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Abstract— In this paper we address the problem of collabora-
tive active state estimation within the framework of multi-robot
simultaneous localization and mapping (SLAM). We assume
each robot has to autonomously navigate to a pre-specified set
of goals in unknown environments and develop an approach
that enables the robots to collaborate in order to reduce
the uncertainty in their state estimation. We formulate this
problem as multi-robot belief space planning, where the belief
represents the probability distribution of robot states from the
entire group, as well as the mapped environment thus far.
Our approach is capable of guiding each robot to reduce its
uncertainty by re-observing areas previously observed (only)
by other robots. Direct observations between robot states, such
as relative-pose measurements, are not required, providing
enhanced flexibility for the group as the robots do not have to
coordinate rendezvous with each other. Instead, our framework
supports indirect constraints between the robots, that are
induced by mutual observations of the same area possibly at
different time instances, and accounts for these future multi-
robot constraints within the planning phase. The proposed
approach is evaluated in a simulation study.

I. INTRODUCTION

Accurate and reliable operation in complex, partially
unknown or dynamically changing environments is essen-
tial in numerous problem domains, including autonomous
navigation in GPS-deprived environments, search and res-
cue scenarios, object manipulation, human-robot interaction,
satellite proximity operations and robotic surgery. The corre-
sponding problem can be formulated within the simultaneous
localization and mapping (SLAM) paradigm, where infer-
ence is performed over the robot states (e.g. pose, navigation
state) and the perceived environment, and is also tightly
related to vision-aided navigation.

While the SLAM problem has been extensively investi-
gated for over a decade, state of the art approaches often
assume robot motion to be externally determined and focus
on the inference part. Although treating the two processes
separately simplifies the problem, and is a necessity in certain
semi-autonomous applications (e.g. hand-held camera, user-
driven robots), optimal performance is not guaranteed, as the
principle of separation [30], [2] does not hold in the general
case, often resulting in sub-optimal estimation accuracy.

Addressing the fully coupled problem involves account-
ing for different sources of uncertainty, such as stochastic
dynamics and observations, within motion planning. To do
so, we need to reason in terms of the belief, a probabilistic
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Fig. 1: 3D view of the considered synthetic scenario. Each
robot adjusts its trajectory to observe areas mapped by
another robot, thereby considerably reducing uncertainty (see
also Figure 2).

distribution over states of interest (e.g. robot poses), and how
the belief evolves for different actions.

The corresponding problem can be formulated as a par-
tially observable Markov decision process (POMDP). Cal-
culating a globally optimal solution to POMDP is known to
be computationally intractable [22], for all but the smallest
problems. Thus, the research community has been exten-
sively investigating approximate approaches to provide better
scalability to support real world problems, however, often
assuming operation in known environments, as well as
assuming robot state is directly observable, see e.g. [18],
[24], [23], [29], [7].

In recent years, research focus has also shifted towards
active SLAM approaches [27], [8], [26], [20], [31], [5], [28],
[16] that trade-off between exploration of new areas with
improving inference accuracy by actively performing loop
closure observations.

In this paper we address the problem of collaborative
active state estimation within the framework of multi-robot
SLAM. Collaboration between multiple possibly heteroge-
nous robots, capable of information sharing, has been investi-
gated both in passive and active multi-robot SLAM contexts.
Existing active approaches, however, typically focus mainly
on coordination aspects to facilitate efficient exploration of
new areas (see, e.g. [3], [6], [31]).

In contrast, here we approach the problem from a state



estimation perspective, investigating how can the robots col-
laboratively improve inference quality. The passive problem
formulation, where robots motion is externally determined
and the objective is to infer states of interest as accurately
as possible, has been investigated in recent years. These
research efforts (including [25], [1], [17], [13], [4], [14])
explored different aspects of the problem, such as centralized
vs distributed architecture, direct and indirect multi-robot
constraints, and multi-robot data association.

On the other hand, active approaches for cooperative state
estimation have been much less investigated, in particular
considering operation in unknown or uncertain environments.
In this paper we address this problem within the framework
of multi-robot SLAM and contribute an approach that allows
a group of robots to determine (locally-) optimal motion such
that estimation accuracy is substantially improved while op-
erating in unknown environments. Considering a centralized
setting, we formulate the problem as multi-robot belief space
planning, leveraging our previous research on (single-robot)
planning in the generalized belief space [10], [11], [12].

In particular, we incorporate within the planning phase
reasoning regarding (future) multi-robot constraints, which
correspond to having the same scene observed by different
robots, possibly at different time instances. These constraints
provide incentive for the robots to properly adjust their
trajectories such that appropriate areas are observed if these
observations are expected to provide significant information
gain (Figure 1). Moreover, our formulation does not require
the robots to actually meet in order to benefit from each
other’s information, thereby providing enhanced flexibility.

