on the previous
frames as in [1]. However, to avoid scale drift the scale parameters should be part of
the optimization as well [6]. In contrast to conventional pose-SLAM, iLBA formu-
lates multi-view geometry constraints for each feature match, thereby not requiring
uncertainty estimates from an intermediate (and separate) process of image-based
relative-pose constraints estimation.

In the context of navigation-aiding, despite the close relation to SLAM, only a
few methods have been presented in recent years that are capable of incorporat-
ing loop closure measurements. These include [28] where visual observations are
incorporated into the navigation solution using an EKF formulation with a slid-
ing window of past poses. In a later work [29], the authors applied a conventional
batch BA that involved explicit structure estimation in order to handle loop closure
measurements. More recently, incremental smoothing [18] was proposed for inertial
navigation systems in [15, 16] and a method was developed to incorporate loop clo-
sures while maintaining a real time navigation solution [20]. The extension of iLBA
to robotic navigation that is described in this paper is formulated within the same
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framework of [20, 15, 16] but replaces the explicit estimation of 3D points with a
set of 2-view and 3-view constraints.

1.3 Incremental Light Bundle Adjustment

Incremental light bundle adjustment (iLBA) [13] combines the following two key-
ideas: algebraic elimination of 3D points, and incremental smoothing. In this section
we review each of these concepts, first introducing notations and standard bundle
adjustment formulation.

1.3.1 Bundle Adjustment

Consider a sequence of N views observing M 3D points, and denote the ith camera
pose by xi and the measured image observation of the jth 3D point l j by z j

i . Let also
X .
=
{

xT
1 , . . . ,x

T
N
}T and L .

=
{

lT
1 , . . . , l

T
M
}T .

The joint pdf p(X ,L|Z) can be explicitly written in terms of the prior information
and the actual measurement models:

p(X ,L|Z) = priors ·∏
i

∏
j∈Mi

p
(

z j
i |xi, l j

)
, (1.1)

where p
(

z j
i |xi, l j

)
is the measurement model corresponding to the probability den-

sity of observing the 3D point l j from a camera pose xi at the pixel location z j
i , and

Mi represents the indices of all 3D points observed from the ith camera. Assuming
Gaussian distributions, the maximum a posteriori (MAP) estimation

X∗,L∗ = argmax
X ,L

p(X ,L|Z) ,

corresponds to minimizing the following nonlinear cost function (omitting prior
terms for clarity)

JBA (X ,L) = ∑
i

∑
j∈Mi

∥∥∥z j
i −π (xi, l j)

∥∥∥2

Σ

, (1.2)

where π (·) is the projection function [7] for a standard pinhole camera model, and
‖a‖2

Σ

.
= aT Σ−1a is the squared Mahalanobis distance with the measurement covari-

ance matrix Σ . Each term in the cost function JBA corresponds to the re-projection
error between the measured and predicted image observations (see Figure 1.3).
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Fig. 1.3: Illustration of re-projection error: difference between projection of the 3D
point l j onto the camera frame using camera pose xi, and the image observation z j

i .

1.3.2 Algebraic Elimination of 3D points using Three-View
Constraints

Performing inference over the joint pdf p(X ,L|Z) involves optimizing 6N + 3M
variables, with N and M denoting camera frames and observed 3D points, respec-
tively. Instead, in this section we reduce the number of variables to only 6N by
algebraically eliminating all the 3D points.

Considering all the camera frames that observe some 3D point l j and writing
down all the appropriate projection equations, it is possible to algebraically elim-
inate l j, leading to multiple view constraints that involve up to triplets of cameras
[27, 35]. One possible formulation of these constraints, recently developed in the
context of vision-aided navigation [9, 11], is the three-view constraints. The close
relation between these constraints and the well-known trifocal tensor was reported
in [13]. The three view constraints, for a triplet of camera frames k, l and m are given
by (see Figure 1.4)

g2v

(
xk,xl ,z

j
k,z

j
l

)
= qk · (tk→l×ql) (1.3)

g2v

(
xl ,xm,z

j
l ,z

j
m

)
= ql · (tl→m×qm) (1.4)

g3v

(
xk,xl ,xm,z

j
k,z

j
l ,z

j
m

)
= (ql×qk) · (qm× tl→m)− (qk× tk→l) · (qm×ql) (1.5)

where qi is the line of sight expressed in a global frame, qi
.
= RT

i K−1
i z, for any view

i and image observation z, Ki is the calibration matrix of this view, Ri represents
the rotation matrix from the global frame to the ith view’s frame, and ti→ j denotes
the translation vector from view i to view j, expressed in the global frame. The
first two constraints are the two-view constraints g2v between appropriate pairs of
views, also known as the epipolar constraints. Given matching image observations,
these constraints allow to recover the relative rotation and up-to-scale translation
motion between camera pairs. The third constraint, g3v, involves all the three views
and enforces a consistent scale of the translation vectors tk→l and tl→m. Thus, if the
magnitude of the former is known, the magnitude of the later can be determined.
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Fig. 1.4: Three camera frames k, l and m observing the same 3D point l j. Explicit
estimation of l j can be avoided by algebraic elimination using three-view constraints
(1.3)-(1.5).

