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Abstract

We investigate the problem of planning under uncertainty, with ap-
plication to mobile robotics. We propose a probabilistic framework in
which the robot bases its decisions on the generalized belief, which is a
probabilistic description of its own state and of external variables of in-
terest. The approach naturally leads to a dual-layer architecture: an
inner estimation layer, which performs inference to predict the outcome
of possible decisions, and an outer decisional layer which is in charge of
deciding the best action to undertake. Decision making is entrusted to
a Model Predictive Control (MPC) scheme. The formulation is valid for
general cost functions and does not discretize the state or control space,
enabling planning in continuous domain. Moreover, it allows to relax the
assumption of maximum likelihood observations: predicted measurements
are treated as random variables, and binary random variables are used to
model the event that a measurement is actually taken by the robot. We
successfully apply our approach to the problem of uncertainty-constrained
exploration, in which the robot has to perform tasks in an unknown envi-
ronment, while maintaining localization uncertainty within given bounds.
We present an extensive numerical analysis of the proposed approach and
compare it against related work. In practice, our planning approach pro-
duces smooth and natural trajectories and is able to impose soft upper
bounds on the uncertainty. Finally, we exploit the results of this analysis
to identify current limitations and show that the proposed framework can
accommodate several desirable extensions.

1 Introduction

Autonomous navigation in complex unknown scenarios involves a deep inter-
twining of estimation and planning capabilities. A mobile robot is required to
perform inference from sensor measurements, in order to build a model of the
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surrounding environment and to estimate variables of interest. Moreover, it
has to plan actions, to accomplish given goals. If the environment in which
the robot operates is unknown or uncertain, robot decisions has to rely on the
estimates (the world model) coming from the inference process. This problem is
an instance of a partially observable Markov decision process (POMDP), which
describes a decisional process in Markovian systems, in which the state is not
directly observable. While POMDP are intractable in general (Kaelbling et al.,
1998), it is of practical interest to devise problem-specific solutions or approxi-
mations (e.g., locally optimal plans) that trade-off optimality for computational
efficiency. Efficient and reliable planning under uncertainty is crucial in many
application endeavors in which the robot operates in full or partial autonomy,
ranging from autonomous exploration, monitoring and surveillance, to robotic
surgery.

The estimation problem arising in robot navigation is now well understood.
State-of-the-art techniques for localization and mapping (SLAM) allow fast
solution of medium-large scenarios (Kaess et al., 2012; Konolige et al., 2010;
Kiimmerle et al., 2011; Kaess et al., 2008), using efficient nonlinear optimiza-
tion techniques, that exploit the structure of the underlying problem. These
techniques are able to manage a large number of heterogeneous measurements,
and compute a posterior on robot and world state (the belief), that is usually
parametrized in its first and second order moments.

On the other hand, planning under uncertainty is still attracting consider-
able attention from the robotic community, as few approaches are able to deal
with the complexity and time constraints of real-world problems. The planning
problem consists in establishing a map between the current belief and the action
space, such that the robot can autonomously determine a suitable action (e.g.,
a motion command), depending on its posterior (e.g., estimate of current robot
pose and landmarks positions). The complexity stems from the fact that robot
observations and dynamics are stochastic: after applying a motion command,
the actual robot position differs from the predicted one, due to actuation noise.
Even more important, the robot does not know, a-priori, which measurements
will be acquired and what the (future) sensor readings will be. A further source
of complexity is that in problems such as active sensing and active SLAM, the
motion strategy directly influences the amount and the quality of the acquired
measurements, making planning and estimation even more coupled.

While sometimes one can simply neglect the probabilistic aspects of the
problem, e.g., assuming that the current state estimate coincides with the true
state, several applications require dealing with the uncertainty. For instance, in
presence of large uncertainty, using the current estimate in place of the true state
can lead to catastrophic failures of the system; moreover, the policy computed
by the robot may have the explicit goal of minimizing some uncertainty metric
(e.g., active localization, informative path planning, active SLAM).

Overview of related work: Recent literature on planning is trying to go be-
yond three limitations that are common in related work: discretization, the
mazimum likelihood assumption, and the availability of prior knowledge of the
scenario. While we detail related work in Section 2, we anticipate an overview
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Figure 1: The robot starts from the center of the scenario, and has to visit a
sequence of goals, enumerated from 1 to 8, labeled with a red +. The robot
can also observe landmarks in the environment (black dots). (a) Our planner
works in a continuous domain and produces the red trajectory: the robot visits
goals 1-3; then, before moving to goal 4, performs a loop closure. Another loop
closure is performed when moving from goal 7 to 8. (b) Planning in discrete
domain produces a non-smooth and less natural trajectory (blue).

of these limitations.

Approaches relying on discretization approximate the state space or the
space of possible control as finite sets. This approximation is usually beneficial
from a computational standpoint: instead of computing a control action, discrete
approaches select the control action within a finite set of candidate control
actions. In general, this approximation sacrifices optimality, as the optimal plan
may not belong to the set of candidates. The suboptimal plans, produced by
discrete techniques, are usually less natural as discretization introduces artificial
perturbations on the planned trajectories (Fig. 1); moreover, the performance
of the approach heavily depends on the granularity of the discretization.

The second limitation is related to the assumption that the robot acquires
mazimum likelihood observations: since future observations are not given at
planning time, the robot assumes that it will acquire the most likely measure-
ments given the predicted belief. This assumption constitutes an approximation
for two reasons: the actual sensor measurements will be clearly different from
the expected ones; moreover, the robot does not know a-priori if a measure-
ment will be actually acquired (e.g., in active SLAM the robot may or may
not observe a landmark, depending on its position). The former issue has been
recently recognized and tackled in (Van Den Berg et al., 2012).

The third limitation is connected to the assumption that some prior knowl-
edge of the environment is available and the belief typically represents only robot
position. While this assumption leads to effective approaches (Van Den Berg
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Figure 2: (a) A UAV flies in an unknown region and observes natural landmarks
(yellow *). (b) From sensor observations, the UAV can estimate the posterior
over its own trajectory and landmarks position. The figure shows confidence
ellipsoids (for robot trajectory and landmarks estimates) and current landmark
observations (red lines connecting current robot position to each landmark). An
accompanying video in Multimedia Extension 1 (Appendix A) shows the entire
scenario considered in this figure.

et al., 2012; Prentice and Roy, 2009), in many interesting application scenarios
the robot has to operate in unknown or uncertain regions. These scenarios in-
clude aerial navigation in GPS-denied environments (a simplified illustration is
shown in Fig. 2a) and indoor navigation.

Paper contribution: In this work we address these three limitations. We
assume the robot operates in an unknown or uncertain scenario and model this
source of uncertainty as part of the belief space. Thus, contrarily to prior work
on belief-space planning that typically assumes the world model is given, our
extended belief space, which we call the generalized belief space (GBS), rep-
resents a joint probability distribution over the robot state and the state of
external variables of interest, such as position of 3D landmarks in the environ-
ment (Fig. 2b). We remark that the generalized belief space is nothing more
than a standard belief space over a larger state (Hauskrecht, 2000), and we use
this terminology to make explicit the fact that our state space also includes the
world state. Planning in GBS, similarly to planning in belief space (e.g. (Platt
et al., 2010; Erez and Smart, 2010; Van Den Berg et al., 2012)), is done in a
continuous domain. Moreover, we avoid the assumptions of mazimum likelihood
observations, and treat future measurements as random variables, as suggested
in (Van Den Berg et al., 2012). Going beyond (Van Den Berg et al., 2012), we
further model the uncertainty in the fact that a future measurement may be ac-
quired or not; the event of acquiring a future observation is modeled as a binary
random variable. Our approach is based on a Model Predictive Control (MPC)
scheme: at each time step the robot plans a suitable motion strategy over a
time horizon. The planner uses a dual-layer architecture: an inner estimation
layer, which performs inference to predict the outcome of possible decisions,
and an outer decisional layer which is in charge of deciding the best action to
undertake. The formulation is valid for general cost functions. We also develop



a formulation for a specific objective function that allows to tackle the problem
of uncertainty-constrained exploration, which is of practical interest in mobile
robotics. We present an extensive numerical analysis of the proposed approach
and use the results of the analysis to underline intrinsic limitation of our tech-
nique and of related work. In practice, our planning approach produces smooth
and natural trajectories, and is shown to be very effective in a large variety of
problem instances.

The present paper is an extension of the work presented in (Indelman et al.,
2013) and (Indelman et al., 2014). As a further contribution, in this manuscript
we present an extensive experimental evaluation (Section 7), with the aim of
testing the proposed approach in a large variety of challenging scenarios. This
paper also includes proofs (e.g, the derivation in Appendix B), and examples
(e.g., Section 8.1) that were omitted in the conference versions for space rea-
sons. Finally, here we try to give the reader some more insight on the problem,
discussing theoretical limitations and practical remarks regarding the proposed
approach.

Paper structure: The paper is organized as follows. Section 2 reviews related
work. Section 3 introduces the concept of generalized belief space, and gives a
formal statement of the problem. Section 4 presents our planning approach,
which is applicable to general cost functions. Section 5 clarifies the derivation
by tailoring the approach to a specific cost function. Section 6 provides imple-
mentation details, including the pseudo-code of our implementation. Section 7
presents experimental results, evaluating the proposed approach and comparing
it against related work. Section 8 discusses possible extensions of the proposed
approach. Conclusions are drawn in Section 9.

2 Related Work

The robotics literature on planning under uncertainty offers many heterogeneous
contributions. A recurrent idea is to restrict the state space or the control
space to few possible values. While discretization prevents obtaining an optimal
solution, it allows to frame the “computation” of a plan into a “selection” of
the best plan among few candidates. This usually implies a computational
advantage. A consistent research effort has been devoted to design suitable
metrics to quantify the quality of a candidate plan. The problem itself is not
trivial as the metric depends on the representation used for the environment
and on the inference engine. Examples of this effort are the work of Stachniss
et al. (Stachniss et al., 2004, 2005), Blanco et al. (Blanco et al., 2008), and
Du et al. (Du et al., 2011), in which particle filters are used as estimation
engine. The basic idea, in this case, is to identify potential targets in the
scenario (e.g., boundaries of unexplored regions, or loop closure opportunities),
and to compute a path to each of those targets; the planner “simulates” the
posterior along such paths, and selects the best path as the one that maximizes



a given objective function. Martinez-Cantin et al. (Martinez-Cantin et al., 2007)
and Bryson and Sukkarieh (Bryson and Sukkarieh, 2008) investigate planning
techniques in conjunction with the use of EKF for estimation. Martinez-Cantin
et al. (Martinez-Cantin et al., 2009) propose a Bayesian optimization method
that allows reducing the number of posterior evaluations. Huang et al. (Huang
et al., 2005) propose a model predictive control (MPC) strategy, associated with
EKF-SLAM. Leung et al. (Leung et al., 2006) propose an approach in which
the MPC strategy is associated with a heuristic based on global attractors. Sim
and Roy (Sim and Roy, 2005) propose A-optimal strategies for solving the active
SLAM problem. Carrillo et al. (Carrillo et al., 2012) provide an analysis of the
uncertainty metrics used in EKF-based planning. Other examples are (Kim and
Eustice, 2013; Valencia et al., 2011, 2013) in which the belief is assumed to be
a Gaussian over current and past poses of the robot.

While the approaches mentioned above are applied to mobile robot navi-
gation (the corresponding problem is referred to as active Simultaneous Local-
ization and Mapping), similar strategies can be found in the manipulation and
computer vision domains (e.g., next best view problem (Potthast and Sukhatme,
2011)). For instance, Kaelbling et al. (Kaelbling and Lozano-Pérez, 2011, 2012,
2013) propose an approach based on hierarchical goal regression for mobile ma-
nipulation. A related problem is also the so-called informative path planning
(although in these problems the estimation aspects are often neglected). A
greedy strategy for informative path planning is proposed by Singh et al. (Singh
et al., 2009), while a branch and bound approach is proposed by Binney et al.
in (Binney and Sukhatme, 2012). Hollinger et al. (Hollinger and Sukhatme,
2013) propose more efficient algorithms, based on rapidly-exploring random
trees and probabilistic roadmaps. These approaches usually assume that the
robot moves in a partially known environment; a remarkable property is that
the solutions, produced by those techniques, approach optimality when increas-
ing the runtime (which is exponential in the size of the problem).