II. PROBLEM FORMULATION
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The motion and observation models in Eqs. (2) and (3) are
assumed to be with with additive Gaussian noise,
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where ⌃r

w

and ⌃r

v

are the process and measurement noise
covariance matrices, respectively.

We consider now a group of R robots, and denote by ⇥
k

the corresponding joint state

⇥

k

.

= X

k

[ L

k

, X

k

.

= {Xr

k

}R
r=1 , (6)

comprising the past and current poses X

k

of all robots, and
where L

k

represents the perceived environment by the entire
group. Assuming a common reference frame between the
robots is established, L

k

includes all the 3D points in L
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k

for each r, expressed in that reference frame.
The joint pdf over ⇥
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can now be written as
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where u0:k�1 represents the controls of all robots and is
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One can now calculate the maximum a posteriori estimate
(MAP) of ⇥

k

in a centralized framework as
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The above formulation implicitly includes multi-robot con-
straints: these constraints arise from some robot r observing
at the current time t

k

landmarks that have been already
observed by another robot r

0 at some time t
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0 , with t
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0 
t
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. These multi-robot constraints are the key to improving
estimation accuracy in a collaborative multi-robot setting.

In this paper we address the problem of how such multi-
robot constraints can be planned ahead of time to improve
estimation accuracy. To that end, we formulate the problem
within the framework of belief space planning and develop an
approach capable of autonomously guiding the robots such
that the mentioned multi-robot constraints can be generated,
if these are expected to provide significant information gain.

While our approach naturally supports also direct multi-
robot constraints (e.g. one robot makes relative-pose observa-
tions of another robot), we focus on the more general case of
indirect multi-robot constraints. The latter provides enhanced
flexibility as there is no requirement for the robots to actually
meet each other to perform collaborative inference; instead,
the latter takes place whenever a common scene is observed
by different robots.

III. MULTI-ROBOT BELIEF SPACE PLANNING

We formulate this problem with a belief space planning,
where the belief represents the joint pdf of the entire group
at an appropriate time. In particular, the belief at the current
time t
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is just the joint pdf (7):
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while the belief at a future time t
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The belief b (⇥
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of all R robots in the group. Observe that the

latter depends on the controls (different areas are observed
for different controls). As we shall see next, it allows
to model future multi-robot constraints via observation of
mutual 3D points. Importantly, these observations that can
be acquired at different time instances.

We now define a general multi-robot objective function
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that involves L look-ahead steps for all robots, and where c

l

is the immediate cost function for the lth look ahead step.
The expectation operator accounts for all the possible future
observations Z

k+1:k+l

. We are then interested in finding the
optimal controls u
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k:k+L�1 for all R robots via

u

?

k:k+L�1 = argmin

uk:k+L�1

J (u

k:k+L�1) . (12)

We note that while we assumed the robots have a single
objective function (11), it can still include different terms
for each robot (as will be seen next). One could resort also
to a different objective function for each robot.

In particular, when c

l

includes the second moment of the
belief b (⇥

k+l

), e.g. covariance, calculating (12) facilitates a
framework for actively and collaboratively reducing uncer-
tainty in the joint state of the group. The problem, however,
is further complicated when the objective function includes
additional terms, such as distance to goal and control effort,
that require delicate balance of the importance of each term.

IV. DIRECT TRAJECTORY OPTIMIZATION

Finding a globally optimal solution u

?

k:k+L�1 via Eq. (12)
involves solving a partially observable Markov decision
problem (POMDP), which is known to be computationally
intractable [22] for all but the smallest problems. The re-
search community has been extensively investigating approx-
imate approaches, including point-based POMDP, sampling-
based and direct trajectory optimization methods. Our ap-
proach is of the latter class and is based on the previous
work [10], [11], [12], trivially extended to the multi-robot
centralized case considered herein.

At each time instant, we calculate locally-optimal controls
u

k:k+L�1 for all R robots, starting from a nominal trajectory
or controls that are assumed to be given. The latter can be
set according to the controls from the previous time instant,
or determined by sampling motion planning techniques, such
as RRT [19] or RRT* [15] (see, e.g., [29]).

In particular, as shown in our recent work [9], a similar
probabilistic formulation that exploits multi-robot indirect
constraints can be used within sampling based techniques,
in which case the approach reported herein can be applied
to refine the identified best trajectories into optimal solutions.