When a 3D point is observed by more than three views, a single two-view and
three-view constraint between each new view m and past views k, l is added [10].
Determining which past views to use is still an open question that we currently
investigate. In the results reported in this paper, we heuristically choose the past
views to be the earliest camera frame k observing the 3D point and set l to be the
middle camera frame such that the translation vectors tk→l and tl→m are of similar
magnitudes2.

In practice, in order to avoid the trivial solution of zero translation, we normalize
each of the constraints g2v and g3v by a translation vector and modify the Jacobian
matrices accordingly.

Algebraically eliminating all the 3D points using the three-view constraints (1.3)-
(1.5) leads to the following cost function that is expressed in terms of these con-
straints, instead of re-projection errors as in bundle adjustment (Eq. (1.2)):

JLBA(X)
.
=

Nh

∑
i=1
‖hi(Xi,Zi)‖2

Σi
, (1.6)

where hi ∈ {g2v,g3v} represents a single two- or three-view constraint that is a func-
tion of several camera poses Xi ⊂ X and image observations Zi in the appropriate
views, and Nh is the overall number of such constraints. One can observe that the
cost function JLBA does not contain any 3D points as variables.

Note that an exact marginalization of 3D points p(X |Z) = ∫L p(X ,L|Z)dL is an-
other alternative, however, as discussed in the sequel, it densifies the matrices and
therefore will not necessarily result in computational gain. Algebraic elimination
of 3D points following the approach discussed above avoids some of this densifi-

2 When adding a new camera into the optimization we initialize its pose using a three-view con-
straint g3v, while keeping the poses of the other two cameras fixed.
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cation by discarding a certain amount of information. As a result, the inference is
performed only over the camera poses and is typically significantly faster than con-
ventional bundle adjustment at the cost of a certain degradation in accuracy. The
analysis of this tradeoff is further discussed in Section 1.4.

1.3.3 Incremental Smoothing

The second component in iLBA is the recently-developed incremental smoothing
[19, 18], an efficient nonlinear optimization technique that exploits sparsity and re-
uses calculations when possible. Below we review the main concepts of this tech-
nique, and refer the reader to [19, 18] for further details.

1.3.3.1 Factor Graph Representation

The incremental smoothing technique uses the factor graph graphical model [23]
to represent a given factorization of the joint probability distribution function (pdf).
Formally, a factor graph is a bipartite graph G = (X ,F ,E ) with X ,F being vari-
able and factor nodes and E consisting of edges that connect between these two
variable groups. Each ith probabilistic term p(.) in the factorization of the joint pdf
is represented by a factor node f ∈F that is connected by edges e ∈ E to variable
nodes Xi ⊂X that are involved in p(.).

In case of bundle adjustment, the factorization of the joint pdf p(X ,L|Z) is given
by Eq.(1.1), and defining the projection factor for some view x, landmark l and
image observation z as

fpro j (x, l)
.
= exp

(
−1

2
‖z− pro j (x, l)‖2

Σ

)
,

the factor graph formulation can be trivially written as

p(X ,L|Z) ∝ ∏
i

∏
j∈Mi

fpro j (xi, l j) .

In order to represent LBA in a factor graph, a suitable joint probability distribution
function pLBA (X |Z) should be formulated first. Since the residual errors of three-
view constraints (1.3)-(1.5) have been shown [13] to be of Gaussian distribution,
the LBA pdf and the two- and three-view factors can be defined as

pLBA (X |Z) ∝

Nh

∏
i=1

f2v/3v (Xi,Zi) , (1.7)

and
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f2v (xk,xl)
.
= exp

(
−1

2
‖g2v (xk,xl ,zk,zl)‖2

Σ2v

)
(1.8)

f3v (xk,xl ,xm)
.
= exp

(
−1

2
‖g3v (xk,xl ,xm,zk,zl ,zm)‖2

Σ3v

)
, (1.9)

where the covariance matrices Σ2v and Σ3v are given in [13].
Figure 1.5b illustrate factor graphs that represent p(X ,L|Z) and pLBA (X |Z) in a

simple case of 4 camera poses observing 2 different 3D points. Each method uses
different factors as discussed above.

1.3.3.2 Incremental Inference

Computing a MAP estimate of a given joint pdf typically involves a nonlin-
ear optimization, where in each iteration a linearized system of the form ∆ ∗ =
argmin∆ (A∆ −b) is solved. To that end, the large sparse Jacobian matrix A is fac-
torized, e.g. using QR factorization, and an equivalent system R∆−d, with d .

=QT b
is obtained. Since R is upper triangular, this system can be easily solved, in a process
known as back-substitution.