Most of the algorithms discussed so far assume a specific cost function and
the optimization is performed over a discrete set of candidate controls or states
(e.g., robot position belongs to a uniformly-spaced grid). However, as mentioned
earlier, reasoning on a discrete space often leads to suboptimal paths (Fig. 1).
For this reason, recent efforts of the research community are pushing towards
the use of continuous-domain models in which commands belong to a continuous
set. Continuous models appear as more natural representations for real prob-
lems, in which robot states (e.g., poses) and commands (e.g., steering angles)
are not constrained to few discrete values. In (Bai et al., 2013), Bai et al. avoid
discretization by using Monte Carlo sampling to update an initial policy. Platt
et al. (Platt et al., 2010) apply linear quadratic regulation (LQR) to compute
locally optimal policies. Erez and Smart (Erez and Smart, 2010) also calculate
locally optimal policies, considering continuous state, action and observation
spaces and approximating the belief space with a mixture of Gaussians. Kon-
titsis et al. (Kontitsis et al., 2013) propose a sampling-based approach to solve
a constrained optimization problem in which constraints correspond to state
dynamics, while the objective function rewards uncertainty reduction and goal



attainment.

While continuous-domain planning techniques have already produced excel-
lent results, they still rely on two basic assumptions: (i) future observations are
assumed to reflect current robot belief (mazimum likelihood observations), and
(ii) the environment in which the agent moves is partially or completely known.
In the work (Van Den Berg et al., 2012) Van den Berg et al. deal with the
former issue and propose a general planning strategy in which maximum likeli-
hood assumption is relaxed. However, (Van Den Berg et al., 2012) still assumes
prior knowledge of the environment, and robot belief only encodes uncertainty
in robot state (e.g., robot position).

In the present work, we extend related literature in several directions. First,
we avoid discretization, by working on continuous control actions. Second, we
relax the assumption of prior knowledge of the environment and let the robot to
operate in a completely unknown or uncertain scenario. Third, we borrow the
derivation of (Van Den Berg et al., 2012) to relax the assumption of maximum
likelihood observation, and adapt it to the case in which the robot keeps a joint
belief over its own state and the state of the observed environment. As a further
extension to (Van Den Berg et al., 2012), we model the fact that, when the robot
operates in an unknown or uncertain environment, it may fail to acquire some
of the expected measurements (e.g., a landmark is further than expected and is
not observed, as it falls outside the sensing range).

3 Preliminaries and Problem Formulation

3.1 Notation and Preliminaries

Let x; and W; denote the robot state and the world state at time t;. For instance,
in mobile robots navigation, x; may describe robot pose at time t; and W; may
describe the positions of landmarks in the environment observed by the robot
by time ¢;. In a manipulation problem, instead, x; may represent the pose
of the end effector of the manipulator, and W; may describe the pose of an
object to be grasped. Let Z; denote the available observations at time t; and
u; the control action applied at time ¢;. We define the joint state at time ¢
as X, = {zo,..., 2k, Wi}, and write the probability distribution function (pdf)
over the joint state as:

P (Xk| 2k, Up—-1) , (1)
where Z, = {Zy,...,Z;} represents all the available observations until time
tr, and Up_1 = {ug, - ,ur—1} denotes all past controls. We remark that the

above definition of the state X} assumes a static environment, as it only includes

Wy, the environment state observed by the current time t;. This is a fairly

standard assumption in SLAM literature. Although conceptually, dynamically

changing environments can also be supported within a smoothing formulation

(see, e.g. (Huang et al., 2014)), in practice it would lead to a huge state space.
The probabilistic motion model given control u; and robot state x; is

p(Tiga|wi, u) . (2)
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Figure 3: Graphical model describing motion (2) and observation (3) models.
For simplicity, the figure shows observations of only a single landmark /;, indi-
cating it is observed at time instances t;_1,¢; and ;1.

At a given time step ¢;, the robot may acquire multiple observations, and for
this reason we write Z; = {#;1,..., 2, }, where z; ; is a single observation and
n; is the number of such observations. For instance, the robot may observe
different landmarks at a given time step, and z; ; could represent observation of
the jth landmark. We consider a general observation model for each z; ; € Z;,
and denote by a superscript ‘o’ the involved subset of joint states X, C X;:

p (2:41X7;) (3)
For instance, X7, may include current robot pose and the position of the jth
landmark. The motion (2) and observation (3) models are shown in graphical
form in Figure 3, which for simplicity includes only a single landmark /;. An
even simpler observation model, commonly used in motion planning, e.g., (Van
Den Berg et al., 2012), involves only the current robot state x; at each time t;
and is a particular case of the general model (3).
The joint pdf (1) at the current time ¢; can be written according to the
motion (2) and observation (3) models as (see graphical model in Figure 3):

k 4
P (Xk| 2k, Ux—1) = priors - H p(xi|wim1,uim1) Hp (zi51X75) - (4)
i=1

Jj=1

The priors term includes p (zg) and any other available prior information.
In this paper we consider the case of motion (2) and observation (3) models
with additive Gaussian noise:

Tiv1 = f (o, w) +w; ,  w; ~N(0,Q) (5)
Zi,j = h (XZOJ) + vi,j 5 ’Ui’j ~ N (0, Qi)]) . (6)

For notational convenience, we use € ~ N(u,2) to denote a Gaussian random
variable € with mean g and information matrix Q (inverse of the covariance



matrix). For simplicity we assume the same measurement model h (-) for all
observations at time t;, although the above formulation can be easily generalized.

3.2 Problem Statement

Our goal is to present a general strategy that allows a robot (autonomous vehicle,
UAV, manipulator, etc.) planning a suitable control strategy to accomplish a
given task. Task accomplishment is modeled through an objective function Jj
to be optimized; for instance the objective function can penalize distance to
a goal position (path planning), the uncertainty in the state estimate (active
sensing), or can model the necessity to visit new areas (exploration).

While our formulation is general (only in Section 5 we tailor it to a spe-

cific choice of the objective function), we use a motivating example to guide
the reader through the derivation. The motivating example is the one of Fig.
2 and includes an unmanned aerial vehicle (UAV) flying over an unknown re-
gion. The UAV has a downward-looking camera and can observe landmarks
in the environment (Fig. 2(a)). The UAV flies in a GPS-denied area and uses
the natural landmarks in the environment to estimate its own trajectory and
landmarks position. The robot objective is to reach pre-specified goal positions,
while preserving an acceptable localization accuracy.
To tackle planning under uncertainty, we adopt a standard model predictive
control (MPC) strategy in which the robot, at time ¢, has to plan an optimal
sequence of controls uy., ;| = {ug,...,uxyr—1} for L look-ahead steps, so
that the objective Jy (ug.p4r,—1) is minimized over the time horizon (Fig. 4).

In Section 3.2.2 we provide a general formulation of the objective function
Jk (Uk:k+1n—1). Before doing that, we need to introduce the concept of general-
ized belief, that encodes the predicted posterior over the robot states and the
state of the observed environment.

3.2.1 Generalized Belief Space (GBS)
We define the generalized belief at the Ith planning step, with [ € [1, L], as

9b (Xi1) = 0 (Xit1| Zis Ui —15 Zit1:k+1> Whihogi—1) 5 (7)

where the joint state X ; includes both the robot states and the observed world
states (e.g. landmarks) by time instant k 4+ . In Eq. (7) we separated actions
Uy _1 and observations Zj occurring until the planning time ¢; from the actions
Ug:k+i—1 and observations Zy11.x4+; from the first [ look-ahead steps (¢x41 until
tg+1). We note that both U1 and Zj, include the entire history of actions and
observations, respectively, until the current time ¢;. Additionally, the notation
aj.j = {ai, ... 7aj} is used. The generalized belief space is nothing more than a
standard belief space over a larger state, and we use this terminology to make
explicit the fact that our state space also includes the world state.
We represent this belief by a Gaussian

gb (Xiy1) ~ N (Xiy Te) (8)
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Figure 4: Tllustration of the L look-ahead steps planning problem. Past obser-
vations Zi = {Zy, ..., Zx} and past controls U1 = {ug," - ,ur—1} are known
at the planning time t;. Future observations Zjii.x+r are instead unknown
and treated as random variables. The objective is to compute a suitable control
strategy uj.;,p_; = {Uk;--.,urpr—1} for L look-ahead steps. The figure only
illustrates the temporal evolution of the system, while each observation may
involve generic subset of the states, according to the observation model (3).

where the mean X ; is set to the maximum a posteriori (MAP) estimate

X}y = argmax gb(Xy4) = argmin —log gb (Xy41), (9)
Xkt Xkt
and the information matrix I, is defined accordingly.

We note that while modeling the belief by a single Gaussian is common (see,
e.g. (Prentice and Roy, 2009; Platt et al., 2010; Van Den Berg et al., 2012)),
it may be not sufficiently descriptive in certain problem domains (e.g. contact,
locomotion), in which case mixture of Gaussians is a better representation (see,
e.g. (Toussaint, 2009; Erez and Smart, 2010)).

The computation of the parameters (8) that describe the generalized belief is
not trivial for two reasons. First, the belief gb (Xj4;) depends on our planning
policy, encoded in the future controls ug.;4+;—1. Second, we do not know a priori
which measurements will be acquired at the (future) look-ahead steps. For this
reason future observations Zj1.x4; have to be treated as random variables, as
every realization of those variables will lead to a different belief gb (Xx;). We
deal with these aspects in the inner layer of our approach (Section 4.2), while the
following section provides a general formulation of the optimal control problem.

3.2.2 Optimal Control Problem

At planning time ¢, the optimal control minimizes an objective Ji(uk.k+r—1)
for L look-ahead steps. We consider a general objective function

L-1
i (ukhyr—1) = E {ch(gb(Xk+l)auk+l)+CL(gb(Xk+L))}, (10)

Zrt1:
kLl | 770

that involves L immediate cost functions ¢;, one for each look-ahead step. We
use the subscript k£ in Ji to remark that the objective function depends on

10



the generalized belief gb (X}) at planning time t;. The expectation is taken to
account for all the possible observations during the planning lag, since these are
not given at planning time and are stochastic in nature (Section 3.2.1).

Each immediate cost function ¢; may involve any subset of states Xi,, C
Xk41- The immediate cost ¢; can be therefore written as

a (p (X1l ZrUn—1, Zis ik, Uhiki—1) > Wkt - (11)

As seen in Eq. (11), the immediate cost function ¢; directly involves a distri-
bution over the subset of states X ;. Note that performing inference over
the pdf p (X£+Z|Zk,l/lk_1, 2k ikl Uk:k+l—1) involves an extended subset of the
joint state Xj4;: the subset X, and additional subsets of states Xy, . that
correspond to the future observations Zy1.x+;. For clarity of presentation, how-
ever, we proceed in this paper with the pdf over entire joint state Xjy; that is
represented by the belief (7).
The problem addressed in this paper is to find the optimal control policy

U1 = {uf, - ufy oy ) = argmin Jy (ugikgr—1) - (12)
Uk:k+L—1

4 Planning in the GBS

Calculating the optimal control policy (12) involves the optimization of the
objective function Ji (ug:k+r1—1). Since the expectation is a linear operator we
rewrite the objective function (10) as:

-1
Jk(uk:k+L—1)iZ E e (9b(Xpqt) ,unr)] +  E er (90 (Xiyr))] -
=0

Lt 1:k41 Zk41:k+L
(13)
According to (13), the objective depends on the (known) generalized belief
gb(Xy) at planning time tg, on the predicted belief at time tgi1,...,tkrr,
and on the future controls wug.k4+r—1. Since in general the immediate costs
¢ (gb (Xg+1) s ug41) are nonlinear functions, it holds

E [ <gb<Xk+l>,uk+l>]¢cl( E [gb(xk+z>1,uk+z),

Zkt+1:k+1 Zk+1:k+1

and we have to preserve the dependence of the generalized belief gb (Xy;) on the
observations Ziy1.x+;. Therefore, the belief at the [th look-ahead step depends
on ug.x+1—1 (which is our optimization variable) and Zxy1.x54;-

In order to optimize the objective function (13) we resort to an iterative
optimization approach, starting from a known initial guess on the controls. The
overall approach can be described as a dual-layer inference: the inner layer
performs inference to calculate the generalized belief gb(Xj1;) at each of the
look-ahead steps, for a given uy.x47,—1. The computation of the generalized be-
lief is detailed in Section 4.2 and exploits a computationally efficient technique,

11



gb(X5) > cr, (9b(Xy), ur)

gb(Xk11) > E ok (95(Xe41), unta)]
k41

: : J (ki n-1) = g1

Zg41:k+1

gb(Xpq1) —> [ek+1 (90(Xk+1), wreri)]

9b(XptL)—> E » [ek+r (96(Xk+1))]

Zit1:k

Uk:k+L—1

Figure 5: Illustration of the dual-layer inference planning approach. The algo-
rithm takes as an input the GBS at the current time ¢, gb (X} ), and produces
as output a locally-optimal control uj,, ,, ;. The outer layer performs infer-
ence over the control wg.x4r—1, while the inner layer evaluates the GBS for a
given value of uy.p+r—1. Note that the GBS at the [th look-ahead step is a
function of controls uy.;+1—1 as well as of the random observations Zji1.54::
9b (Xit1) = 0 (Xt s Un—15 Ziot1:1415 Whikt1—1) -

based on expectation-mazimization and Gauss-Newton method. The outer layer
performs inference over the control wy.ryr—1, minimizing the objective func-
tion (13). The outer layer is discussed in Section 4.1. Since the computation
of the optimal control relies on the computation of the generalized belief, we
refer to our approach with the term generalized belief space (GBS) planning. A
schematic representation of the approach is provided in Figure 5.