The overall process for calculating the optimal controls
u

?

k:k+L�1 can be described as a dual-layer inference (see
[10], [11], [12] for details). The outer layer constitutes an
iterative optimization over the controls, which are updated
at each iteration according to
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Different optimization methods can be used; in this work,
similarly to [10], [11], we use a simple gradient method.
Thus, the controls of each robot r are updated according to
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where � is an appropriate stepsize and r
r

J is the gradient
of the objective function with respect to the current solution
for controls u

r

k:k+L�1 of robot r.
The inner layer performs inference over the belief: Re-
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Calculating the gradient captures how the belief, and in
particular the covariance ⌃

k+l

, changes for different actions
of the R robots and eventually entails the (locally) optimal
controls for a given objective function. This provides a
natural mechanism to facilitate active collaborative state
estimation, i.e. adjusting robot trajectories to attain better
estimation accuracy.

In the next section we discuss in detail the mentioned inner
layer inference, and describe a methodology to account for
future multi-robot constraints within this planning phase.

V. INCORPORATING FUTURE MULTI-ROBOT
CONSTRAINTS INTO THE JOINT BELIEF b (⇥
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write it explicitly as
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Recall it is a function of the (unknown) future observations
Z
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and of the controls u

k:k+l�1 of all R robots.
While in inference the existence of observations is a

given fact (either the measurement is obtained or not), when
planning future actions, we can only model probabilistically
whether or not future measurements will be acquired. Intu-
itively, if a 3D point is outside the camera field of view,
or is too far (e.g. outside sensing range), it will not be



observed by the robot sensors. In a previous work [11] we
introduced binary latent variables to represent the probability
of acquiring future measurements.

Here, we go one step further and note that a similar reason-
ing allows to model future multi-robot constraints, i.e. ob-
servation of 3D points by different robots, not necessarily
at the same time. This observation is the key element that
facilitates our approach for opportunistic active collaborative
state estimation.

Specifically, for each robot r we use two types of binary
latent variables, denoted by �

r

k+l,j

and  

r

k+l,m

. Variables
of the first type, �r

k+l,j

, represent a loop closure event to
happen at time t

k+l

(as in [11]), i.e. robot r re-observes 3D
points l

j

that were previously seen by robot r and possibly
by other robots. In contrast, the variables  r

k+l,m

represent
observations, to be made by robot r, of 3D points l

m

that
were only observed by other robots. These latter observations
induce additional (indirect) multi-robot constraints which,
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the joint pdf of the entire group at the lth look ahead step is
given by

p (⇥

k+l

,�

k+l

, 

k+l

|Z0:k+l

, u0:k+l�1) . (17)

The belief b (⇥

k+l

), see Eq. (15), can be calculated by
marginalizing out the latent variables as in
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Let us now focus on the joint pdf (17) and write it recursively
in terms of the belief from the previous step, b (⇥
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and where the last term can be expressed using the binary
latent variables as
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In the above equation, one can see the mentioned binary
variables of both types: the first product involves the vari-
ables �r

k+l,j

, accounting for the observations to be made by
robot r of 3D points in L

r

k

, i.e. representing areas previously
observed by robot r and possibly also by other robots. The
second product includes variables  r

k+l,m

, modeling robot

r’s observations of 3D points in L
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, i.e. areas that were
previously observed by other robots but not by robot r.

Intuitively, if the corresponding 3D points in L
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k

are
estimated with high confidence (small uncertainty covari-
ance), there is much to gain for robot r by observing (some
of) these points. In such cases, we would like each robot r
to be autonomously guided towards appropriate areas so that
its estimation quality can be performed (see Figures 1 and
2a). In the next section we discuss in detail a mechanism to
accomplish this objective.

Remark: While Eq. (20) accounts for the areas observed
by the current time t

k

, as represented by the 3D points
L

k

, one could also consider, for each lth look ahead step,
new 3D points that will be observed for the first time
during the time interval [t

k+1, tk+l

]. As we show in [9],
this facilitates a framework for active collaborative state
estimation while operating in unknown environments, and
can lead to significantly improved estimation accuracy.

VI. INFERENCE OVER THE BELIEF

Having discussed in detail the joint belief b (⇥

k+l

), we
now turn our attention towards the corresponding maximum
a posteriori (MAP) inference, which involves calculating the
first two moments of that belief. This is the inner layer
inference, which is performed for each of the L look ahead
steps as part of the gradient calculation in Eq. (14).
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We note that, alternatively, an information form could be
used to attain better computational efficiency (as in [12]).