Instead of calculating a factorization of the Jacobian A from scratch, the matrix R
from the previous factorization can be updated with new information. Incremental
smoothing performs this operation very efficiently using graphical models [19, 18]:
The factor graph is eliminated into a Bayes net using a calculated elimination or-
der, and can be also converted into Bayes tree. Both graphical models represent the
sparse factorized matrix R (which is the square root information matrix). Updating a
factorization involves identifying what parts in the Bayes net (tree) are affected and
re-eliminating only these variables. Additionally, tracking the validity of lineariza-
tion point of each variable allows to perform selective re-linearization, instead of
always re-linearizing all variables, while still recovering the MAP estimate up to a
tolerance [19, 18].

1.4 Probabilistic Analysis of Light Bundle Adjustment

This section analyzes how well the LBA distribution pLBA (X |Z) represents the true
density p(X |Z). An exact calculation of the latter would marginalize the landmarks
from the joint p(X ,L|Z)

p(X |Z) =
∫
L

p(X ,L|Z)dL.

While in practice, LBA represents a similar probability density over cameras as
BA, there are two root effects that cause the LBA distribution to be an approxi-
mation of the true density: First, LBA discards some mutual information in large
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Fig. 1.5: Factor graph formulation for (a) BA and (b) LBA. (c) Factor graph after
marginalizing out the landmark l1.

camera cliques, by considering only the mutual information between camera pairs
and triplets introduced by them observing the same landmark. Bundle adjustment,
on the other hand, induces mutual information between all cameras observing the
same landmark. Second, LBA duplicates some information for image measurements
used in multiple factors, double-counting measurements that appear in multiple two-
or three-view factors.

As an example of both of these effects, consider observing a landmark l by four
views x1,x2,x3 and x4, as illustrated in Figure 1.5. The joint pdf is given by

p(X4, l|Z4) ∝

4

∏
i=1

fpro j (xi, l) , (1.10)

where X4 and Z4 denote the four camera poses and the four image observations,
respectively. On the other hand, the LBA pdf is

pLBA (X4|Z4) ∝ f2v (x1,x2) f2v (x2,x3) f3v (x1,x2,x3)

f2v (x3,x4) f3v (x2,x3,x4) (1.11)

which corresponds to the set of two- and three-view factors, as shown in Figure 1.5.
The first effect, discarding of mutual information, can be seen when comparing

the LBA pdf with the pdf resulting from eliminating the landmarks from the BA pdf,
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p(X4|Z4) =
∫
X4

p(X ,L|Z)dX4 = p(x1,x2,x3,x4|z1,z2,z3,z4) (1.12)

The result in the case of BA is a single clique over all cameras. In general, there
is no way to exactly factor such a dense clique in a way that reduces complexity.
The multiple factors of LBA over pairs and triplets (Eq. (1.11)) reduce complexity
instead by discarding some “links” that would otherwise be introduced between
cameras.

The second effect, duplication of some image measurement information, can be
seen in the sharing of cameras between LBA factors in Eq. (1.11). Any two fac-
tors sharing a camera in common both use the information from the shared camera,
effectively duplicating it. For example, f2v (x1,x2) and f2v (x2,x3) both use the in-
formation from the measurements in camera 2.

This duplication of information happens since the two- and three-view factors
were assumed to have independent noise models, represented by the covariance
matrix Σi for the ith factor, and therefore could be separately written in the LBA
pdf (1.7). This assumption is violated for factors that share measurements, as in
the example above. One approach to avoid double counting is therefore to aug-
ment such factors, while accounting for the fact that the same measurement is in-
volved by appropriate cross-covariance terms in the (augmented) covariance matrix.
For example, for any two factors representing constraints ga and gb, we can define
faug

.
= exp

(
− 1

2

∥∥gaug
∥∥2

Σaug

)
, with gaug

.
=
[

ga gb
]T and the augmented covariance

matrix Σaug :

Σaug
.
=

[
Σa Σab
Σba Σb

]
(1.13)

where the cross-covariance terms Σab are non-zero when the constraints share
measurements. However, since multiple factors are combined into a single multi-
dimensional factor that involves all the variables in these individual factors, the
factor graph becomes denser. Therefore, such an approach is expected to have con-
siderable impact on computational complexity.

As we show in the next section, despite the above two aspects, the actual LBA
distribution is very similar to the true distribution p(X |Z). It is worth mentioning
that the presented probabilistic analysis is valid for other existing structure-less BA
methods [34, 31, 10] as well.

1.4.1 Datasets for Evaluation and Implementation

We use two datasets to evaluate how well the iLBA distribution pLBA (X |Z) repre-
sents the true density p(X |Z). In the first dataset (Cubicle) the camera observes a
cubicle desk in an open space environment from different viewpoints and distances
(see Figure 1.2). In the second dataset, Outdoor, the camera follows a trajectory en-
circling a courtyard and building and performing loop closures as shown in Figures
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1.1 and 1.6. Figure 1.7 shows typical images from these two datasets, while Table
1.1 provides further details regarding the number of views (N) and 3D points (M),
as well as the number of total observations in the two datasets.
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Bundle adjustment
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Fig. 1.6: Estimated trajectory in Outdoor dataset. LBA and conventional BA pro-
duce very similar results.

