Distributed Robust Localization from Arbitrary Initial Poses via EM and Model Selection

Vadim Indelman

Collaborators: Erik Nelson, Jing Dong, Nathan Michael and Frank Dellaert
Collaborative Localization and Mapping

- Important in a variety of scenarios
 - Exploration in unknown/uncertain, dangerous environments
 - Search and rescue
 - Surveillance, tracking …

- Cooperative inference requires
 - Sharing relevant information (observations, marginals over variables of interest)
 - Correct interpretation (data association)
 - Robustness to outliers
Motivating Scenario

- Robots are initially *unaware* of each others’ location
- How to establish collaboration and perform multi-robot localization?
 - *Unknown* multi-robot data association
 - *Unknown* initial relative poses between robots

* Slide adapted from Nelson14iser
Related Work

- **Known** data association and common reference frames
 - Full SLAM [Howard et al. 2006], [Andersson et al. 2008]
 - Pose SLAM (direct, indirect) [Roumeliotis et al. 2002], [Kim et al. 2010], [Indelman et al. 2012]
Related Work

- **Known** data association and common reference frames
 - Full SLAM [Howard et al. 2006], [Andersson et al. 2008]
 - Pose SLAM (direct, indirect) [Roumeliotis et al. 2002], [Kim et al. 2010], [Indelman et al. 2012]

- **Unknown** multi-robot data association and common reference frame
 - Full SLAM [Montijano et al. 2011], [Cunningham et al. 2012]
Related Work

- **Known** data association and common reference frames
 - Full SLAM [Howard et al. 2006], [Andersson et al. 2008]
 - Pose SLAM (direct, indirect) [Roumeliotis et al. 2002], [Kim et al. 2010], [Indelman et al. 2012]

- **Unknown** multi-robot data association and common reference frame
 - Full SLAM [Montijano et al. 2011], [Cunningham et al. 2012]

- **Robust** graph optimization ([single robot case – loop closures](#))
 - [Sunderhauf and Protzel 2012, 2013], [Latif et al. 2012], [Lee et al. 2013]

![Image 1](Lee et al. 2013)

![Image 2](Latif et al. 2012)

![Image 3](Sunderhauf and Protzel 2012, 2013)
This Work

- Multi-robot framework with
 - Unknown multi-robot data association
 - Unknown initial relative poses between robots
 - Pose SLAM approach

- How to establish multi-robot data association when robots start operating from unknown locations?

- Outline:
 - Batch, centralized framework
 - Incremental, distributed framework
Multi-Robot Correspondences

- If **no** common reference frame is available, what information to share?
 - Robots share **informative** observations (e.g. laser scans)

Saliency is calculated based on [Nieto et al., Robot. Auton. Syst., 2007]
Multi-Robot Correspondences

- If **no** common reference frame is available, what information to share?
 - Robots share **informative** observations (e.g. laser scans)
 - Calculate **candidate** multi-robot relative pose constraints
 - Collect into set \mathcal{F}
 - Includes (many) outliers

Arbitrary common reference frame

Ground truth
Probabilistic Formulation

- **Notations:**
 - \mathcal{F}: Multi-robot correspondences set
 - \mathcal{J}: Latent variables to indicate inliers/outliers

- Joint pdf over robot trajectories **and** multi-robot data association:

\[
p(X, J|Z) \propto \prod_r p(X^r|Z^r) \prod_{(r_1, r_2, k, l) \in \mathcal{F}} p(j_{k,l}^{r_1, r_2}) p(u_{k,l}^{r_1, r_2}|x_{k}^{r_1}, x_{l}^{r_2}, j_{k,l}^{r_1, r_2})
\]