Calculating the MAP estimate of ⇥
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which, similarly to the single robot case, is computationally
intractable. Instead, we resort to expectation maximization
(EM) [21] approach and write
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Following a similar process as in [11], [12], the above
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can be written recursively as in Eq. (22)
that appears at the top of next page. Linearizing about ˆ
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with the corresponding covariance (or, alternatively, infor-
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in Eq. (22) represent
the probabilities of observing 3D points l
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and l
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at a
future time t
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. In standard EM inference, one can evaluate
both of these terms based on the estimates x̂
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(see, e.g. [14]). However, this is not possible in the
planning phase, since these future observations are unknown
(we are trying to assess whether these will be acquired).

Nevertheless, these two terms play a key role in the
described dual-layer inference as they provide a mecha-
nism to attract the robot to observe informative 3D points,
i.e. observations that are expected to significantly impact
the uncertainty covariance (24). Crucially, it allows to do so
even for 3D points outside the robots current sensing range
(or field of view). By appropriately modeling these terms,
e.g. letting the probability of observing a 3D point decrease
with robot distance from the latter, it is possible to induce
non-zero contributions to the gradient r

r

J from Eq. (14).
These contributions become dominant if information gain is
significant and as a result the robot will be guided towards
the corresponding informative 3D points.

It is exactly this mechanism that allows to plan the
mentioned indirect multi-robot constraints, as represented
by the summation in Eq. (22c). In particular, the gradient
r

r

J calculated by each robot r accounts for the impact of
observing 3D points L

k

\Lr

k

that were previously observed
only by other robots.

In practical terms, while the summation in Eq. (22c)
involves all the 3D points observed by the entire group of R
robots excluding robot r, one could prefer to only account for
those areas that are within a certain neighborhood of robot
r. One approach to attain this is by appropriately nullifying
the gradient of p

⇣

 

r

k+l,m

= 1|x̂r

k+l

,

ˆ

l

m

, z

r

k+l,m

⌘

such that it
becomes zero outside a user-defined radius, centered at x̂r

k+l

.

VII. EXPERIMENTS

We evaluate the proposed approach for opportunistic col-
laborative active state estimation in a simulative environment,
considering the problem of uncertainty-constrained aerial
autonomous navigation in unknown and GPS-deprived en-
vironments. In the next section we describe the considered
objective function J from Eq. (11) and then in Section VII-B
present the results.

A. Scenario and Objective Function
In this work we consider a multi-robot uncertainty-

constrained autonomous navigation scenario, where each
robot r has to navigate to a pre-defined goal xr

g

while op-
erating in unknown environments and keeping its estimation
uncertainty below a given (soft) threshold �. We use a single
objective function for the entire group:

J (uk:k+L�1)
.

=

RX

r=1

⇥
(1� ↵

r
)

��
x̂

r
k+L � x

r
g

��
+ ↵

r
tr (⌃

r
k+L)

⇤
,

(25)
where ⌃r

k+L

is the covariance of robot r at the last look
ahead step. For simplicity we do not include penalty over
control usage and assume maximum likelihood observations,
which allows to omit the expectation operator in Eq. (25).
The parameter ↵r represents an adaptive weight to trade-
off uncertainty reduction and goal-attainment. Given an
uncertainty threshold �, this parameter is calculated for each
robot r based on its pose covariance ⌃r

k+L

as (see further
details in [10], [11], [12]):

↵

r

.

= min

 

tr

�

⌃

r

k+L

�

�

, 1

!

. (26)

Since the objective function J involves the belief of all
R robots (in terms of the first two moments x̂

r

k+L

and
⌃

r

k+L

), calculating the actions u

r

k:k+L�1 for each robot r

via Eq. (14) takes into account the impact of the latter on
robot r and other involved robots. In particular, when robot
r makes an observation of 3D points previously observed
by other robots, the uncertainty covariance of these and
possibly additional robots will be impacted. For each robot
r, the gradient r

r

J from Eq. (14) will therefore include
contributions from all these robots, properly quantifying the
effect of robot rth candidate controls ur

k:k+L�1 on the entire
group, a process that implicitly also involves the controls
u

r

0

k:k+L�1 of other robots r

0 2 {1, . . . R}� {r}.
We note that while the goals

�

x

r

g

 

R

r=1
are pre-defined, an

interesting question that deserves further research, is how to
choose these goals online. Addressing this task allocation
problem could, for example, lead to improved estimation
accuracy by enhancing collaboration between nearby robots.

B. Results

We assume each robot r starts operating from a different
location and needs to reach its own goal xr

g

, while localizing



itself and mapping the environment perceived with its camera
and range sensors. We use a soft uncertainty threshold of
� = 25 meters for all robots. The proposed approach is
demonstrated in two scenarios as described below.