Dataset N, M, #Obsrv Avg. reproj. error [pix] Overall time [s]

iLBA iBA iLBA iBA

Cubicle 148, 31910, 164358 0.552 pix 0.533 pix 581 6024

Outdoor 308, 74070, 316696 0.418 pix 0.405 pix 3163 26414

Table 1.1: Dataset details and performance of iLBA and BA: Re-projection errors
and computational cost using incremental smoothing in all methods.

All methods were implemented using the GTSAM factor graph optimization li-
brary3 [3, 18]. Incremental smoothing was used in all cases, denoted by the prefix
i (i.e. iLBA and iBA). Image correspondences, as well as the camera calibration
matrices, were obtained by first running Bundler4 [33] on each dataset. Additional
implementation details can be found in [13].

3 https://borg.cc.gatech.edu/.
4 http://phototour.cs.washington.edu/bundler.
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(a) (b)

Fig. 1.7: Typical images in the Cubicle (a) and Outdoor (b) datasets.

1.4.2 Evaluation

In this section we compare the distributions of iLBA and incremental BA using two
real imagery datasets. We first discuss how this comparison is made, present MAP
estimate and computational cost of each method in Section 1.4.2.2 and then focus
on estimated uncertainties by the two approaches in Section 1.4.2.3.

1.4.2.1 Method for Comparing the PDFs of LBA and BA

Because computing the true marginal over cameras for BA p(X |Z) is not tractable
in closed form, we use an alternate method to compare the pdfs of LBA and BA.
This method evaluates how well LBA and BA agree in both the absolute uncertainty
of each camera in a global frame, and the relative uncertainty between all pairs of
cameras.

In order to compare uncertainties, we first assume that pLBA (X |Z) and p(X |Z)
both are well-approximated as multivariate Gaussian distributions about their MAP
estimates

pLBA (X |Z) = N (µLBA,ΣLBA)

p(X |Z) = N (µ,Σ) .

In order to compare relative uncertainty between cameras, we compare conditional
densities p(xi|x j,Z) between all pairs of cameras. This calculation quantifies how
well LBA agrees with BA in relative uncertainty, while avoiding calculating the
full covariance matrix on all cameras, which quickly becomes intractable for large
numbers of cameras. The conditionals are obtained by integrating out all variables
other than xi and x j,



Title Suppressed Due to Excessive Length 15

p(xi|x j,Z) =
∫

X\{xi,x j},L
p(X ,L|Z)/p(x j|Z) .

In practice, we do this analytically by approximating the joint as a Gaussian around
its MAP estimate, and applying sparse factorization,

p(X ,L|Z) = p
(
X\
{

xi,x j
}
,L|xi,x j,Z

)
p(xi|x j,Z) p(x j|Z) (1.14)

from which the desired conditional p(xi|x j,Z) can be read off.

1.4.2.2 MAP estimate and Computational Cost

Before discussing probabilistic aspects, we show performance results, in terms of
accuracy of the MAP estimate and computational complexity. As seen in Table 1.1
and Figure 1.6, while iLBA yields a similar, but a bit degraded accuracy, the com-
putational cost of iLBA is 8-10 times faster than incremental BA.

1.4.2.3 Estimated Camera Pose Uncertainty

We compare the probability density of the cameras estimated by iLBA to that of
incremental BA by comparing their discrepancy both in the marginal uncertainty
of each camera, and in relative uncertainty between each camera pair, as described
in Section 1.4.2.1. We provide details as to how this comparison was made in the
Appendix.

A comparison of the absolute uncertainty for the Cubicle dataset is given in Fig-
ure 1.8 and Figures 1.9a-1.9b. Figure 1.8a compares, for each camera pose i, be-
tween the covariance trace of Σ i

LBA and Σ i
BA. As seen, the initial uncertainty is very

small and it increases as the camera moves around the cubicle deck and drops to
low values when the camera captures previously-observed areas thereby providing
loop-closure measurements. Figure 1.8b describes the interaction between the un-
certainty of each view and the number of factors that involve this view. As expected,
it can be seen that the covariance is higher when less factors are involved and vice
versa.

Overall, the absolute uncertainties in LBA and BA are very similar. This can
be also observed in Figures 1.9a-1.9b that show a histogram of the discrepancy
(1.19) both for position and orientation terms. Typical position discrepancies are
near−10−4 meters. The discrepancies for relative uncertainties are given in Figures
1.9c-1.9d for position and orientation terms.