The presentation of Sections 4.1 and 4.2 is general and does not assume a
specific cost function, while in Section 5 we tailor the formulation to a practical
choice of the cost function. For this particular choice of the cost we provide
algorithmic and implementation details in Section 6.

4.1 Outer Layer: Inference over the Control

Finding a locally-optimal control policy uy.;, ; ; corresponds to minimizing the
general objective function (13):

Uik p—1 = arg min Jy, (Up:kyr-1) (14)
k:k+L—1

The outer layer is an iterative optimization over the non-linear objective func-
tion Jy (ug:k+r—1). The optimization starts from a nominal control u,(c(:),)chLfl,

and, at each iteration, computes the delta vector Awug.rr—1 that is used to

12



update the current values of the controls:

UL 1 = Uk 1+ Dty (15)
where i denotes the iteration number.

According to (13), the objective Jy (uk.x+r—1) depends on the generalized
belief at each look-ahead step, and, in general, calculating Aug.;4+r—1 involves
computing those believes (Section 4.2). The control update (15) is performed in
a continuous domain and can be realized using different optimization techniques
(e.g., dynamic programming, gradient descent, Gauss-Newton). In this paper
we use a simple gradient method to compute uj.; , ;-

Gradient Method. At the ith iteration of the gradient method the current
control is updated as follows:

i+1 %
ul(c:_l:—&-)L—l = ul(c:)l€+L—1 - A VJk (16)

where VJi, is the gradient of the objective function, evaluated at the current
guess ug)k +r—1, while A is a suitable stepsize. The iterations terminate when a
suitable stopping condition is reached. Most common stopping conditions are
based on the norm of V.Jj, (the gradient becomes zero at the minimum) or on the
relative decrease of the objective at consecutive iterations. Upon convergence,
the gradient method provides the optimal control policy uj.;, , ; for L look-
ahead steps. According to the standard model predictive control framework at
each time k the agent solves the optimization problem (14) and only applies the
first command uj, extracted from the computed policy uj.; . ;-

4.2 Inner Layer: Inference in GBS

In this section we discuss the computation of the Gaussian approximation (8),
whose mean value coincides with the MAP estimate (9). As this inference is
performed as part of the higher-level optimization over the control (Section 4.1),
the current values for uy.;4;—1 are given in the inner inference layer.

There are several complications arising when one tries to solve (9). First,
it is unknown ahead of time whether or not a future observation z,; ; will be
obtained: acquiring an observation zj1;; is a probabilistic event that depends
on the true state at time tj4; for example, if the robot is far away from the jth
landmark there will be no measurement z;4; ; in practice. To model this, we
introduce a binary random variable ~; ; for each observation z; ; to represent
the event of this measurement being acquired. This is conceptually similar to
the Bernoulli random variables used in (Kim and Eustice, 2013) to model the
probability of making camera observations based on saliency values.

Second, even if we knew that a given landmark is observed, we cannot know
a-priori what the future measurement z; ; will be; hence, we also treat z; ; as
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random variable. Therefore, we can define a joint probability density over the
random variables in our problem:

P (Xiotts Dt 140> Zho 12kt 2, U1, Uhikeg1—1) (17)

where I'; = {%‘,j}}ip with n; being the number of possible observations at
time ¢;. In our mobile robotics example, n; is simply the number of landmarks
observed thus far. The probability distribution (17) is defined over the robot and
world state (included in the vector Xjy;), as well as over the random variables
Tit1:641, and Zg41.44+1. Using the chain rule we write

P (Xnotts Dt 140> Zit1:k41| Zs U —1, Uiy —1) =

P (Xiott, Dt 16411 20 Un—15 Zie1:k405 Wit —1) P (Zho1:k41| 2, U—15 Ukssog1—1) -
(18)

We now take the assumption that the prior p (Zg+1.54+1| 2k, Uk—1, Uk:k+1—1) 1S un-
informative. This assumption is fairly standard in inference, see, e.g., Eq. (2.55)
in (Thrun et al., 2005)), and allows rewriting (18) as:

D ( Xttt D641 2o, U —15 Ziop 10k 41, Ukik1—1) X
P (Xtts D1kt ts Zit1:641| s U —1, Uskgi—1) - (19)

Since we want to compute the belief gb (Xj4;) in (7), which is defined only over
the states, we marginalize the latent variables I'yy1.x1; and get

9b (Xi1) = 0 (Xt s Un—1, Zig1:k41, Ukikpi—1) =
Z P (Xitt, D141 20, Un—1, Zio1:ktits Ukikpi—1) - (20)

Trtiiktt

Eq. (20) provides an expression for the generalized belief that can be used to
compute the MAP estimator in (9). However, two issues are still on the way.
First, in order to obtain the distribution gb (Xj4;) one has to marginalize the
latent variables I'yy1.x41, according to (20), and this operation is intractable
in general. Second, contrarily to standard estimation problems (in which one
would resort to numerical optimization techniques to solve (9)) the predicted
belief gb (Xj4:) is a function of Zy1.54;, which are unknown at planning time.
Therefore, rather than computing a single vector representing the MAP esti-
mate, here the objective is to compute a vector-valued function of Zji1.541,
which gives the MAP estimate for each possible value of Z1.51;. We solve
these two complications exploiting two tools: expectation-mazximization and a
Gauss-Newton approach.

According to the expectation-mazimization (EM) approach (Minka, 1998),
instead of minimizing directly the probability in (9) (which requires to marginal-
ize T'p41.x+1), we minimize the following upper bound of —log gb (Xj4;):

X4 = argmin E  [logp (Xii.Drpnp| 2, U1, Ziprikr i, Whikgio1))s
Xpgr Drgrnst]| X
(21)
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where the expectation is computed assuming a given nominal state X;,;. EM
guarantees convergence to a local minimum of the cost in (9), see e.g., (Minka,
1998) and the references therein. We now want to compute explicit expressions
for the expectation in Eq. (21). The joint pdf over Xy, T'xt1.5+; can be written
as

P (Xt 1, Dot | 20, Uit s Ziot b 1, Uhsslopio1) €
1
p(Xk|Zkauk—1)Hp($k+i|$k+i—17Uk+i—1)p(Zk+iark+i|X]2+i) (22)

=1

and the measurement likelihood term p (ZkJri,FkH\X 4 +i) at each look-ahead
step i can be further expanded as

H p (Zk+i,ja Vh+i,j5 Xl?-m’,j) = H p (Zk+i,j |X1?+1:,j»’7k+i.,j) p (7k+i,j |Xlg+z',j> :
j=1 j=1
(23)
Plugging Eqs. (22)-(23) into Eq. (21), recalling the Gaussian motion and obser-
vation models (5)-(6), and taking the expectation, results in

l
X = ar)% min || Xy — X/ﬁ”i + Z 2kt — f ($k+i717uk+i71)||?2w +
ket i=1

l n;
ZZP (Vetij = UXkgt) |2hgi; — b (X]:;)+i7j)H5222j , (24)

i=1j=1

where we used the standard notation ||y — ,u||?2 = (y— )" Q(y—p) for the
Mahalanobis norm, with  being the information matrix. The first summand
in Eq. (24) represents the (known) Gaussian approximation of the generalized
belief at the current time: p(Xg|Zg, U—1) ~ N (X}, Ix). The second and third
terms describe the influence of future controls and measurements on the be-
lief. In (24), we exploited the fact that the latent variable 744, ; is binary
and, by definition, no observation is taken for 7;y;; = 0. The expression
D ('Yk—i—i,j = I\Xk_H) represents the probability of acquiring measurement j at
time t;, assuming that the state is Xj4,;: for instance, one can assume that the
probability of observing a landmark j decreases with the distance of the robot
from the landmark (recall that X k+1 contains estimates of both robot and land-
mark positions) and becomes zero outside a given sensing radius. Additionally,
one can consider only landmark observations within the camera field of view. If
we define

Q9 =p (Veri; = LX) QF, (25)

we can rewrite (24) as:
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l
Xip = arg min X5 = XE07, + Y Monsi = f @it unpio1) 6,
k+1 i=1

2
Qy )

(26)

I n;
+ Z Z [2k+i — B (Xisi )]

i=1 j=1

which suggests the following interpretation: taking the expectation over the bi-
nary variables produces a scaling effect over the measurement information matri-
ces 2¥: in particular, according to Eq. (25), a low probability p (Vkﬂ"j = 1|Xk+l)
is naturally modeled in EM by decreasing the information content of the mea-
surement. In the limit case p (Viti;j = 1|Xpqt) = 0, the matrix Q¥ only con-
tains zeros, and the term ||zx1:; — h (XP45)]

2 .
qii disappears from the sum, cor-

rectly modeling that if p (yx+i,; = 1| Xk41) = 0, then measurement zx; ; is not
actually acquired.

The EM framework allowed to transform the original problem (9) into (26).
However, problem (26) is still difficult to solve, since, in general, f(-) and h(-) are
nonlinear functions. In estimation, a standard way to solve the minimization
problem (26) is the Gauss-Newton method, where a single iteration involves
linearizing the above equation about the current estimate X;,;, calculating the
delta vector AX},; and updating the estimate X;; + X;1; + AXyy;. This
process should be repeated until convergence. While this is standard practice in
information fusion, what makes it challenging in the context of planning is that
the observations Zj1.x4; are unknown and considered as random variables.

In order to perform a Gauss-Newton iteration on (26), we linearize the mo-
tion and observation models in Egs. (5) and (6) about the linearization point
Xpt1 (Ugrai—1). The linearization point Xy (ug.x17—1) is computed as follows.
The subset of past states (until time #z) in Xz (ug:x11-1) is set to X}, while
the future states are predicted via the motion model (6) using the current values
of the controls wug.fy;—1:

X X
‘rEkH’l f(x:wuk)

Xpot (Upipyr—1) = | Tht2 | = f (Frg1; ups1) ) (27)
Tkl f (Zrpi—1, Upg1-1)

One may notice that the linearization point X'kH (uk:k+1—1) is simply the prior
at time tx;, which is the state estimate before including measurements.
Using this linearization point, Eq. (26) turns into:

2
+
Q

w

l
arg min ||AX;C||?k + Z HAmkH — FAzpyi-1 — bzf
AXppt =1

I n;
D H s AXR = bl i)y (28)

i=1j=1
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where the Jacobian matrices F; = V,f and H;; = V,h are evaluated about
Xpt1 (Ug:a7-1). The right hand side vectors blf and bﬁj are defined as

blf = [ (Zhtim1s Ukgi=1) — Thei » (29)
b5 (2htig) = Zhiiy — h (XI?H,J') (30)

Note that bﬁ jis a function of the random variable zy4; ;. Also note that un-
der the maximum-likelihood assumption this terms would be nullified: assuming
maximum likelihood measurements essentially means assuming zero innovation,
and bﬁ ; 1s exactly the innovation for measurement zx; ;. We instead keep, for
now, the observation zi;; as a variable and we will compute the expectation
over this random variable only when evaluating the objective function (13). In
order to calculate the update vectors AXy and Azgyq, ..., Axgyy, it is conve-
nient to write Eq. (28) in compact matrix notation:

y 2
HAkH(Uk:kH—O AXpy — bk+l(uk:k+l—1;Zk+1:k+l)H , (31)

2 o
, and Agy; and bgy; are of the

where we used the relation ||a||?2 = HQ%a‘

following form:

R 0
AkJrl = fk+l ) bk+l = ZZE‘H . (32)
Hiyi byt

1 1
Here, Fj4; and Hj.4, include the Jacobian-related entries Q2 F; and (7)) %H, ;
(for all ¢ € [1,1] and j € [1,n;]), respectively; in particular:

v 1
Hyy = Q3 Hyqyg (33)

[N

Hi1 = (Qi7)

0
where Hj4; is obtained by stacking measurement Jacobians H; ;, with zero
blocks for padding. The matrix Hy; corresponds to the whitened Jacobian of

the measurement model (for all measurements). Likewise, the matrix Fj4; is
the whitened Jacobian of the motion model for all look-ahead steps; the vectors

o o 1 _ 1
b£+z and b, respectively collect the terms Q&,blf and (Q%7) 2b2j(2k+i’j). The
term [ ]é 0 ] includes a matrix of zeros of appropriate size for padding.