- Only local measurements
- Data association
- Multi-robot measurement likelihood, given data association
- Each multi-robot correspondence
Measurement likelihood

\[p(u_{k,l}^{r_1,r_2} | x_k^{r_1}, x_l^{r_2}) \propto \exp \left(-\frac{1}{2} \left\| \text{err} \left(u_{k,l}^{r_1,r_2}, x_k^{r_1}, x_l^{r_2} \right) \right\|_\Sigma^2 \right) \]

with

\[\text{err} \left(u_{k,l}^{r_1,r_2}, x_k^{r_1}, x_l^{r_2} \right) = \sum_{k,l} f \left(x_k^{r_1}, x_l^{r_2} \right) \]

measured \hspace{1cm} predicted

\[\begin{align*}
\hat{p} & = x_k^{r_1} \oplus (T_{r_2}^{r_1} \oplus x_l^{r_2}) \\
\text{Unknown!!}
\end{align*} \]
Measurement likelihood

\[p(u_{k,l}^{r_1,r_2} | x_{k}^{r_1}, x_{l}^{r_2}) \propto \exp \left(-\frac{1}{2} \| err \left(u_{k,l}^{r_1,r_2}, x_{k}^{r_1}, x_{l}^{r_2} \right) \|_2^2 \right) \]

with

\[err \left(u_{k,l}^{r_1,r_2}, x_{k}^{r_1}, x_{l}^{r_2} \right) \triangleq u_{k,l}^{r_1,r_2} \ominus h(x_{k}^{r_1}, x_{l}^{r_2}) \]

measured predicted

\[\triangleq x_{k}^{r_1} \ominus (T_{r_2}^{r_1} \oplus x_{l}^{r_2}) \]

Error distribution for all correspondences:

Must **first** infer a common reference frame \(T_{r_2}^{r_1} \)!

Inliers
Outliers

\[1\sigma \text{ uncertainty} \]

\[X [m] \]

\[Y [m] \]

\[X [m] \]

\[Y [m] \]
Key Observation

- Given robot local trajectories, relative initial pose can be calculated from each candidate multi-robot correspondence
 - **Only** inliers produce similar transformations
 - Objective: identify cluster

Initial relative pose between two robots (planar case: x, y, θ) [synthetic data]

10% outliers

40% outliers

85% outliers
Key Observation

- Given robot local trajectories, relative initial pose can be calculated from each candidate multi-robot correspondence
 - **Only** inliers produce similar transformations
 - Objective: identify cluster

Initial relative pose between two robots (planar case: x, y, θ)
[real data]
Inference Over Common Reference Frame via EM

- MAP estimate of $T^r_{r_2}$ given robot local trajectories (\hat{X}^{SR}):

$$\hat{T}^r_{r_2} = \arg \max_{T^r_{r_2}} p \left(T^r_{r_2} | \hat{X}^{SR}, Z \right) = \arg \max_{T^r_{r_2}} \sum_{J} p \left(T^r_{r_2}, J | \hat{X}^{SR}, Z \right)$$

- J: Latent binary variables to indicate inliers/outliers

- EM formulation ($T \doteq T^r_{r_2}$):

$$\hat{T}^{(i)} = \arg \max_{T} \sum_{J} p \left(J | \hat{T}^{(i-1)}, \hat{X}^{SR}, Z \right) \log \left[p \left(T, J | \hat{X}^{SR}, Z \right) \right]$$

Local trajectories

$$\hat{X}^r = \arg \max_{X^r} p \left(X^r | Z^r \right)$$

$$\hat{X}^{SR} \doteq \left\{ \hat{X}^r \right\}_{r=1}^R$$

E step M step
Convergence only to **local** minima

Therefore:
- Start process from several initial guesses of $T_{r_2}^{r_1}$
- Results in several locally-optimal **hypotheses** (inliers/outliers, estimated $T_{r_2}^{r_1}$)
- Which one to choose? (next)
Inference Over Robot Trajectories

- Once a common reference frame is established:
 - Multi-robot localization becomes possible
 - Robot trajectories can be expressed in the same frame

- Infer robot trajectories via EM:

\[
\hat{X} = \arg \max_X \sum_J p(J|\hat{X}, Z) \log p(X, J|Z)
\]

- Identified common reference frame is used as \textit{initial guess} within measurement likelihood

\[
p(u_{r1}^{k,l}, u_{r2}^{l}, x_{r1}^{k}, x_{r2}^{l}) \propto \exp \left(-\frac{1}{2} \left\| \text{err} \left(u_{r1}^{k,l}, x_{r1}^{k}, x_{r2}^{l} \right) \right\|_{\Sigma}^2 \right)
\]
Results (Batch, Centralized)