Figure 1.10 shows the discrepancy histograms for the Outdoor dataset. The ab-
solute and relative discrepancies between LBA and BA are small, e.g. less than 5
centimeters in the absolute position for a trajectory that spans an area of 120×150
meters (cf. Figure 1.6), and on the order of 10−4 radians for the absolute rotation
uncertainty.
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Our conclusion from this evaluation is that the uncertainties estimated using
iLBA represent well the uncertainties of incremental BA and therefore can be used
instead of the later, e.g. in the context of establishing data association.
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Fig. 1.8: Cubicle dataset: (a) Covariance trace of each camera pose. (b) Trace of
covariance and number of factors in LBA formulation, both are normalized to 1.
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Fig. 1.9: Discrepancy histograms for the Cubicle dataset: Absolute position (a) and
orientation (b); Relative position (c) and orientation (d) between every camera pair
in the sequence.

1.5 Application iLBA to Robotic Navigation

While incremental light bundle adjustment has been discussed thus far in the con-
text of structure from motion problems, it is particularly attractive also to robotic
navigation where different sensors are often available.

In this section we extend iLBA to robotic navigation and consider the challeng-
ing configuration of a robot equipped only with high-rate inertial navigation sensors
(IMU) and a monocular camera. We show that this information fusion problem can
be solved using incremental smoothing and adapt a recently-developed technique
[26] for summarizing consecutive IMU measurements to obtain high-rate perfor-
mance. We present proof-of-concept results using a synthetic aerial scenario.

Slightly abusing the previous notation, we redefine x to be the navigation state,
comprising robot pose (position and orientation) and velocity. The IMU calibration
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Fig. 1.10: Discrepancy histograms for the Outdoor dataset: Absolute position (a)
and orientation (b); Relative position (c) and orientation (d) between every camera
pair in the sequence.

parameters are denoted by b; although in this section no specific parametrization is
assumed, we will refer to b as IMU bias.

1.5.1 Formulation

As standard in navigation literature [5], we use the probabilistic motion model

p
(
xk+1|xk,bk,zIMU

k
)

∝ exp
(
−1

2

∥∥xk+1−hIMU (xk,bk,zIMU
k
)∥∥2

ΣIMU

)
.
= f IMU (xk+1,xk,bk)

(1.15)
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to represent the distribution over the state xk+1 given previous state xk, an IMU
measurement zIMU

k and IMU calibration, that we will refer to as bias, bk. The func-
tion hIMU represents the nonlinear discrete inertial navigation equations [5]. The
time evolution of IMU bias is modeled using some dynamics function hb and is
expressed probabilistically as

p(bk+1|bk) ∝ exp
(
−1

2

∥∥∥bk+1−hb (bk)
∥∥∥2

Σb

)
.
= f bias (bk+1,bk) . (1.16)

Fusing information from IMU and camera sensors using LBA framework then in-
volves calculating the MAP estimate of the following joint probability distribution
function:

p(Xk,Bk|Zk) ∝

k−1

∏
s=0

[
f IMU (xs+1,xs,bs) f bias (bs+1,bs)

ns

∏
i=1

f2v/3v (Xsi)

]
, (1.17)

where we used the IMU and bias factors f IMU and f bias defined in Eqs. (1.15)-
(1.16), with ΣIMU and Σb representing the corresponding process covariance matri-
ces, and the overall set of IMU biases denoted by Bk

.
=
[

bT
1 · · · bT

k

]T ; in practice,
since these tend to only have slow dynamics, it makes sense to describe this process
in some lower rate [15, 16]. In Eq (1.17), ns+1 is the number of two- and three-
view factors that are added between each current state xs+1 and past states. Thus, if
xa ∈ Xsi then a≤ s+1.

While the MAP estimate X∗k ,B
∗
k = argmaxXk,Bk p(Xk,Bk|Zk) can be calculated

using incremental smoothing, high-rate performance becomes infeasible: Number
of variables in the optimization rapidly increases as a new navigation state is intro-
duced at IMU rate (for each new IMU factor). Moreover, number of variables that
need to be re-calculated rapidly increases when new two- and three-view factors are
added to the graph.

To get a better understanding of this aspect, it is beneficial to first consider only
IMU observations. Adding new IMU and bias factors involve only re-eliminating the
two past navigation and bias states regardless to the graph size. This is illustrated
in Figure 1.11 for two consecutive time instances t4 and t5. The figure shows both
factor graphs and bayes nets with the latter representing the square root information
matrix R. The nodes that were modified from the previous Bayes net are shown in
Figure 1.11d in red.

Considering now also a camera sensor, adding two- and three-view factors (or
projection factors for bundle adjustment) would require re-eliminating many more
variables. While the exact number depends on variable elimination ordering, typ-
ically at least the variables in between the variables involved in the new factors
will have to be re-eliminated. For example, adding a single two-view factor (Fig-
ure 1.12a) most probably will involve re-eliminating the majority of the variables
x1− x5 and b1− b4. Adding other multi-view factors that involve additional nav-
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igation states will require re-eliminating many more variables, and thus high-rate
performance is only possible for a limited time.