The update vector AX}4;, that minimizes (31), is given by

. -1 5
AX gt (Usk1-1 Zirrsirt) = (Af g Arst) Al ibisr. (34)
Using the vector AXy4; in (34) we can update the nominal state Xyt
Xt (Whiori—1, Zp 1) = Xt + AX g (35)
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The estimate X’kH (Uk:k+1—15 Zi+1:k+1) 1s the outcome of a single Gauss-Newton
iteration on the nonlinear problem (26). We can also compute a local approxi-
mation of the information matrix of the estimate as:

Tt (Upri—1) = Ap L Ap. (36)

We note that in Eq. (34) the (random) measurements zj4; ; only appear in Bk+l.
h

1,77
that each b}, is a linear function of the corresponding measurement zj;;, it

Moreover, since Bk+l is obtained by stacking vectors bif and b}, and observing

follows that each entry in 5k+l is a linear function of the measurements Zj 1+
This implies that AXyyy (uk:k+l—l7 Zlc-i—l:k-i—l) and Xp4q (uk:k_H_l, Zk+1:k+l) are
also linear functions of the measurements. This fact greatly helps when taking
the expectation over Zj 1.4 of the immediate cost function (13). Considering
more iterations would better capture the dependence of the estimate on the
measurements; however, more iterations would make X’kH (Ukikti—15 Zht1:k+1) &
nonlinear function of the measurements, making it challenging to devise explicit
expressions for (13). We currently assume a single iteration sufficiently captures
the effect of the measurements on the generalized belief and we approximate:

* % v -1 3
X=Xt (k1= Zi11) = Xt + (AL Airt) AL ibests (37)

Notice that X ;= X;(Ur:ky1-1,Zk+1:611), 1.€., the predicted belief is function
of future controls and measurements. Thus, according to the derivation in this
section we are now able to compute the predicted belief at the Ith look-ahead
step, which is parametrized as a Gaussian with mean (37) and information
matrix (36).

5 A Specific Family of Objective Functions

The exposition thus far has been given for general immediate cost functions.
In this section we tailor our planning approach to the application scenario of
Section 3.2 and Fig. 2. In this scenario, the state X includes robot trajectory
(collection of poses), and 3D positions of landmarks in the environment. At each
time step, the UAV has three main objectives: (i) it has to reach a given goal
position X, (ii) it has to keep its position estimate uncertainty below a given
bound S (we will be more formal on this point later), and (iii) it has to minimize
control usage. According to these requirements we design the following family
of immediate costs:

c1 (gb (Xpt) s wirn) = tr (Ms T}, ME) +11¢ (upesd) 3, (38)

cr (g (Xntr)) = | B . Xisr — XGHfV[m +tr (MsI [ M) . (39)

Here My, M, and M, are weight matrices, and ¢ (u) is some known function
that, depending on the application, quantifies the usage of control u. The matrix
My, can be also thought as selection matrix: for instance, in our application, we
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design the sparsity pattern of My, such that Mx1, J:lMg returns the marginal
covariance of robot position' at time t4; (recall that I, jl is the posterior co-
variance, describing the joint state of robot poses and landmark positions).
Therefore, the trace tr (MEI k- _&lMg ) quantifies the amount of uncertainty in
robot position at time ¢gi;. Similarly, E1§+l is a selection matrix, such that
Ef, X}, contains a subset of states for which we want to impose a goal. In

kAl
our case, this matrix extracts the terminal pose z}_, ; (at the end of the horizon)

from the joint state X}, ;. Therefore, the term ||Ef X}, — XGHfM penalizes
the distance of the terminal robot position from the goal. '
Plugging Egs. (38) and (39) into Eq. (13), and rearranging the terms, we get

L-1 L
T (wrrz—1) = Y IC (wnrd) g, + D tr (M | ME)
1=0 1=0
* 2
+ Zk+]§k+L {||EkG+LXk+L - XGHMJ ,  (40)

where we removed the expectation from the first and the second summand as
they do not depend on Zj1.5+1 (future observations), while we maintained it
for the last term, as X, ; is a function of Zy11.x4 1 according to Section 4.2.

In order to obtain the final expression of the objective function we have to
compute the expectation in the last summand in the above equation. This step
leads to the following result (see Appendix B for a complete derivation):

(a) (b)

-1 L
T (werpr—1) = Y NIC (unsa)llag, + Y tr (M ME) +
1=0 1=0
U|E;§+LX1¢+L - XGH?VIZ +tr (Qurr (Hepr Iyl Hipp + le))} , (41)

(e)

where X k+I is the nominal state (27), Q, is a block-diagonal matrix containing
Q2 on its diagonal, and

cINT _ o1
Qryr = (EI?+LIIC_J:LH£+L95> M, (El?+LIk+1LH£+L95> . (42)

The matrix Ij,; in Eq. (41) is the information matrix of the nominal state Xt
which can be calculated following a similar procedure to calculation of Ix, (see
Eq. (36)). Specifically, we define the augmented Jacobian matrix Agy; as

1/2

Ay = [ { kawo ] 1 , (43)

IThe approach can be easily adapted to minimize map uncertainty. In this case,

MsI, leg would extract landmark marginal covariances from the joint posterior.
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Figure 6: (a) Different M, values in a basic scenario; (b) Degenerate case for
large value of M,,.

which is similar to A4, from Eq. (32) but does not include any observations.
The a priori information matrix I, is then given by

Tepr = AL Ak (44)

The matrices Hy 1z, and €2, are defined in Eq. (33). Note that Ij; in Eqs. (41)-

(42) represents the updated information matrix, according to Eq. (36), and

should not be confused with I;,;, which is the prior covariance, i.e., before
measurement update.

The term (a) in Eq. (41) contains terms penalizing control usage; the term

(b) contains terms penalizing uncertainty (captured by the information matrix

2
B [“E,?+LXI:+L - XGHMI in Eq. (40),
and represents the expected incentive in reaching the goal. We conclude this

section by noticing that the term
tr (Qurr (Hyr oL Hipp +9,71))

in Eq. (40), appears because we did not assume maximum likelihood observa-
tions. In particular, the term Hk+LI,€__~}LH,€T+L + Q! can be easily identified as
the innovation covariance; the matrix Qg is function of the joint covariance

I, _& 1,» hence this term rewards uncertainty reduction via loop closures.

I4). The term (c) was derived from

(45)

6 Implementation Details

6.1 Choice of the Weight Matrices

In this section we discuss how to properly choose the weight matrices M,,, My,
and M,. Most related work assume these matrices are given, while in practice
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their choice can be scenario dependent and can largely influence the control
policy.

6.1.1 Choice of M,

The matrix M, appearing in the summand (a) of (41) has a very intuitive
function: a larger M, induces more conservative policies that penalize large
controls (or large variations in the controls, depending on the definition of ¢ (u)).
Consequently, M, can be tuned to have smoother trajectories or when it is
important to keep controls small (e.g., in presence of fuel/power constraints).
In our scenario, the control usage ¢ (u) quantifies the change in the yaw angle,
which is used by the UAV to control the direction of its motion.

This is demonstrated in Fig. 6a, where we consider a basic scenario in which
the robot needs to travel to different goals, each time returning to its starting
position (denoted by a filled circle mark). One can observe that higher values
of M, result in smoother trajectories with larger turn radius.

We notice that for large M,, one can incur in degenerate situations (Fig. 6b),
in which minimizing control usage interferes with the objective of reaching the
goal. After reaching the first goal, the robot should be heading back to its
starting position (denoted as the second goal), yet it is stuck and continues
performing circle maneuvers, as the attraction to the goal is perfectly balanced
by the cost of changing the yaw angle.

In our implementation, we set M,, = 0.1: this is a relatively small value that
assures that the control penalty does not interfere with the other terms in (41).

In Section 8.1 we further discuss difficulties in tuning weight matrices and
we show that, even in a simplified example, using fixed weight matrices may not
ensure the desired behavior.

6.1.2 Choice of M, and Msx

The choice of the matrices M, and Msy is less intuitive. A balance between
these two matrices is crucial for letting the robot satisfy the concurrent tasks
of reaching a goal and minimizing the estimation uncertainty. In this section,
we propose a grounded way to select these matrices. In particular, we exploit
the fact that, in our application scenario, we are given an upper bound 5 on
the admissible uncertainty, i.e. our planner should be able to impose a soft
constraint of the type tr (MZI,;:LMZT) < B.

We write M, and My, as M, = oM, and My, = /1 — aiMs,, where M, and
My, are selection matrices (only include zero or identity blocks), and az, € [0, 1]
is a scalar weight. M, only “extracts” the final robot position from Xy,
while My, selects robot position marginal covariance from I b +11~ Under these
assumptions the objective function becomes:
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L—1 L
Ji (g kyr—1) = Z IS (Uk+l)‘|?wu + o Ztr (MEIIC_-"}IMET;) +
1=0 1=0
+(1 - o) [HE%LXHL = X, 4 tr (Quer (Hien I HYE o + 951))}
(46)
where ay, controls the balance between the last two terms in the objective (un-
certainty reduction versus goal achievement). Here, we want to design a suitable
weight a,, that induces the planner to satisfy the soft bound tr(MxI ', ME) <
(. The basic intuition is the following: when the uncertainty tr (]\7[2] & J: L ME )
is close to the bound g, the robot should prioritize uncertainty reduction, so
to avoid the violation of the bound; on the other hand, for small values of
tr (MZI . +1 LM% ), the robot can simply move towards the goal. According to
this intuition, we design oy as
tr (MsI,, MY)
ﬁ )
such that for values of tr (Mg I, ', M) close to the bound 3, the ratio o is closer
to 1 and the robot will give more importance to the second summand in (46) (i.e.,
it will prefer minimizing the uncertainty). Conversely, when the uncertainty is
far from the upper bound, the term (1 — ay) will be large and the robot will
prefer reaching the goal. The a posteriori covariance I, +1L varies from one
control action to another, since different actions may lead the robot to observe
different landmarks. This is undesirable, as the weight itself would change
depending on the control at which we evaluate the cost. For this reason, in our
implementation, we rather use the nominal covariance I, b J: ;, in the computation
of a;;. The nominal covariance does not include the effect of loop closures and
can be seen as a worst case uncertainty at the end of the horizon. Therefore, in
our implementation, we substitute (47) with

o =

(47)

_tr (Ms I M)
- B

We notice that the quantity ¢tr (sz b _& LM% ) can eventually become larger than
5, as we are not imposing a hard uncertainty constraints, and for this reason it
is convenient to rewrite o as

tr (M I L, ME
ozkmin(r( Z ktlL E),1>. (49)

Qg . (48)

B
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Figure 7: Balancing uncertainty reduction and exploration: a naive approach
can easily result in oscillator behavior and repeated loop-closures (a) and (c);
The proposed techniques avoids this by requiring significant uncertainty reduc-
tion before proceeding to goal (b) and (d). (a),(c): robot trajectory; we color
each robot position depending on the current value of oy, € [0,1]. (b),(d): square
root of the trace of robot position covariance.

Uncertainty budget. While Eq. (49) provides a mean to prioritize uncer-
tainty reduction, additional considerations are needed to tackle the transition
from uncertainty reduction to exploration. In other words, how to determine
uncertainty has been sufficiency reduced and it is time to proceed to the goal?

To clarify this issue, we use the example in Fig. 7. The UAV starts at the
origin and visits goals 1 to 4. Right after reaching goal 4, the planner realizes
that the uncertainty is too high (ax = 1) and guides the robots to re-observe
landmarks located nearby goal 4. However, since the uncertainty over these
landmarks is not significantly smaller than robot’s uncertainty, the latter gets
only slightly reduced (see trace of covariance in Fig. 7c). As a result, when the
robot heads back to the goal, its uncertainty quickly reaches 8 again and the
process repeats itself. Therefore, the robot will never attain the goal, and will be
stuck in the oscillatory behavior of Figs. 7a. Consistently with the trajectory, the
trace of the covariance (Fig. 7c) keeps oscillating between uncertainty increase
(i.e., the robot tries to reach the goal), and uncertainty reduction (i.e., the robot
goes back to revisit landmarks).

One can interpret this problem in terms of “uncertainty budget™ at each
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instant of time the robot has an uncertainty budget, that is the increase of
uncertainty the robot can afford before the uncertainty upper bound is reached.
Since each motion implies an increase in the uncertainty (in absence of loop
closure), the uncertainty budget defines a number of steps the robot can take
without closing the loop and still satisfying the bound. Revisiting landmarks
can increase this budget, as it reduces robot uncertainty. In particular, visiting
landmarks with low uncertainty can significantly increase the uncertainty budget
of the robot, as it re-establishes a very small uncertainty on robot position.
Conversely, less-certain landmarks reduce only slightly robot uncertainty.

Using the concept of uncertainty budget we can interpret Fig. 7 as follows:
the loop closure action does not provide a sufficient increase in the uncertainty
budget, and the latter remains insufficient to reach the goal.

In this work we applied a simple heuristic to mitigate this problem. After
reaching the value oy = 1, we require a considerable reduction of the uncertainty
(i.e., to accumulate a large uncertainty budget), before resetting api1 to a
value smaller than 1. This way, the robot keeps pursuing loop closures until its
uncertainty is small. Specifically, we set aj41 to a value smaller than 1 only if
aps1 < aLp, where app defines a desired lower bound for the uncertainty (i.e.,
a minimum uncertainty budget). In our implementation we set arg = 0.6. We
found this heuristic allows to cope with most scenarios. For example, the result
of applying this heuristic in the previous scenario is shown in Figs. 7b and 7d.
After reaching ay, = 1, the planner continues to guide the robot to perform loop
closure until observing landmarks that are known with good precision. Only
then oy is updated to a value smaller than 1 and the robot proceeds to goal 5.