Local trajectories; Arbitrary common reference frame

Indoor navigation

Estimated

Ground truth

Inliers
Outliers

Robot 1
Robot 2
Robot 3

[Diagram showing local trajectories for different robots and an indoor navigation scenario with estimated and ground truth trajectories]
Incremental Framework

- Challenges
 - Multiple hypotheses
 - How to know when to make a decision?
 - Robot trajectories and observed environments may initially not overlap
 - Perceptual aliasing

Candidate correspondences:

Arbitrary common reference frame

Ground truth trajectory
Incremental Framework (Cont.)

- Choosing an incorrect hypothesis:
Incremental Framework (Cont.)

- Approach
 - Hypothesis model-based selection
 - Chinese restaurant process hypothesis prior
Hypothesis Model-Based Selection

- Calculate probability of each hypothesis $h \in \mathcal{H}$

\[p\left(h|Z, \hat{X}^{SR}\right) \]

- Explicitly:

\[p\left(h|Z, \hat{X}^{SR}\right) \]

- Measurement likelihood
 - Prioritizes hypotheses
 - Does **not** address:
 - Is sufficient data available to choose a hypothesis?
 - Perceptual aliasing
Hypothesis Prior

- Introduce **null-hypothesis** – corresponds to perceptual aliasing
 - All correspondences are actually outliers

- Chinese restaurant process, assuming:
 - Robots operate in closed indoor environment
 - Eventually, will observe common places (not necessarily concurrently)
Hypothesis Prior (Cont.)

- **Chinese restaurant process**
 - Probability of observing a new place reduces over time
 - Use to discriminate between different hypotheses
 - As more data comes in – hypotheses priors become distinguishable

- **Example**
Results

As opposed to
Results - Experiments @ CMU

Trial T1

Trial T2

Trial T3

<table>
<thead>
<tr>
<th></th>
<th>Trial T1</th>
<th>Trial T2</th>
<th>Trial T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{R2}^{T1}</td>
<td>T_{R1}^{T1}</td>
<td>T_{R2}^{T1}</td>
<td>T_{R1}^{T1}</td>
</tr>
<tr>
<td>x (m)</td>
<td>-0.12</td>
<td>2.62</td>
<td>1.41</td>
</tr>
<tr>
<td>y (m)</td>
<td>-0.03</td>
<td>7.45</td>
<td>3.99</td>
</tr>
<tr>
<td>θ (rad)</td>
<td>-0.02</td>
<td>-1.57</td>
<td>0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trial T1</th>
<th>Trial T2</th>
<th>Trial T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{R2}^{T1}</td>
<td>T_{R1}^{T1}</td>
<td>T_{R2}^{T1}</td>
<td>T_{R1}^{T1}</td>
</tr>
<tr>
<td>x (m)</td>
<td>0.00</td>
<td>2.48</td>
<td>1.42</td>
</tr>
<tr>
<td>y (m)</td>
<td>0.00</td>
<td>7.50</td>
<td>3.90</td>
</tr>
<tr>
<td>θ (rad)</td>
<td>0.00</td>
<td>-1.57</td>
<td>1.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Trial T1</th>
<th>Trial T2</th>
<th>Trial T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error $|x,y|$ (m)</td>
<td>0.12</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td>Error θ (rad)</td>
<td>0.02</td>
<td>0.00</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Distributed Real-time Cooperative Localization and Mapping using an Uncertainty-Aware Expectation Maximization Approach

Jing Dong, Erik Nelson, Vadim Indelman, Nathan Michael, Frank Dellaert

Georgia Institute for Robotics and Intelligent Machines
Carnegie Mellon University
Technion Israel Institute of Technology
Conclusions

- **Collaborative inference from unknown initial poses and data association**
 - Key observation (clusters for inlier correspondences)
 - EM approach to infer common reference frames and data association
 - Once established, joint inference over robot poses

- **Distributed and incremental framework:**
 - Challenges: How to know when to make a decision? Perceptual aliasing
 - Model-based selection + hypothesis prior