In the next section we discuss a solution to this problem.
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Fig. 1.11: (a)-(b) Factor graphs and (c)-(d) Bayes nets for the pure-IMU case in two
consecutive time instances. Adding IMU and bias factors involves re-eliminating
only 2 past nodes. Modified parts are marked in red.

1.5.2 Equivalent IMU Factor

In this section we adopt a recently-developed technique [26] for IMU measurements
pre-integration that allows to reduce the number of variables and factors in the opti-
mization, resulting in significantly improved computational complexity.

The idea is to integrate consecutive IMU measurements between two time in-
stances ti and t j into a single component, denoted by ∆xi→ j, comprising the accu-
mulated change in position, velocity and orientation, represented respectively by
∆ pi→ j,∆vi→ j and the rotation matrix Ri

j:

∆xi→ j
.
=
{

∆ pi→ j,∆vi→ j,Ri
j
}
= η

(
ZIMU

i→ j ,bi
)
,

where ZIMU
i→ j is the set of IMU measurements between the time instances ti and t j, that

are corrected using the bias bi, and η is a known non-linear function that describes
the IMU measurements pre-integration process. One can now use ∆xi→ j to predict
x j based on the current estimate of xi. Let hEquiv represent this predicting function.

We can then define an equivalent IMU factor [16] f Equiv as
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Fig. 1.12: (a) Factor graph with a single two-view factor with IMU and bias factors;
(b) The corresponding factor graph using an equivalent IMU factor; (c) Factor graph
with many two- and three-view factors as well as equivalent IMU and bias factors.

f Equiv (x j,xi,bi)
.
= exp

(
−1

2

∥∥x j−hEquiv (xi,bi,∆xi→ j)
∥∥2

Σ

)
, (1.18)

which involves only the variables x j,xi and bi for any reasonable5 two time instances
ti and t j. Figure 1.12b illustrates the conceptual difference between the conventional
and equivalent IMU factors.

The approach for calculating ∆xi→ j involves pre-integrating the IMU measure-
ments while expressing them in the navigation frame. However, this will require
re-calculating ∆xi→ j from scratch each time the rotation estimate changes, i.e. each
re-linearization of xi. To resolve this, as proposed in [26], the different components
in ∆xi→ j are expressed in the body frame of the first time instant (i.e. ti), which
allows re-linearizing the factor (1.18) without recalculating ∆xi→ j. The reader is
referred to [26] for further details.

The equivalent IMU factor allows to significantly reduce the number of vari-
ables and factors in the optimization, and enables high-rate performance while us-
ing efficient optimization techniques. This is illustrated in Figure 1.12c, that shows
a factor graph with two- and three-view factors and the equivalent IMU factor bridg-

5 The original derivation in [26] neglects Earth curvature and Earth rotation, however it can be
extended to the more general case which assumes the gravity vector and the rotation rate of the
navigation frame with respect to an inertial frame are constant. The time instances ti, t j should be
chosen such that these assumptions are satisfied.
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ing between navigation states (variables) from different time instances. Note that a
conventional IMU factor would require adding consecutive navigation states to the
graph.

Furthermore, since in typical navigation systems a navigation solution xt is re-
quired in real time, i.e. each time an IMU measurement is obtained, one can predict
xt using the accumulated component ∆xi→ j and the current estimates x̂i, b̂i of xi
and bi, in a parallel process and without incorporating xt into the optimization, i.e.
hEquiv

(
x̂i, b̂i,∆xi→ j

)
.

1.5.3 Evaluation in a Simulated Aerial Scenario

In this section we present an evaluation of the described extension of LBA to robotic
navigation in a realistic aerial scenario covering an area of about 2× 1.5 km as
shown in Figure 1.13a. We also compare LBA to the BA approach, both using the
equivalent IMU factors and incremental smoothing. A statistical study of the ap-
proach using a smaller scenario is reported in a conference version of this paper
[12].

In the simulated scenario, the aerial vehicle gradually explores different areas and
occasionally re-visits previously observed locations thereby providing loop closure
measurements. The flight is at a constant height of 200 meter above mean ground
level, with a 40 m/s velocity. The aerial vehicle travels a total distance of about 13
km in 700 seconds. A medium-grade IMU and a single downward-facing camera,
operating at 100 Hz and 0.5 Hz, were used.

The 100 Hz ideal IMU measurements were corrupted with a constant bias and a
zero-mean Gaussian noise in each axis. Bias terms were drawn from a zero-mean
Gaussian distribution with a standard deviation of σ = 10 mg for the accelerometers
and σ = 10 deg/hr for the gyroscopes. The noise terms were drawn from a zero-
mean Gaussian distribution with σ = 100 µg/

√
Hz and σ = 0.001 deg/

√
hr for the

accelerometers and gyroscopes. Visual observations of unknown 3D points were
corrupted by a zero-mean Gaussian noise with σ = 0.5 pixels.