We will confirm the effectiveness of this heuristic in Section 7. However, it
is still possible to devise degenerate cases in which, even this strategy would fail
to attain the goal. We further discuss this problem in Section 8.2, where we
show that the impossibility to reach the goal within a given uncertainty budget
is an intrinsic limitation of the problem, and it is not due to the used technique.

6.2 Algorithmic Implementation

We summarize our GBS planning approach, for the specific application scenario
of Section 5, in Algorithms 1-4.

Algorithm 1 discusses inference over the control. This is the outer layer
which includes two main blocks. The first is the computation of the weight
matrices (lines 14-21), according to Section 6.1.2. Given the weight matrices
M, M, and Msy, the objective function (41) is uniquely defined, and we can
apply the gradient method, which constitutes the second block of Algorithm
1 (lines 22-34). The gradient method (Section 4.1) requires to compute the
gradient and evaluate the objective function, and, upon convergence, returns
the optimal control uf,,, ; ;. The computation of the gradient of the objective
function (41) is detailed in Algorithm 2. Deriving an analytic expression of the
gradient is hard in general, due to the nonlinearity induced by the motion model
and the matrix inversion. Therefore, we resort to numerical derivatives, which
require evaluating the objective function for small perturbations of the control.
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Inputs:
X}, I: parametrization of belief gb(X}) at current time
u,(f,lJrLA: nominal control
B: uncertainty upper bound
arp: lower bound for o
ag_1: scalar weight from previous time step
M,, M,, Ms: weights/selection matrices
A: stepsize for the gradient method
Outputs:
‘ Uf.por—1° optimal control over the horizon lag

Initialize: ¢ =0, Jlgo) =0 /* Reset objective and iterations

set weight matrices:
/* Calculate o from a priori covariance Ij;p

Liir = innerLayer(X,:,ul(c?l)c+L71) (Alg. 4)
ap = min (tT(MEIE_&LMg) 5 1)

if a1 == 1 and o > arp then
‘ ap = 1

end

/* Set weight matrices

Mw = (1 - ak:)M;E; ME =V ak:ME
end

while true /* Gradient method
do

update uggi),€+L_1:

i+1 7
u/(i::k+)L—1 = u/(i::)k-‘rL—l —AVJj
end

Check convergence:

B (i)
‘ return ug ., .y o =Uppi 7 1

end

end

/* Move to next iteration
1=1+1

end

Algorithm 1: outerLayer performs inference over the controls.

*/

*/

*/

*/

VJi = computeGradient(X,:,Ik,u,(::),HLil,Mu,MI,ME) (Alg. 2)

J,iHQ evaluateDbjective(X,:,Ik,ul(f::i)L_l,Mu,Mm,Mg) (Alg. 3)
if |[VJil| <€ or |(JOD = 09D /70| < ¢ or i > ipmg, then

*/
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Inputs:
X}, I: parametrization of belief gb(X}) at current time
ug:k+L—1: control actions from time t; to ty4r—1
M,, M,, Mx: weight matrices
Outputs:
‘ VJi: gradient of the objective function

[ 3 U

/* Evaluate objective function using current controls */
7 Jy=evaluateObjective(X}, Iy, Up:ktr—1, My, My, Myx) (Alg. 3)

/* Calculate numerical gradient by x/

/* perturbing control at each look-ahead step x/
g for/=0:L—-1do

ou = zeros(L,1)

10 du(l) =€ /* add small perturbation on the /th control */
11 J} =evaluateObjective(X}, Iy, Up.ptL—1 + Ou, My, My, Myx) (Alg. 3)
12 V(1) = (Jp — Ji)/€
13 end
14 return VJ,

Algorithm 2: computeGradient computes the gradient of the objective func-
tion J.

1 Inputs:
2 X}, I: parametrization of belief gh(X}) at current time ¢,
3 ug:k+n—1: control actions from time ¢y to tg4p—1
4 M, M,, Mys: weight matrices
5 Outputs:
6 ‘ Ji: value of the objective function for the control wy.p+71,—1
/* Calculate gb(Xjy;) for each look-ahead step */

7 forl=1:Ldo

8 | [Xits, fhyis Ini] = innerLayer (X}, I, upps1-1) (Alg. 4)

9 end

10 Evaluate J;, according to Eq. (41) using Xx11, Ixt1, Insi, | € [0, L]
11 return Ji

Algorithm 3: evaluateObjective computes objective function for a
given control.
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Inputs:

X}, I: parametrization of gb(Xy) at time ¢y

Uk:k+1—1° control actions from time ¢y, to tgy;—1
Outputs:

Xy+1: nominal estimate at time tp;

Ix+;: nominal information matrix at time ¢4

Ij4;: a-posteriori information matrix at time txy;
Calculate nominal estimate X y; using Eqs. (27)
Calculate nominal information matrix Iy, using (44)

© W N O s W N

10 Calculate augmented Ay ; and by using Eq. (32)
11 Calculate a-posteriori information matrix Ij4; using Eq. (36).
12 return Xk+l7 IkJrl; Ik+l

Algorithm 4: Inner Layer: Inference in GBS for /th look-ahead steps.

The computation of the gradient and the outer layer require the evaluation of
the objective function for a given control uy.;+r—1. This evaluation is described
in Algorithm 3. Here, we propagate the generalized belief for L look-ahead steps
and use the predicted belief to feed the cost in Eq. (41).

The above algorithms rely on the capability to predict the (known) general-
ized belief from the current time for L look-ahead steps. The description of how
to predict the current belief to the Ith look-ahead step is reported in Section 4.2
and summarized in Algorithm 4. We notice that, in our implementation, the
inner layer returns both the a-priori and the a-posteriori information matrix,
Iy and ;41 , respectively, since they both appear in the objective function.

6.3 Computational Considerations

We let n represent the dimensionality of the state vector X at the current time
tx. Assuming X consists of k& robot poses and m landmarks: n = 6k + 3m.
In the experiments reported in Section 7, n is in the order of thousands as the
considered scenarios include many poses and landmarks. We keep past poses as
part of the state vector since it entails sparsity, making the optimization problem
underlying MAP estimation (Section 4.2) more efficient (Strasdat et al., 2010).

The outer layer of our approach performs gradient descent optimization,
using finite differences to calculate gradient of the objective function (Algo-
rithm 2). Typically, the optimization converges in less than 100 iterations,
and requires much less iterations when nominal control is already close to the
(locally) optimal value. Each gradient iteration involves the inner layer that
performs inference over the generalized belief, at each of the L look ahead steps,
given appropriate controls (Algorithm 4). As opposed to (Van Den Berg et al.,
2012), we operate in an information form which admits efficient calculations, in
particular for the a posteriori information matrix Z,4; (according to Eq. (36)),
where sparsity is fully exploited. The most expensive operation is calculating
the covariance over variables of interest, as determined by the selection matrix
My, which in the considered scenario comprise only the robot current pose.

27



However, computational complexity of this operation can be greatly reduced by
enforcing appropriate variable ordering, eliminating the current robot pose last
(Kaess et al., 2011; Kaess and Dellaert, 2009). In summary, if the dimension of
the control uy is d,, each gradient computation entails Ld, calls to the inner
layer, as we have to compute finite differences for each control and for each
look-ahead step.

Relation with sampling-based approaches. Recent work, such as POMCP
by Silver and Veness (Silver and Veness, 2010) and the recent approach by Bai
et al. (Bai et al., 2013), showed impressive results on very large POMDP using
sampling. In the rest of this section we briefly discuss the use of sampling-based
approaches in our application.

Both sampling-based approaches and our approach aim at avoiding the curse
of dimensionality (Silver and Veness, 2010). In our formulation, we avoid the
curse in inference, by taking a Gaussian belief assumption (Eq. (8)); moreover,
we avoid it in planning, by using a local search (gradient method) within a model
predictive control framework. POMCP and the approach by Bai et al. use sam-
pling to avoid the curse of dimensionality. However, in the considered problem,
the application of sampling-based techniques has two main drawbacks. First,
the use of a sampling-based representation would be problematic for inference:
we operate over a large (n), and the number of samples needed to have satisfac-
tory results would be prohibitively large. The fact that our objective function
includes the posterior covariance further stresses the need of many samples that
are required to have a statistically meaningful covariance estimate. For this rea-
son in SLAM, optimization-based techniques appear as the dominant paradigm
and are preferred over sampling-based approaches (e.g., Rao-Blackwellized Par-
ticle filters). Second, sampling-based planning approaches model possible his-
tories as sets of discrete controls and observations (Silver and Veness, 2010):
this would not be a natural model for our problem, in which the robot takes
(real-valued) distance and bearing measurements from a potentially large num-
ber of landmarks, and controls live in a continuous domain. Finally, one of the
key advantages of sampling-based approaches (e.g. (Silver and Veness, 2010)) is
that simulating possible histories is inexpensive, and one can simulate hundreds
of thousands of histories per second. However, in our problem a single simu-
lation entails solving a SLAM problem with hundreds of poses and landmarks,
and this is not inexpensive. On the other hand, in our approach, we only need
d, L simulations (from the inner layer) at each gradient iteration. Therefore,
since we usually have less than 100 gradient iterations and since the dimension
of the control d, is small in the considered application, our approach requires
a reasonable number of simulations. The computation can be further improved
by resorting to automatic differentiation which can be used to calculate exact
gradients without numerical differentiation (Sommer et al., 2013; Patil et al.,
2014).
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7 Experiments

In this section we present an extensive analysis of the proposed technique and
benchmark it against related work.

Experimental setup The simulation scenario reflects the motivating exam-
ple presented at the beginning of this paper. We consider an unmanned aerial
vehicle (UAV) that flies at a given height over an initially unknown region
(Fig. 2). The UAV has a downward-looking camera and can observe natural
landmarks in the environment. The UAV flies in a GPS-denied area and uses
these landmarks to estimate its own position. The objective is to reach pre-
specified goal positions, while preserving an acceptable localization accuracy,
quantified by the trace of the covariance of its position estimate.

For our experiments, we assume that the UAV flies at a constant height of
500m above the ground and travels at a constant speed of 50m/s. For simplicity,
we assume the robot can only control its yaw angle: The control effort ¢ (u) in
Eq. (41) is therefore defined as the change in the yaw angle. In our simula-
tions, we generate landmarks in the environment; these are 3D points, whose
positions are randomly drawn (e.g., uniformly on the ground level). Using the
onboard camera, the UAV can detect and measure bearing to these landmarks.
The image observations are calculated by projecting the ground truth values of
3D points onto the camera plane and corrupting the result with a measurement
noise drawn from a zero-mean Gaussian distribution with standard deviation
(std) of opixet = 1 pixel. We assume the camera calibration matrix is known.
Additionally, we assume the distance to the observed features can be measured.
This information can be obtained either from a range sensor or a stereo camera,
or alternatively, it can be calculated assuming the flight height is known. In our
simulation the range measurements are calculated from the ground truth dis-
tance of the robot to each of the landmarks, corrupted with zero-mean Gaussian
noise with std of oyange = 1 m.

When deploying the system, a human operator decides a fixed sequence of
goal positions the UAV has to reach. As a second requirement, the human
operator fixes an upper bound S on the position estimation error, the UAV
should guarantee. In our formulation the bound is a soft constraint, as the
objective function (41) penalizes violation of such bound, but it does not enforce
it; we discuss the use of hard constraints in Section 8.3.

The UAV autonomously plans its motion strategy using our planning ap-
proach. Unless otherwise mentioned, the number of look-ahead steps is set to
L = 5. Additionally, the weight M, in the objective function (41) is chosen as
M, = 0.1; the matrices M, and My are computed as described in Section 6.1.2.
The upper uncertainty bound 3 (see Section 6.1) was set to 692 meters squared,
which corresponds to a bound of 40 meters in each axis.

Test scenarios We evaluate our approach in 3 scenarios, each with a different
landmark distribution (Fig. 8): UNIFORM, OAsIS, CLUSTERS. Landmarks are

29



25000 4. .. . .. 2500 2500
T R . +7 7
ace . +6 46 .
20000 EE e T 2000 +8 2000 48
. . +5
1500 e . Te
E - o E 1500 E 1500
= : .
5 - £ W £ frn
2 1000 : S : 2
1000 1000f
o +5 Y5
SO0 Ly L +4 1 43 4 r1 its
. LI 500 500
. S +2 422
0 . :
~1000 -500 _ 0 _ 500 1000 -1000 -500 0 500 1000  -1000 -500 O 500 1000
East [m] East [m] East [m]

(a) (b) (c)

Figure 8 Considered scenarios: (a) UNIFORM. (b) OAasis. (c) CLUSTERS.
Robot initial position is denoted by red filled star.

uniformly scattered in the UNIFORM scenario (Fig. 8a), centered around the
starting robot location in the OASsIS scenario (Fig. 8b), and clustered around
each goal position and around the starting robot location in the CLUSTERS
scenario (Fig. 8c).