1) First Scenario: In the first scenario, shown in Figure
2a, we consider the case of two aerial robots passing by
in opposite directions, each robot being guided towards its
own goal. We assume the robots have accurate knowledge
regarding their starting point (i.e. initial pose) and that the
robots share a common reference frame. Furthermore, the
robot trajectories are assumed to be sufficiently distant from
each other such that the robots will not observe any common
areas, without properly adjusting their motion. As a result,
without collaboration, each robot performs its own inference
process (i.e. SLAM).

The result of our approach is shown in Figure 2: Figure
2a shows the robot trajectories and displays also uncer-
tainty covariances as ellipsoids, while Figure 2b depicts
the covariance evolution over time. Initially, each of the
two robots proceeds directly to its goal as its covariance
is small compared to the uncertainty threshold �. However,
despite using SLAM as the inference engine, uncertainty
does develop over time, in particular due to short feature
tracks, and eventually reaches �.

At this point, which happens in general at different time
instances for the two robots, the parameter ↵r becomes 1

and the goal-attainment term in Eq. (25) vanishes for robot
r, and as a result, robot r attempts to reduce its uncertainty.
A single-robot framework would guide each robot r to
re-observe informative 3D points previously mapped by
robot r [10], [11], [12]. In contrast, the proposed multi-
robot centralized approach instead drives robot r to observe
informative areas previously seen by the other robot, r

0,
thereby implicitly forming multi-robot constraints spanning
different time instances.

As a result, uncertainty covariance is significantly reduced,
as shown in Figure 2b, and the robots reach the goal
with higher estimation accuracy. Figure 1 illustrates the
corresponding robot trajectories and the observed 3D points
by each robot. Note the 3D points mutually observed by the
two robots (at different time instances) as the result of our
multi-robot planning approach.

Finally, in Figure 3 we present statistical study results
comprising 50 runs for the two-robot case, where each run
used different noise realizations (but the same goal and robot
initial positions). One can observe that overall, robot trajec-
tories planned by our approach are consistent and smooth,
and the estimation errors and uncertainty covariances are
significantly reduced.

2) Second Scenario: In the second scenario we demon-
strate an advantage of using the proposed multi-robot active
collaborative estimation as opposed to single-robot belief
planning. The same objective function (25) and uncertainty
threshold � are considered, however the scenario is a bit
different, as shown in Figure 4: One of the robots starts
operating in an area without any 3D points and as a result
its uncertainty and estimation errors develop much faster,
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Fig. 2: (a) Top view on robot trajectories. Ellipses represent
uncertainty covariances. (b) Corresponding position estima-
tion errors and uncertainty covariances. Goals for each robot
are denoted by a circle and a number.
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Fig. 3: Statistical study results. (a) Robot trajectories. (b)
Corresponding position estimation errors (red) and square
root covariances for the red robot.

reaching the uncertainty threshold � before reaching the goal.
In the single robot case, this triggers uncertainty-reduction

motion planning that guides the robot to perform loop
closures. However, in the considered case the goal is simply
beyond the uncertainty budget [12]; reaching the goal with
uncertainty below the threshold � is infeasible. This can be
seen in Figure 5 that shows the robot is endlessly stuck in a
cycle of going towards the goal, reaching the uncertainty
threshold �, going back to reduce uncertainty via loop
closures, and doing the same process forever.

In contrast, assuming the availability of another robot that
happened to be operating in the same area and employing
our approach for active opportunistic collaborative state
estimation allows to properly adjust the robot motion such
that multi-robot constraints are created and, as a result, the
uncertainty is significantly reduced (Figure 4). Interestingly,
this can be considered as extending the mentioned single-
robot uncertainty budget.

VIII. CONCLUSIONS

We presented an approach for active collaborative state
estimation assuming the robots operate in unknown or un-
certain environments. Our belief space planning framework,
where the belief accounts for the uncertainty in robot poses
and in the observed environment, allows the robots to
calculate locally optimal trajectories such that their state
estimation is improved. We showed scenarios where this cor-
responds to each robot being guided towards areas previously
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Fig. 4: A different scenario, where the green robot starts
operating in an area without distinctive landmarks and as
a result develops significant errors. Our approach guides
the robot to observe areas previously mapped by the red
robot, thereby drastically reducing estimation errors and
covariances. (a) top view; (b) position estimation errors and
square root of uncertainty covariances.
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Fig. 5: The same scenario as in Figure 4, however consider-
ing only a single robot. The goal is outside the uncertainty
budget of a single robot. Without assistance from another
robot, as in Figure 4, the robot is unable to reach the goal
with the pre-defined uncertainty bound.

mapped by other robots, thereby facilitating an opportunistic
collaborative state estimation framework.
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