The estimated trajectory by LBA and BA, compared to ground truth and to pure
IMU integration, is shown in Figure 1.13a, with position estimation errors given in
Figure 1.13b. One can observe the fast drift of IMU-based dead reckoning, while
both LBA and BA yield estimates close to ground truth with similar levels of ac-
curacy. Note that only IMU and monocular cameras are used, without GPS or any
additional sensors, producing position estimates with a typical estimation error of
5−10 meters, with a highest estimation error of 20 meters.

While a similar estimation accuracy was obtained both by LBA and BA, pro-
cessing time is different. The latter depends on the number of feature observations
per frame γ , which affects the number of observed landmarks. We therefore dis-
cuss processing time for two different values of feature observations per frame,
γ = {200,500}, while performing exactly the same trajectory. In the former case,
number of landmarks is 9.5k with total number of image observations of about 66k,
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while in the latter case, number of landmarks and total number of image observa-
tions are 23k and 165k, respectively.

Processing time for these two cases is shown in Figures 1.14a-1.14b and sum-
marized in Table 1.2. As seen, while BA exhibits lower processing time now and
then, in particular when far from loop closure frames, the overall processing time is
much smaller in the LBA case. One can clearly observe the spikes in BA, that are
the result of massive variable re-elimination and re-linearization triggered by loop
closures and proceeds for many frames afterwards. Overall, the average processing
time per frame in the shown scenario for γ = 200 features is 0.27 and 0.59 seconds
for LBA and BA, respectively. Increasing number feature observations per frame to
γ = 500, leads to further difference in average processing time, as shown in Figure
1.14b: 0.57 and 1.95 seconds for LBA and BA. Thus, LBA is about 2 times faster,
on average, than BA for γ = 200 features, and almost 5 times faster for γ = 500
features.

#Features #Landmarks #Observations Ave. Time [sec]
per frame BA LBA Ratio

200 9.5k 66k 0.59 0.27 2.19
500 23k 165k 1.95 0.57 3.42

Table 1.2: Average processing time per camera frame.

1.6 Conclusions and Future Work

This paper focused on incremental light bundle adjustment (iLBA) [13], a structure-
less bundle adjustment approach that reduces computational complexity by alge-
braically eliminating the 3D points using multiple view geometry constraints and
utilizing an efficient incremental optimization - incremental smoothing. Our first
contribution is a theoretical probabilistic analysis of iLBA, where we identified the
root effects that may cause the underlying probability distribution of iLBA to be
somewhat different from the probability distribution over camera poses that is cal-
culated from full bundle adjustment. Using two real-imagery datasets we demon-
strated that, in practice, these two probability distributions are very close in terms
of the maximum a posteriori estimate and the estimated uncertainty.

The second contribution of this paper is an extension of iLBA to robotic nav-
igation, where besides a camera sensor, additional sensors operating at different
rates typically exist. In particular, we considered the problem of fusing informa-
tion between high-rate inertial navigation sensors (IMU) and vision observations.
Following the iLBA concept, our formulation avoids explicit estimation of camera-
observed 3D points, and utilizes a recently developed technique for IMU pre-
integration to significantly reduce the number of variables in the optimization. We
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Fig. 1.13: (a) Top view of estimated trajectory. Inertial navigation quickly drifts
while both LBA and BA result in bounded navigation errors over time; (b) Position
estimation errors (norm).

demonstrated, based on a realistic synthetic aerial scenario, that iLBA for robotic
navigation produces comparable state estimation accuracy to bundle adjustment for-
mulation, where 3D points are explicitly inferred, while reducing average computa-
tional time by a factor of 2-3.5.

Future research will focus on developing approaches for optimally choosing past
camera frames when adding new multi-view geometry constraints and on extensive
experimental evaluation of the described application of iLBA to robotic navigation.
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Fig. 1.14: (a) and (b) Processing timing comparison between the proposed method
and bundle adjustment for 200 and 500 features per frame. Both methods use incre-
mental smoothing and equivalent IMU factors.

Appendix

This appendix presents further details regarding the metric used to compare esti-
mated camera pose uncertainty in Section 1.4.2.

To compare two covariance matrices Σ1 and Σ2, we define a discrepancy measure
of the square roots of the traces of each covariance matrix,

discrepancy(Σ1,Σ2)
∆
= c
(√

tr(Σ1)−
√

tr(Σ2)
)
, (1.19)
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where c is a scale factor that converts the unit-less 3D reconstructions into meters,
which we determined by physically measuring the dataset collection area, or su-
perimposing the trajectory onto a satellite image. We compute this separately for
the blocks of the covariance matrices corresponding to rotation and translation. The
units of the discrepancy are radians for rotation (c = 1) and meters for translation,
with c properly determined to correct the reconstruction scale.