Evaluation metrics We consider the following metrics to analyze perfor-
mance of our approach and compare it against other techniques.

Covariance trace. We use the trace of the covariance of the current posi-
tion estimate as uncertainty metric. The position covariance is a 3 by 3 positive
definite matrix, having on the diagonal the variances along the Cartesian di-
rections. The upper bound of the trace has a very intuitive meaning: it is the
maximum uncertainty we tolerate as sum of the variances along the three axis.

Estimation errors and miss distances. The objective of bounding ad-
missible covariance is to keep estimation errors small. We compare different
approaches in terms of estimation errors, which, at each time step, are com-
puted as the distance between the estimated 3D position and the ground truth
position of the UAV. In the considered application scenario, a particularly im-
portant error is the one that is committed when reaching the goals. For instance,
if the robot has to acquire pictures of a target at a given goal position, a large
error is undesirable, as it may limit the usability of the collected information.
For this reason, we also compare the approaches in terms of miss distance, which
is the estimation error when a goal is attained.

Trajectory quality and length. Since the UAV moves at constant speed,
trajectory length measures the time required by the approach to cover the sce-
nario and reach the assigned goals. We use it as a quantitative measure of how
efficient are the paths produced by each technique. A bad planning approach
produces non-smooth trajectories with many wasteful segments in which robot
motion is not rewarded by uncertainty reduction and goal accomplishment. A
good planning approach is efficient in reaching goals in short time, while pre-
serving acceptable uncertainty. We complement this quantitative metric with

30



qualitative observations of the smoothness of planned trajectories.

Control usage. The control usage is defined as the change in yaw angle
at consecutive time steps. This is essentially the term (a) in Eq. (41). A good
planning algorithm produces smooth trajectories, in which small yaw changes
are preferred over sudden or unreasonable direction changes.

Planning time. We report the time it takes for the different approaches
to compute a plan. All approaches are implemented in Matlab, and rely on the
GTSAM optimization library? as inference engine. The time results are mainly
shown to discuss factors influencing computational effort, while the usual rule
of thumb is that the timing decreases by at least a factor of 10 when porting
the code into a compiled language, e.g., C++.

7.1 Performance Analysis for Planning in GBS

For sake of clarity, in Section 7.1.1, we start with the presentation of a “typical”
scenario, which summarizes the most common behaviors we observed in simula-
tions. Then, in Section 7.1.2, we present a statistical study, which demonstrates
the robustness or our approach against different noise realizations. In Section
7.1.3, we investigate the use of different planning horizons. Finally, in Section
7.1.4, we demonstrate our method performs well in a large variety of scenarios.

7.1.1 Typical Scenario

The results of this section are obtained in a UNIFORM scenario, with randomly
distributed goal locations, as shown in Fig. 9. The trajectory produced by our
planning approach is given in Fig. 9a (and the zoomed view of Fig. 9b): the
actual trajectory of the UAV is shown in blue. The estimated trajectory, used
by the planner, is shown in red, together with the estimated covariance ellipses.
For simplicity we do not show the z component of the covariance, however, it is
fully considered in planning. The figure also indicates the estimated landmark
coordinates (green '+’ marks), and the corresponding covariance ellipses (also
in green). Ground truth positions for the landmarks are denoted as blue points.

The robot starts operating at the origin. Initially, it does not know any-
thing about the environment. While traveling towards goal 1, the UAV starts
observing landmarks, and builds its world model, as a collection of landmark
position estimates. Similarly, more and more landmarks are observed on the
way to goals 2, 3, and 4. Observation of new (unknown) landmarks does not
improve the estimate of robot position. For this reason, until reaching goal 4,
the trace of the position covariance (Fig. 9d) keeps increasing. After reaching
goal 4, the covariance trace is very close to the specified upper bound 3 = 692
m?, and the planner guides the robot to visit previously-observed landmarks to
reduce uncertainty via loop-closure. When heading back to observed landmarks,
the covariance trace (Fig. 9d) decreases, and it is eventually re-established to
a small value. After the uncertainty reduction, the UAV can head back to the
next goal (goal 5), and completes the assigned tasks.

2https://collab.cc.gatech.edu/borg/gtsam
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As discussed in Section 6.1.2, the parameter oy, plays a key role in balancing
uncertainty reduction and distance to goal. The value of this parameter for
each time step is shown in Fig. 9c. It is easy to see the correspondence between
this figure and Fig. 9a, since larger covariances induce ay values closer to 1.
Moreover, when o, reaches 1, a sufficient reduction of the uncertainty is required
before re-establishing a value smaller than 1 (see Section 6.1.2).

Observe that ap may reach 1 even though the actual covariance does not
cross the bound (Fig. 9d). This is the case since «y is set according to the
a priori uncertainty at the last look-ahead step, see Eq. (49). This allows to
predict when the uncertainty bound is about to be reached and to take action,
i.e. move towards loop closure, to remedy this situation.

Finally, in Figs. 9e-9f we show, respectively, control effort and cumulative
control effort. The former represents the change in heading angle at each time
step; the latter is calculated as the sum of absolute values of these changes.
Each peak in Fig. 9e corresponds to a sharp turn in the trajectory of Fig. 9a.
In the sequel, we will be using cumulative control as one of the performance
metrics to compare our approach to other related approaches.

32



2500 2200

2000 2100

2000
1500

E E
£ £ 1900
o (=}
Z 1000 4
1800
500 1700
1600
-1000 -1000 -900 -800 -700 -600 -500
East [m]
2500
2000
1500
E
=
£
5
Z 1000
500
0 :
-1000 -500 0 500 1000 0 20 40 60 80 100 120 140 160
East [m] Pose index
(c) (d)
200 1200
4 —
50 & 1000
o
§ 100 £
S 5 2 800
5 s
5 0 € 600
s °
g % 2 400
© _100 E
g 200
-150 o
_2000 50 100 150 00 50 100 150
Pose index Pose index
(e) )

Figure 9: UNIFORM scenario: (a), (b): Ground truth (blue line) and estimated
trajectory (red line), with covariance ellipses (red). Ground truth (blue dots)
and estimated landmark positions (green+) with confidence covariances (green).
(c) Estimated trajectory: the color scale is used to report, for each position,
the corresponding value of . (d) Square root of the trace of the position
covariance; desired upper bound S is shown as a dashed black line, while the
red dots denote the instant of time in which the UAV accomplished a goal. (e)
Control effort. (f) Cumulative control effort.
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7.1.2 Statistical Study

We investigate the robustness of our approach to different noise realizations in
a statistical study for the UNIFORM scenario. The same landmark and goal
configuration as in Section 7.1.1 is used, while process and measurement noise
were randomly drawn from appropriate distributions for each run. The results
of 30 such runs are given in Fig. 10: Fig. 10a shows the trajectories, while
Fig. 10b shows the norm of position estimation errors and the square root of
the covariance trace. One can observe all trajectories are reasonable and smooth
with a similar loop closure event after reaching the forth goal. Estimation errors
are always below the covariance, indicating the inference engine is consistent,
and the final drop in uncertainty covariance due to loop closure can be clearly
seen around pose index 100.

7.1.3 Different Planning Horizon Lags

In this section we study the effect of using different planning horizons L. Figs. 11a
and 11b show results for L = 5,10,15 and 20 look-ahead steps. The scenario
comprises 8 randomly generated goals, and landmarks scattered in 4 clusters.
Soon after reaching goal 4, the planner guides the robot towards loop closure.
Longer horizon lags lead the robot to go earlier towards a loop closure. This is
due to the fact that «j depends on the a-priori uncertainty at the end of the
horizon, and this may be pessimistic when the horizon is long. Therefore, the

planning approach can be made more conservative by increasing the horizon?.

30ne could use a longer horizon just for predicting how soon the uncertainty will cross
the bound S and a shorter horizon for actually calculating the control policy. We leave the
investigation of this aspect to future work.
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Figure 11: Different horizon lags. (a) Trajectories, (b) Square root of the trace
of position covariance, (¢) Computational time, (d) Zoom-in on computational
time (e) Number of iterations of the gradient method.

Increasing the horizon lag impacts the computational time, as the inner
layer has to predict the generalized belief for a larger number of look-ahead
steps. Fig. 11c shows that larger horizons entail large (and sometimes imprac-
tical) computational cost. For L = 5 the computational time is acceptable, as
we will remark in the comparison with related work. The spikes observed in
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Fig. 11c are related to the number of iterations in the gradient method (outer
layer of our approach). Clearly, a larger number of iterations implies a larger
computational effort. The number of iterations is reported in Fig. 11e, together
with the maximum number of iterations, used as stopping condition in the gra-
dient method (i;q, in line 29 of Algorithm 1). The planner requires a large
number of iterations when it has to apply a large change in the steering angle
(this is usually the case after reaching a goal, or after a loop closure). This is
due to the fact that we initialize the gradient method with the current control
(i.e., the nominal control is the current steering angle); therefore, it takes more
iterations to converge to an optimal control that is far from the initial guess.
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Figure 12: Typical runs for OAsIs (first row) and CLUSTERS (second row) sce-
narios. (a),(d): Trajectories with covariances ellipses; (b),(e): Trajectories color-
coded as a function of ay; (c),(f): Square root of position covariance trace.

7.1.4 Additional Scenarios

In this section we demonstrate the effectiveness of our approach in a large variety
of scenarios by considering different random goal configurations in all the three
test scenarios: UNIFORM, OASIS and CLUSTERS.

We already discussed a typical result for the UNIFORM scenario in Sec-
tion 7.1.1. The typical outcomes in the OASIS and CLUSTERS scenarios are
shown in Fig. 12 using a similar format as in Section 7.1.1: actual and estimated
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trajectory with covariances and landmark estimates, color-coded trajectories
according to the parameter ay, and the square root of the position covariance
trace. Our approach efficiently attains the goals and preserves an acceptable
uncertainty (which is mostly below the bound ), by guiding the robot towards
informative loop closures. Specifically, for the CLUSTERS scenario, our approach
correctly guides the robot towards the most informative cluster (located in the
robot start position), which results in a very large decrease in the uncertainty.
In order to show that our approach exhibits good performance in a variety
of goal configurations, we consider five randomly drawn goal positions in each
of the three scenarios. The results are given in Figs. 13. Planning in the GBS
produces natural trajectories with acceptable uncertainties in all cases.

7.2 Comparison with Related Work

We compare four different techniques.

GBS planning. This is the planning approach proposed in this paper. We
set L = 5 as time horizon. The weight matrices are computed as in Section 6.1.2
and M, = 0.1.

GBS-ML planning. This is a variation of the GBS approach in which we
neglect the last term in Eq. (41). The objective function hence becomes:

L—-1 L
i (urarr—1) = DG (wrs) 7,4+ tr (M I L ME) +|| EE, Ko, — X3,
=0 =0

(50)
Neglecting this term essentially means assuming maximum likelihood obser-
vations, as the term is the outcome of the expectation over the measurements.
We consider this technique to understand the impact of the maximum likeli-
hood assumption on planning performance. The horizon length and the weight
matrices are set as in the GBS approach.
Continuous planning with no uncertainty (CNU). This technique
neglects the uncertainty in the belief and only attempts to minimize the distance
to the goal and the control effort. The objective function (41) therefore becomes:

L-1
i uirr—1) = 31 (wesd) g, + | B, L Xnrn — XC|7, (51)
1=0
with L =5 and M, = 0.1.

Discrete planning. The last technique is an adaptation of the method
proposed in (Kim and Eustice, 2013). The approach (Kim and Eustice, 2013),
called PDN (Perception-Driven Navigation), selects a set of waypoints, that cor-
responds to potential loop closure locations. PDN operates over a pose-graph
and calculates, for each waypoint, a path from the current position to the way-
point, using a global A* algorithm over the nodes in the pose-graph. In case the
distance between adjacent nodes is too great, the method interpolates between
the poses to yield finer segments. The A* algorithm uses a heuristic weighting, in
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Figure 13: Trajectories and uncertainty for 5 random goal configurations
(columns) and UNIFORM, OAsIs, CLUSTERS and scenarios (rows).



which one assigns a saliency value in [0, 1] to each node in the grid. The heuris-
tic rewards the robot for visiting nodes with large saliency; intuitively, nodes
with large saliency are the ones in which the robot is more likely to successfully
re-observe landmarks. Saliency is also used to model the probability of making
camera observations, i.e. the likelihood of making measurements along a path.
Then, the utility of each path is computed by propagating the belief along this
path and computing a cost associated to this realization of this belief. This cost
balances the two contrasting objectives of minimizing uncertainty and exploring
new areas in the scenario. We apply some modifications to the approach (Kim
and Eustice, 2013), in order to have a fair comparison with our technique. First,
(Kim and Eustice, 2013) considers a pose-only estimation framework. Instead,
for a fair comparison, we adopt the same estimation framework of Section 3.2.1,
in which the state may include both robot poses and landmark locations. We
discretize the state space (e.g. 3D positions) and consider a regular grid with
resolution representing the above-mentioned interpolation. In order to identify
loop closures opportunities, we cluster the observed landmarks and we use each
cluster center as potential waypoint in PDN. Second, (Kim and Eustice, 2013)
assumes that a reference trajectory is preplanned and the robot only has to de-
cide when revisiting a past pose or continue along the given trajectory. Since we
do not have a preplanned trajectory to follow (we rather have goals), we include
the current goal in the set of waypoints, such that the robot can autonomously
decide between visiting previously observed landmarks or moving towards the
goal. Finally, instead of using the cost specified in (Kim and Eustice, 2013),
we use the objective function (41), such that PDN and our approach attempt
to minimize the same function. In the following, we refer to our adaptation of
(Kim and Eustice, 2013) with the name “Discrete” planning; this name stresses
the fact that, as in most related works, this technique discretizes the state space
and selects the trajectory among a finite number of candidate paths.
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Figure 14: Discrete approach: (a) Current robot trajectory, with goal and land-
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Waypoints include landmark cluster centers and next goal position. Selected
path (with best objective) is shown in green. (c) Complete trajectory and (d)
square root of covariance trace.

Fig. 14 elaborates on the main components of the Discrete approach, con-
sidering a typical run in the CLUSTERS scenario: the resulting robot trajectory
and the square root of the position covariance trace are shown in Figs. 14c-
14d; Fig. 14a pictures robot trajectory and the considered waypoints right after
reaching goal 4. These include the centers of landmark clusters, denoted by large
red filled circles, and the position of the next goal (goal 5). Fig. 14b shows the
discretization grid, the calculated trajectories and the associated costs to each
of these waypoints. We use a 50 meters grid resolution for the Discrete method
in all experiments. The waypoint with the best (smallest) objective is chosen
(green trajectory). The weights used in the objective function are analogous to
the GBS approach. As in all other approaches, we use an MPC philosophy: we
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compute a plan at each time step and apply a single step of this plan.
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7.2.1 Results

We test the compared techniques in the UNIFORM, OAsIS, CLUSTERS scenarios.

We first discuss in detail the UNIFORM scenario. Fig. 15a shows the trajec-
tories produced by the four approaches, while in Fig. 15b, we report, for each
approach, the trace of the corresponding covariance. CNU approach disregards
uncertainty and only rewards small distance to the goal and small control ef-
forts, see Eq. (51). Accordingly, at each time step, CNU leads the robot directly
to the goal. The drawback, in this case, is that the CNU approach does not
attempt to bound uncertainty, and the corresponding covariance trace grows
unbounded, as shown in Fig.15b. On the other hand, GBS and GBS-ML aim
at keeping uncertainty below the bound 8 ~ 692 m?. After reaching goal 5, the
trace of the covariance is close to the specified upper bound, therefore, both
techniques prefer to revisit landmarks instead of proceeding to goal 6. This
leads to the uncertainty reduction in the green and red lines of Fig. 15b. In the
considered scenario, the GBS approach produces slightly different plans than
the GBS-ML technique. The term in Eq. (46) that appears when relaxing the
maximum likelihood assumption, rewards uncertainty reduction; for this reason,
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in our example, the GBS tends to perform loop closure before GBS-ML. Also
the discrete approach is able to account for robot uncertainty and produces a
plan that satisfies the soft uncertainty bound.

The capability of imposing an upper bound on the uncertainty influences
the capability of having small estimation errors. In Fig. 15¢ we show the miss
distances for the compared approaches. The GBS approach is able to plan a
trajectory that reaches the 7 goals (x-axis in the histogram) with small errors.

Regarding the comparison between the proposed approach and the Discrete
approach, we observe from Fig. 15a that the paths produced by the Discrete
planner are less natural and include many redundant changes in robot direc-
tion. This behavior can be easily understood from Fig. 14b: since A* works
on a grid world, the robot can move only to the 8 neighboring cells, and can-
not perform fine adjustments of robot position and orientation. Accordingly, as
in Figs. 1 and 14c, instead of producing straight trajectories to the goals, the
planner produces segments with orientations k7, with k = 0,...,7. This leads
to many discontinuities in the trajectory, that are only caused by the fact that
the approach relies on discretization. On the other hand, the approach pro-
posed in this paper works in a continuous domain and produces smoother and
more natural trajectories. This qualitative observation is further confirmed by
Fig. 15d, that shows the cumulative control usage for the different techniques.
The control effort is similar for the techniques working in the continuous domain
(GBS, GBS-ML, CNU), while it is remarkably higher for the discrete planner.

Fig. 15e reports the computation time spent in planning for the different
approaches. The time is lower for the CNU approach, and this is expected, as
this approach uses a simplified model. On the other hand, the CPU time is
similar for the remaining techniques, with the only difference that the proposed
approach has “peaks” in the CPU time, corresponding to larger number of it-
erations in the gradient method. These peaks are associated with significant
changes in the heading angle, as discussed in Section 7.1.3.

Figures 16 and 17 provide a comparison of the 4 approaches in OAsIs and
CLUSTERS scenarios. The results support the above discussion and further
confirm our findings. GBS is able to correctly impose the uncertainty bound.
Moreover, it produces more natural trajectories, when compared to a Discrete
approach, and requires a smaller control effort. In these two scenarios, the
computational time is smaller for the Discrete approach (Figs. 16e and 17e).
This is due to the fact that in these scenarios the landmarks are clustered by
construction, hence the number of waypoints for the discrete approach is small,
which, in turn, implies a smaller number of paths to be computed and evaluated.
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nario. (a) Trajectories; (b) square root of position covariance trace; (c¢) Miss
distance; (d) Cumulative control effort; (e) Planning time.

In order to further examine the performance of the proposed approach and
compare it against GBS-ML, CNU and Discrete, we consider different random
goal configurations in all the three scenarios (UNIFORM, OAsIS, CLUSTERS).
The randomly generated goals are shown in Fig. 13. We perform statistics
over these runs and we summarize the results in Table 1. The performance
metrics are the ones presented at the beginning of Section 7: trajectory length,
estimation errors, cumulative control usage, and planning time. Mean (x) and
standard deviation (o) for each of these metrics are presented, calculated by

analyzing the entire trajectories in all runs. Table 1 confirms the following
findings:

e Trajectory length and estimation errors are typically smaller for the GBS
planning, compared to the Discrete approach.

e Control usage is significantly smaller for GBS planning compared to the
Discrete approach.

e Planning time is higher for GBS planning, compared to Discrete planning,
in OAsis and CLUSTERS scenarios (that contain only a few clustered land-
marks). Planning time is smaller for GBS in the presence of a large number
of uniformly distributed landmarks.
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e Trajectory length and control effort are small for CNU approach. However,
this comes at the expense of much higher estimation errors and covariances
(not shown in the table, see Figs. 15b, 16b and 17b).

e Overall performance of GBS and GBS-ML approaches is comparable, and
they can both assure satisfaction of the uncertainty bound and efficient
goal accomplishment.
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8 Discussion of Possible Extensions

The experimental evaluation, whose results were presented in Section 7, suggests
several avenues for future work. In this section we discuss some desirable exten-
sions of the proposed approach that can enhance its applicability in challenging
scenarios.

8.1 Improving Effectiveness of Weight Matrices Selection

In Section 6.1 we anticipated that the choice of the weight matrices can be
scenario-dependent and hard to manage in general. We also remarked that
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SCENARIO & METRIC GBS GBS-ML CNU DisCRETE
“w o I o " o ”w o
s TrAJ. LENGTH 109 39 108 39 89 17 155 94
§ Est. ERR. [m] 16.7 10.8 15.8 9.8 18.6 15.6 25.8 15.0
5 CONTROL [DEG] 758 138 678 142 507 103 2067 993
TIMING [SEC] 6.7 14.6 5.5 11.2 2.8 4.8 10.7 9.3
TRrAJ. LENGTH 149 31 148 31 113 8 144 38
é EsTt. ERR. [m] 17.2 13.2 20.7 18.1 79.7 84.7 15.2 11.9
) CONTROL [DEG]| 1503 412 1535 473 856 187 2381 689
TIMING [SEC] 1.8 2.9 1.7 2.7 1.6 2.9 0.19 0.1
8 TRrRAJ. LENGTH 131 45 129 43 103 20 150 62
& | Esr. Err. [m] 9.8 8.7 9.5 9.4 | 57.4 | 826 | 11.5 9.2
g CONTROL [DEG| 1124 307 952 250 617 120 2276 773
TIMING [SEC] 11.5 18.4 9.8 13.5 8.2 8.7 2.6 2.4

Table 1: Performance evaluation in UNIFORM, OASIS, CLUSTERS with randomly
chosen goals (See Fig. 13). Performance metrics: trajectory length, position
estimation errors, cumulative control, planning time. Results are shown in terms
of mean (1) and standard deviation (o).

choosing large values of M, can create undesirable behavior (Fig. 6b), as the
penalty on control usage interferes with the other terms in the objective function.
Ideally, one would like to select weights to specify the “importance” of each
term (uncertainty reduction, goal attainment, control usage). In this section we
provide additional insight as to why this selection is non-trivial and also suggest
how to extend our approach to improve its effectiveness.

To provide more insight we discuss a simplified example where we neglect
uncertainty and consider only two terms to balance in the objective function,
namely control usage and goal attainment. Under these assumptions, Eq. (41),
for a single look-ahead step, becomes:

T () = 1€ (wn) I, + Jwsn — XC2, (52)

where we reward next robot position x4, 1 to be close to the goal X¢. To make
the problem even simpler, we assume a linear motion model: zy+1 = ) + ug,
where x;, € R? is the robot position at time k and u; € R? is the control action
we need to plan. We also assume ( (uy) = up — g, meaning that we penalize
differences between the planned control uy and a given nominal control 4. For

instance, we can set Uy = V"in, meaning that the nomlnal control imposes a

[

constant speed V' and penalizes changes in the direction H In this example

Hu
we are neglecting uncertainty, hence the state is predicted exactly by the model
Tk+1 = Tk + ug. Finally, we assume the weight matrices M, and M, to be in
the form M, = vI3 and M, = (1 — ) I3, where v € [0, 1], and I3 is a 3 x 3 identity

matrix. Under these assumptions, (52) simplifies to:

T (ur) = Jux — @) + (1= ) ||ux + 25 — XC|°. (53)
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In this simple case, the cost is quadratic in u, and it is possible to compute the
optimal control v, in closed form:

up =vu+(1—7) (X9 —ay). (54)

—y=0.0
—y=0.2

6 1 2
; v=0.4
5 i o =06
N 15 —v=0.8
4 L s
7=1.0

Figure 18: (a) Optimal control u} (red arrow) for different robot positions (blue
A). The control u} at a given position is a linear combination of the nominal
control % (blue arrow) and the vector X¢ — x;, (green arrow). (b) Planned
trajectories for different values of «y; robot starts at the origin and has to reach
goal position (1,1).

Fig. 18a shows the vector u}, (in red) for different robot positions z; and for
a fixed v = 0.7. Ideally, we want to use v to impose a given trade-off between
goal attainment and fidelity to the nominal control @; in particular, we would
like the following behavior: for a fixed v — 1 the control is closer to the nominal
one, while for small v we prioritize reaching the goal. However, one may notice
from (54) that when the robot is far away from the goal, the term X& — x;, is
dominating, even for large . Therefore, our ideal behavior cannot be assured
in general. This is confirmed by Fig. 18a, that shows that when the robot is far
from the goal, the control vector u} (in red) gets closer to the vector X% — z;,
(in green). The behavior is undesirable, as when we are far away from the goal,
we apply very strong control actions (arbitrarily neglecting the nominal control
U, in blue in Fig. 18a), while, close to the goal, we apply weak control and we
mainly follow the nominal control @;. The dependence on the distance to the
goal X —z;, makes it hard to establish a good policy for the weight, and this is
a consequence of the use of a quadratic cost, in which the “attraction” towards
the goal grows quadratically with the distance.

In Fig. 18b we simulate the planner (54) for different values of v, assuming
the robot starts at the origin and the goal is located at (1,1). This figure further
remarks the importance of the choice of the weights. For small values of 7y the
robot “orbits” around the goal and is unable to reach it, as we observed in our
nonlinear planning problem of Fig. 6b. This is again undesirable: the reason
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is again that the control action is position dependent and the attraction to the
goal becomes weaker when the robot is closer to the goal itself.