For example, to compare the Gaussian-approximated conditional density of LBA
pLBA (xi|x j,Z) with covariance Σ

i| j
LBA with that of BA p(xi|x j,Z) with covariance

Σ
i| j
BA, we compute discrepancy

(
Σ

i| j
LBA,Σ

i| j
BA

)
. Similarly for marginals pLBA (xi|Z)

and pBA (xi|Z), we compute discrepancy
(
Σ i

LBA,Σ
i
BA

)
. A positive discrepancy value

means that the uncertainty estimate of LBA is conservative, whereas a negative dis-
crepancy value means that the uncertainty estimate of LBA is overconfident.

References

1. S. Avidan and A. Shashua. Threading fundamental matrices. IEEE Trans. Pattern Anal.
Machine Intell., 23(1):73–77, 2001.

2. D. Crandall, A. Owens, , N. Snavely, and D. Huttenlocher. Discrete-continuous optimiza-
tion for large-scale structure from motion. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 3001–3008, 2011.

3. F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and mapping via
square root information smoothing. Intl. J. of Robotics Research, 25(12):1181–1203, Dec
2006.

4. R.M. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state filters for view-based
SLAM. IEEE Trans. Robotics, 22(6):1100–1114, Dec 2006.

5. J.A. Farrell. Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, 2008.
6. Strasdat H., Montiel J. M. M., and Davison A. J. Scale drift-aware large scale monocular

SLAM. In Robotics: Science and Systems (RSS), Zaragoza, Spain, June 2010.
7. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press, 2000.
8. V. Ila, J. M. Porta, and J. Andrade-Cetto. Information-based compact Pose SLAM. IEEE

Trans. Robotics, 26(1), 2010. In press.
9. V. Indelman. Navigation Performance Enhancement Using Online Mosaicking. PhD thesis,

Technion - Israel Institute of Technology, 2011.
10. V. Indelman. Bundle adjustment without iterative structure estimation and its application to

navigation. In IEEE/ION Position Location and Navigation System (PLANS) Conference,
April 2012.

11. V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein. Real-time vision-aided localization and
navigation based on three-view geometry. IEEE Trans. Aerosp. Electron. Syst., 48(3):2239–
2259, July 2012.

12. V. Indelman, A. Melim, and F. Dellaert. Incremental light bundle adjustment for robotics
navigation. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), November
2013.

13. V. Indelman, R. Roberts, C. Beall, and F. Dellaert. Incremental light bundle adjustment. In
British Machine Vision Conf. (BMVC), September 2012.

14. V. Indelman, R. Roberts, and F. Dellaert. Probabilistic analysis of incremental light bundle
adjustment. In IEEE Workshop on Robot Vision (WoRV), January 2013.

15. V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert. Factor graph based incremental smoothing
in inertial navigation systems. In Intl. Conf. on Information Fusion, FUSION, 2012.



Title Suppressed Due to Excessive Length 27

16. V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert. Information fusion in navigation systems
via factor graph based incremental smoothing. Robotics and Autonomous Systems, 61(8):721–
738, August 2013.

17. M. Kaess, V. Ila, R. Roberts, and F. Dellaert. The Bayes tree: An algorithmic foundation for
probabilistic robot mapping. In Intl. Workshop on the Algorithmic Foundations of Robotics,
Dec 2010.

18. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert. iSAM2: Incremental
smoothing and mapping using the Bayes tree. Intl. J. of Robotics Research, 31:217–236, Feb
2012.

19. M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and mapping.
IEEE Trans. Robotics, 24(6):1365–1378, Dec 2008.

20. M. Kaess, S. Wiliams, V. Indelman, R. Roberts, J.J. Leonard, and F. Dellaert. Concurrent
filtering and smoothing. In Intl. Conf. on Information Fusion, FUSION, 2012.

21. K. Konolige. Sparse sparse bundle adjustment. In British Machine Vision Conf. (BMVC),
September 2010.

22. K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment to realtime visual map-
ping. IEEE Trans. Robotics, 24(5):1066–1077, 2008.

23. F.R. Kschischang, B.J. Frey, and H-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Trans. Inform. Theory, 47(2), February 2001.

24. M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic Sparse Bundle
Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.

25. F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, pages 333–349, Apr 1997.

26. T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-dynamic motion in built
environments without initial conditions. IEEE Trans. Robotics, 28(1):61–76, Feb 2012.

27. Y. Ma, S. Soatto, J. Kosecka, and S.S. Sastry. An Invitation to 3-D Vision. Springer, 2004.
28. A.I. Mourikis and S.I. Roumeliotis. A multi-state constraint Kalman filter for vision-aided

inertial navigation. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 3565–
3572, April 2007.

29. A.I. Mourikis and S.I. Roumeliotis. A dual-layer estimator architecture for long-term local-
ization. In Proc. of the Workshop on Visual Localization for Mobile Platforms at CVPR,
Anchorage, Alaska, June 2008.

30. K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjustment for large-scale 3D recon-
struction. In Intl. Conf. on Computer Vision (ICCV), Rio de Janeiro, October 2007.
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