Note that in the considered example it may seem easy to balance the terms.
However, in the general case of Eq. (41) is nontrivial to balance the cost com-
ponents and the issue discussed in this section may manifest in other ways. For
instance, when the robot is far from the goal, the cost component related to goal
attainment dominates, and the robot may prefer to go towards the goal, even
it this leads to violation of the uncertainty bounds. In this paper, our solution
to cope with this issue was to make the weights a function of robot uncertainty
via the parameter «y (Section 6.1), instead of fixing them. This is essentially
a way to prioritize uncertainty reduction, when robot uncertainty is close to
the specified upper bound . This choice has few undesirable drawbacks; for
instance, when «y, is small, the cost of reaching a far goal is still dominating,
and this may lead the robot to miss loop closing opportunities.

In future work we plan to explore two solutions to facilitate the choice of
the weights. The first solution is a practical one, and consists in the use of
intermediate “waypoints” on the way from the robot to the goal. Setting the
waypoints at fixed distances allows to make the term X — z;, constant, such
that a fixed choice of v can regulate the two terms in Eq. (54).

A second solution consists in the use of the /1 norm instead of the Euclidean
norm for distances. This removes the dependence of the control action on the
distance to the goal, but presents other challenges, e.g., non-differentiability at
the origin, and difficulty to compute the expectation in Eq. (40).

8.2 Coping with Loopy Solutions

A second way to improve our approach is to exploit domain-specific knowledge
to inform the planner about the feasibility of a given problem instance.

Let us discuss this point using the example in Fig. 19a. In this case we
impose a stricter uncertainty bound 3 = 40?m?2. The robot reaches goal 4 and,
while moving towards goal 5, decides to close the loop, and come back to observe
known landmarks. Using our heuristic (Section 6.1.2), the planner requires that
the uncertainty is sufficiently small before heading back to goal 5. Therefore,
the robot keeps revisiting known areas until the uncertainty reaches the point
labeled with x in Fig. 19b. At that point the uncertainty is sufficiently small,
and the robots heads back to goal 5. However, the uncertainty budget is not
sufficient to reach the goal, and the robot gets stuck in the loopy behavior of
Fig. 19a; the uncertainty keeps oscillating, as shown in Fig. 19b.

The very same problem may occur, even if we ask the robot to re-establish
an uncertainty close to zero, before moving to the goal. There are cases in which
the goal is simply out-of-reach, given the initial uncertainty budget (which is a
function of measurement and motion noise). The impossibility to reach the goal
within admissible uncertainty is an intrinsic limitation of the problem instance.

A practical solution to cope with this problem is the following. Once the
loopy condition of Fig. 19a is detected, the planner can simply relax the un-
certainty bound, to enable the robot to reach goal 5. In the results presented

47



2500 ) ) 4 50
. 0.9 T R e e TP TP
2000 2w R : 08 40
6 07 <
&
1500 05 Sa0
= S
E 8
£ 05 ¢35
2 2
Z 1000 04 220
3
E15
3
) - 8. W 03 3
500 _; L 02 10
) i 0.4 5
0 : ! S 0 % 100 200 300 400 500
1000 500 500 1000

0 .
East [m] Pose index

(a) (b)

Figure 19: (a) Example in which the planner fails and the robot keeps oscillating
between the competing behaviors of uncertainty reduction and goal attainment.
(b) Square root of the trace of position covariance; the green X indicates that
the planner induces the robot to head back to the goal.

in this paper we did not need to implement this heuristic, while it may be re-
quired when the uncertainty bounds are very strict. Future work includes to
investigate in more details the concept of uncertainty budget, and how to use
it beforehand, e.g., to predict which goal is reachable or dynamically adjusting
uncertainty bounds depending on the scenario.

8.3 Enforcing Hard Constraints

So far we presented an approach that allows imposing uncertainty bounds in
the form of soft constraints. This means that the planner allows (but penalizes)
violations of such bounds. In many applications, one may be interested in im-
posing hard constraints on uncertainty, meaning that the plan has to guarantee
that uncertainty is below the bound. In this section we briefly discuss how to
extend the proposed formulation to cope with hard constraints.

Let us start from the cost (41), and let us move the covariance trace from
the objective function, and use it to constrain the optimization problem:

min Ik (Ukik+1—-1)
Uk:k+L—1
st. tr (ML ,MEI)<pB 1=1,....L (55)

with:

T (W r—1) = S0 lIC (Uk+z)H?\4u + | BG, L Xk L — XG||3% (56)
—+tr (Qk+L (H}HLL;:LHE_FL +Q;1)) .

In order to frame the constrained optimization problem (56) intro an uncon-
strained one, we use a log barrier method. In the log barrier method, for each
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constraint tr (MsI, !, M) < B8, we add a term in the form —log (tr(MsI, !, M )—3)
in the objective function:

L—-1 L
T (uern—1) = Y NIC ()3, — Y log (tr (Ms I M) — 8) +
1=0 1=0

| ER L Xirr — XGwam +tr (Quer (Her oI p Hie, +01)) - (57)

Intuitively, when the trace tr (MEI,; J:IMET ) at the [th look-ahead step ap-
proaches 3, the argument of the logarithm tends to zero, and then the negative
logarithm tends to infinity. Therefore, all actions violating the bound /3 appear
to have infinite cost. While this solution may seem very easy and appealing,
it still has some drawbacks. The main issue regards the fact that, as discussed
in Section 8.2, one cannot guarantee the existence of a path from the robot
position to the goal, such that the uncertainty constraint is satisfied. There-
fore, a formulation with hard constraints can easily lead to infeasible problem
instances. In the proposed GBS approach, instead, we penalize violations of the
bound, but we still manage cases in which satisfying this bound is not possible.
Future work includes a deeper investigation of the theoretical guarantees
related to the proposed approach (e.g., guaranteed uncertainty bounds). To the
best of our knowledge, the only approach in this direction is the one presented in
(Carlone and Lyons, 2014). However, in (Carlone and Lyons, 2014) the authors
consider a linear model for the system (robot motion and measurements), and
they impose that the uncertainty bound is only satisfied at the end of the time
horizon, while enabling bound violation at intermediate look-ahead steps.

8.4 Other Extensions

In this work we did not discuss obstacle avoidance during planning. Modeling
obstacles is possible within our framework, and we refer the interested reader
to (Van Den Berg et al., 2012) and the references therein. Future work also in-
cludes investigation of the relation to the mixed-integer formulation of (Carlone
and Lyons, 2014), in which the planner is guaranteed to produce collision-free
trajectories.

From a practical standpoint, we feel that more work needs to be done to make
the planning approach more efficient. Also on this front, many solutions are pos-
sible, ranging from more efficient implementations of the gradient method, the
design of specific objective functions in which analytic differentiation is viable,
to the investigation of nonlinear optimization methods with faster convergence.

9 Conclusion

This work investigates the problem of planning under uncertainty, and addresses
several limitations of state-of- the-art techniques, namely (i) state or control
discretization, (ii) assumption of maximum likelihood observations, and (iii) as-
sumption of prior knowledge about the environment in which the robot operates.
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We propose a planning approach that operates in a continuous domain. The
approach is based on a dual-layer architecture, with an inner inference layer,
which is in charge of predicting the belief on robot and world states for a given
control action, and outer decisional layer, which has to compute an optimal
control strategy using the predictions of the inner layer. In the inner inference
layer, we treat future measurements as random variables, hence avoiding the as-
sumption of maximum likelihood observations. We also include random binary
variables to model the fact that it may be not known in advance whether a mea-
surement is acquired or not. Our approach works in the generalized belief space,
which, besides robot and world state, encodes a joint probability distributions
over future measurements and latent binary variables. We test our approach
in realistic simulation scenarios; experimental results show that the approach is
able to deal with the concurrent tasks of exploring an unknown environment and
keeping the uncertainty bounded. Moreover, the approach produces smoother
and more natural trajectories with respect to related approaches that rely on
discretization. We further use the results to discuss current limitations of our
approach and elaborate on possible avenues for future work.
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Appendix A: Index to Multimedia Extension

The multimedia extension page is found at http://www.ijrr.org.

Table of Multimedia Extension

Extension Media type Description

1 Video Application of planning in GBS to autonomous
navigation in unknown environments

Appendix B: Derivation of Eq. (41)

In this appendix we complete the derivation of Eq. (41) from Eq. (40), deriving
the expectation LE [HE,?HX,:H - XGHL ] . We present the derivation for the
k:k41 r

general case of the [th look-ahead step, which is valid in particular for [ = L as
it appears in Eq. (40).
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We first substitute X;,;, as given in Eq. (37), into the expectation:

2 _ . 2
E U(EEHX;:H -x9| ] =,E {HEEHXW + B AT b - XO| } :
Zh:k41 My Zh:k41 My,

where we exploited that (AZHA;CH)*IA;{HEH; = I 4 AF, bt as per Eq. (44).
Now we notice that choosing the nominal state X;; as in Eq. (27) annihi-

lates 7)£+l in Eq. (32), and implies .A,q;HIVJkH = H£+IBZ+13 then our expectation
becomes

2 _ _ 9 2
2l ] a [l s sttt x|
kik+l My Zliko+1 M,
Observe that both H{, and by 4 are whitened by the scaled measurement

information matrices Q% (defined in Eq. (25)). Developing the squared norm
we rewrite the expectation as

Z:k+1 My Zig:k+1

_ B o 2 _ 5
E {HE,?HXHL+E,§+,Ik+ll7-lf+,b§§+,fXGH ]: E {HE,?HXW—XGHMI

_ v 2 - T _ .
|| BT HE V|| 2 (B K = X9) T My (EEHI,;ZHZHIJZH)] (58)
v — o L
The vector b}, includes the whitened innovation terms (Q47)2 bf'; (2x415), i €
[1,...,]] and j € [1,n,], see Egs. (30) and (31). Therefore, we can write

1
ih  _ O21h
by = Q3 by,

where b} 4 is constructed by stacking the innovations b5 (2ging)-
Since bZ 41 is the only term depending on the observations Zj.1;, we rewrite
Eq. (58) as:
_ o1
| BE X — XE|[, + AE H B M2 by

2 | (59)

My

— T _ o 1
2 (B X = X€)T M (BRI L0 B b))
In order to evaluate the expectation p E [bZH], we write explicitly b?j (Zk;JrZ"j) as
Rkl ?
in Eq. (30):
by (2hrig) = zegig —h (Xigiy) = h (Xivig) — b (Xigiy) +vig o vig~N (0, QZ])

where we also substituted the measurement zj; ; using Eq. (6). We notice that

X7y is the true value of the state (unknown in practice) while X7, ; is the
nominal belief, computed as in Eq. (27). We write X,‘;H,j = Xiyij + )N(,‘;H’j

where X’,‘c’ i is the mismatch between the estimate X} i and the true value
Xiis e Now we linearize the measurement model around the nominal value
g o . .

Xy ;> obtaining

bi' (2htig) A h (XPpig) + HijXPvi; — h (XPaig) +vig = Hi j X245 +viy  (60)

o1



where H; ; = V,h is the Jacobian of the measurement model h(-). Considering
all the measurements, and the overall joint state at the [th look-ahead step,
X4, we can write the following compact expression:

beys = Hiepi X + Y (61)
where T is a vector including all the noise terms v; ;. By construction, T ~
N(0,€,), where Q, is a block diagonal matrix containing Q¥ on the diago-
nal. Recall that the nominal state X4, coincides with the prior estimates (see
Eq. (27)), i.e., the estimate of the state given the controls, but before including
the measurements. Therefore, Xkﬂ- ~ N(0, ka), where ka is the information

matrix of the prior estimate given in Eq. (44).
From Eq. (61) it follows that

E [bp,]=0 (mean)
Zl:k+1 (62)
LE {bﬁﬂ (bZH)T} =HI_H" +Q;' (covariance)
kik4l
Using the first line in Eq. (62), the last term in Eq. (59) disappears:
_ 2 J1 2
B - X%+ E HE;?HI;LHEH% s } (63)
My Zkik4l M,

Now we simplify the second term in Eq. (63) by writing in explicit form the
Mahalanobis norm:
T

_ 9 B g1 _ o1
|‘E1?+1Xk+l - XGHMz +ZkI-Ek+L <E5+llkjl7{£+zﬂﬁ bZ+l> M, (E1§+llk4}l7‘l£+l95 b2+l>:| =

S 2 T
| R X — XOJ, + S E [(bz-kl) Qi+l (bZ-H)}
k:k+1
where -
g1 _ vl
Qk+l = (E,f+l],€__:l’}{g+lﬂg) M, (Elg;-‘rl[k;—&l%{-‘rlg'g) :
Now we use the fact that, for a random vector y and a given matrix @, it holds
E [y"Qy] = E[y]" QE[y] + tr(Q%,), where X, is the covariance of y. Using this
Y Y Y
property and recalling Eq. (62) we conclude:
2

Zi:k+1

E HEG X7 —XGH
{ Tt 1 X -1 o,

_ 2 _
| =l (@uss (st 7))
- (64)
where Iy, is the information matrix of the prior estimate.
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